Submit manuscript...
MOJ
eISSN: 2576-4519

Applied Bionics and Biomechanics

Research Article Volume 9 Issue 1

Multilayer and sectional nano piezo engine for applied bionics and biomechanics

Afonin SM

National Research University of Electronic Technology, Russia

Correspondence: Afonin Sergey Mikhailovich, National Research University of Electronic Technology, MIET, 124498, Moscow, Russia

Received: June 13, 2025 | Published: June 27, 2025

Citation: Afonin SM. Multilayer and sectional nano piezo engine for applied bionics and biomechanics. MOJ App Bio Biomech. 2025;9(1):59-62. DOI: 10.15406/mojabb.2025.09.00226

Download PDF

Abstract

The multilayer nano piezo engine and sectional piezo engine are widely used for applied bionics and biomechanics in nano displacements for scanning microscopy and adaptive optics, compensating for vibrations, temperature and gravitational deformations. The parameters of nano engine are determined by using of mathematical physics method for the multilayer and sectional nano piezo engine with lumped parameters. The characteristics of the multilayer and sectional nano piezo engine are calculated. For static and dynamic regimes the characteristics and the parameters of the multilayer and the sectional nano piezo engine are founded. The transient characteristic for the nano displacement of the multilayer nano piezo engine is obtained. The mechanical and control characteristics of the sectional nano piezo engine are determined for applied bionics and biomechanics.

Keywords: multilayer nano piezo engine, nano displacement, elastic inertial load, time constant, sectional piezo engine, applied bionics and biomechanics

Introduction

The nano piezo engine is applied in bionics, biomechanics and nanotechnology and nanoscience.1−62 The multilayer nano piezo engine and sectional piezo engine are widely used for applied bionics and biomechanics in nano moving objects for scanning microscopy, adaptive optics, compensating for vibrations, temperature and gravitational deformations.3,9,19,50,56−62 The parameters of nano engine are calculated by using of mathematical physics method for the multilayer and sectional nano piezo engine with lumped parameters. The characteristics of the multilayer and sectional nanopiezoelectric motor are determined.

Multilayer nano piezo engine

Systems for applied bionics and biomechanics with the multilayer longitudinal piezo engine of nano displacement solve problems of compensation of temperature and gravitational deformations, precise adjustment and correction of wave front by using adaptive optics and laser systems.1−49

The mathematic model4−49 of the multilayer nano piezo engine with lumped parameters is constructed by using equation of the inverse longitudinal piezo effect

S 3 = d 33 E 3 + s 33 E T 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadofapaWaaSbaaSqaa8qacaqGZaaapaqa baGcpeGaeyypa0Jaamiza8aadaWgaaWcbaWdbiaabodacaqGZaaapa qabaGccaaMc8+dbiaadweapaWaaSbaaSqaa8qacaqGZaaapaqabaGc peGaey4kaSIaam4Ca8aadaqhaaWcbaWdbiaabodacaqGZaaapaqaa8 qacaWGfbaaaOWdaiaaykW7peGaamiva8aadaWgaaWcbaWdbiaaboda a8aabeaaaaa@4DCB@

here S 3 , d 33 , E 3 , s 33 E , T 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaaykW7caWGtbWdamaaBaaaleaapeGaae4m aaWdaeqaaOGaaiilaiaaykW7caaMc8+dbiaadsgapaWaaSbaaSqaa8 qacaqGZaGaae4maaWdaeqaaOGaaiilaiaaykW7caaMc8+dbiaadwea paWaaSbaaSqaa8qacaqGZaaapaqabaGccaGGSaGaaGPaVlaaykW7pe Gaam4Ca8aadaqhaaWcbaWdbiaabodacaqGZaaapaqaa8qacaWGfbaa aOWdaiaacYcacaaMc8UaaGPaV=qacaWGubWdamaaBaaaleaapeGaae 4maaWdaeqaaaaa@5970@ are the relative deformation, the piezomodule, the strength electric field, the elastic compliances at the strength mechanic field for 3 axis. We have the structural model of the multilayer nano piezo engine at its first fixed end, and its function at elastic inertial load in the form the second order oscillatory link. In static regime nano displacement for the multilayer nano piezo engine has the form

Δl= d 33 nU= k t U MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabfs5aejaadYgacqGH9aqpcaWGKbWdamaa BaaaleaapeGaae4maiaabodaa8aabeaakiaaykW7peGaamOBaiaadw facqGH9aqpcaWGRbWdamaaBaaaleaapeGaamiDaaWdaeqaaOGaaGPa V=qacaWGvbaaaa@4BA9@

here n,U MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaaykW7caWGUbGaaiilaiaaykW7caaMc8Ua amyvaaaa@4381@ are the number piezo layers, the voltage. At the multilayer nano PZT engine d 33 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadsgapaWaaSbaaSqaa8qacaqGZaGaae4m aaWdaeqaaaaa@3F12@ = 0.4 nm/V, n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaad6gaaaa@3D56@ = 10, U MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadwfaaaa@3D3D@ = 50 V, its nano displacement is founded Δl MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabfs5aejaadYgaaaa@3EBA@ = 200 nm.

Let us consider the multilayer nano piezo engine as element of system with lumped parameters at inertial load,4−49 here C 33 E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadoeapaWaa0baaSqaa8qacaqGZaGaae4m aaWdaeaapeGaamyraaaaaaa@3FCC@ is the rigidity of the multilayer piezo engine, M MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaad2eaaaa@3D35@ the mass of the inertial load.

In decisions control systems are used the transfer coefficient k t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadUgapaWaaSbaaSqaa8qacaWG0baapaqa baaaaa@3EA6@ and the time constant T t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadsfapaWaaSbaaSqaa8qacaWG0baapaqa baaaaa@3E8F@ of the multilayer piezo engine with lumped parameters. At the inertial load in dynamic regime the function of this engine W mlpe ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadEfapaWaaSbaaSqaa8qacaWGTbGaamiB aiaadchacaWGLbaapaqabaGcpeWaaeWaa8aabaWdbiaadohaaiaawI cacaGLPaaaaaa@4415@ has the form

W mpe ( s )= Ξ( s ) U( s ) = k t T t 2 s 2 +2 T t ξ t s+1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadEfapaWaaSbaaSqaa8qacaWGTbGaamiC aiaadwgaa8aabeaak8qadaqadaWdaeaapeGaam4CaaGaayjkaiaawM caaiabg2da9maalaaapaqaa8qacqqHEoawdaqadaWdaeaapeGaam4C aaGaayjkaiaawMcaaaWdaeaapeGaamyvamaabmaapaqaa8qacaWGZb aacaGLOaGaayzkaaaaaiabg2da9maalaaapaqaa8qacaWGRbWdamaa BaaaleaapeGaamiDaaWdaeqaaaGcbaWdbiaadsfapaWaa0baaSqaa8 qacaWG0baapaqaa8qacaqGYaaaaOGaam4Ca8aadaahaaWcbeqaa8qa caqGYaaaaOGaey4kaSIaaeOmaiaadsfapaWaaSbaaSqaa8qacaWG0b aapaqabaGcpeGaeqOVdG3damaaBaaaleaapeGaamiDaaWdaeqaaOWd biaadohacqGHRaWkcaqGXaaaaaaa@5E42@ k t = d 33 n, T t = M/ C 33 E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadUgapaWaaSbaaSqaa8qacaWG0baapaqa baGcpeGaeyypa0Jaamiza8aadaWgaaWcbaWdbiaabodacaqGZaaapa qabaGcpeGaamOBaiaacYcacaaMc8UaaGPaVlaaykW7caaMc8Uaamiv a8aadaWgaaWcbaWdbiaadshaa8aabeaak8qacqGH9aqpdaGcaaWdae aapeGaamytaiaac+cacaWGdbWdamaaDaaaleaapeGaae4maiaaboda a8aabaWdbiaadweaaaaabeaaaaa@52C7@

here Ξ( s ),U( s ),s, k t , T t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaaykW7cqqHEoawdaqadaWdaeaapeGaam4C aaGaayjkaiaawMcaaiaacYcacaaMc8UaaGPaVlaadwfadaqadaWdae aapeGaam4CaaGaayjkaiaawMcaaiaacYcacaaMc8UaaGPaVlaadoha caGGSaGaaGPaVlaaykW7caWGRbWdamaaBaaaleaapeGaamiDaaWdae qaaOGaaiilaiaaykW7caaMc8+dbiaadsfadaWgaaWcbaGaamiDaaqa baaaaa@59F6@ are the transforms of Laplace the displacement and the voltage, the operator, the transfer coefficient and the time constant.

At the multilayer nano PZT engine at M MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaad2eaaaa@3D35@ = 1 kg, C 33 E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadoeapaWaa0baaSqaa8qacaqGZaGaae4m aaWdaeaapeGaamyraaaaaaa@3FCC@ = 1.5∙107 N/m the time constant T t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadsfadaWgaaWcbaGaamiDaaqabaaaaa@3E61@ =0.26∙10-3 s is founded.

At elastic load for the multilayer piezo engine its nano displacement Δl MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabfs5aejaadYgaaaa@3EBA@ has the form

Δl= d 33 nU 1+ C e / C 33 E = k t U MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabfs5aejaadYgacqGH9aqpdaWcaaWdaeaa peGaamiza8aadaWgaaWcbaWdbiaabodacaqGZaaapaqabaGcpeGaam OBaiaadwfaa8aabaWdbiaabgdacqGHRaWkcaWGdbWdamaaBaaaleaa peGaamyzaaWdaeqaaOWdbiaac+cacaWGdbWdamaaDaaaleaapeGaae 4maiaabodaa8aabaWdbiaadweaaaaaaOGaeyypa0Jaam4Aa8aadaWg aaWcbaWdbiaadshaa8aabeaak8qacaWGvbaaaa@50C2@

here C e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadoeapaWaaSbaaSqaa8qacaWGLbaapaqa baaaaa@3E6E@ is the rigidity of the elastic load.

For the multilayer nano PZT engine d 33 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadsgapaWaaSbaaSqaa8qacaqGZaGaae4m aaWdaeqaaaaa@3F11@ = 0.4 nm/V, n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaad6gaaaa@3D55@ = 10, U MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadwfaaaa@3D3C@ = 50 V, C e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadoeapaWaaSbaaSqaa8qacaWGLbaapaqa baaaaa@3E6E@ = 0.15∙107 N/m, C 33 E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadoeapaWaa0baaSqaa8qacaqGZaGaae4m aaWdaeaapeGaamyraaaaaaa@3FCB@ = 1.5∙107 N/m are founded k t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadUgapaWaaSbaaSqaa8qacaWG0baapaqa baaaaa@3EA5@ = 3.64 nm/V and Δl MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabfs5aejaadYgaaaa@3EB9@ =182 nm.

For the elastic inertial load are simultaneously the elastic load C e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadoeapaWaaSbaaSqaa8qacaWGLbaapaqa baaaaa@3E6E@ and the inertial load M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaad2eaaaa@3D34@ . The transfer function of the multilayer piezo engine with lumped parameters W mlpe ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadEfapaWaaSbaaSqaa8qacaWGTbGaamiB aiaadchacaWGLbaapaqabaGcpeWaaeWaa8aabaWdbiaadohaaiaawI cacaGLPaaaaaa@4414@ at elastic inertial load and its first fixed end has the form

W mpe ( s )= Ξ( s ) U( s ) = k t T t 2 s 2 +2 T t ξ t s+1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadEfapaWaaSbaaSqaa8qacaWGTbGaamiC aiaadwgaa8aabeaak8qadaqadaWdaeaapeGaam4CaaGaayjkaiaawM caaiabg2da9maalaaapaqaa8qacqqHEoawdaqadaWdaeaapeGaam4C aaGaayjkaiaawMcaaaWdaeaapeGaamyvamaabmaapaqaa8qacaWGZb aacaGLOaGaayzkaaaaaiabg2da9maalaaapaqaa8qacaWGRbWdamaa BaaaleaapeGaamiDaaWdaeqaaaGcbaWdbiaadsfapaWaa0baaSqaa8 qacaWG0baapaqaa8qacaqGYaaaaOGaam4Ca8aadaahaaWcbeqaa8qa caqGYaaaaOGaey4kaSIaaeOmaiaadsfapaWaaSbaaSqaa8qacaWG0b aapaqabaGcpeGaeqOVdG3damaaBaaaleaapeGaamiDaaWdaeqaaOWd biaadohacqGHRaWkcaqGXaaaaaaa@5E41@ k t = d 33 n/( 1+ C e / C 33 E ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadUgapaWaaSbaaSqaa8qacaWG0baapaqa baGcpeGaeyypa0Jaamiza8aadaWgaaWcbaWdbiaabodacaqGZaaapa qabaGcpeGaamOBaiaac+cadaqadaWdaeaapeGaaeymaiabgUcaRiaa doeapaWaaSbaaSqaa8qacaWGLbaapaqabaGcpeGaai4laiaadoeapa Waa0baaSqaa8qacaqGZaGaae4maaWdaeaapeGaamyraaaaaOGaayjk aiaawMcaaiaacYcaaaa@4E6E@   T t = M/( C e + C 33 E ) ,  ω t = ( C e + C 33 E )/M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaacckacaWGubWdamaaBaaaleaapeGaamiD aaWdaeqaaOWdbiabg2da9maakaaapaqaa8qacaWGnbGaai4lamaabm aapaqaa8qacaWGdbWdamaaBaaaleaapeGaamyzaaWdaeqaaOWdbiab gUcaRiaadoeapaWaa0baaSqaa8qacaqGZaGaae4maaWdaeaapeGaam yraaaaaOGaayjkaiaawMcaaaWcbeaakiaacYcacaaMc8UaaiiOaiab eM8a39aadaWgaaWcbaWdbiaadshaa8aabeaak8qacqGH9aqpdaGcaa WdaeaapeWaaeWaa8aabaWdbiaadoeapaWaaSbaaSqaa8qacaWGLbaa paqabaGcpeGaey4kaSIaam4qa8aadaqhaaWcbaWdbiaabodacaqGZa aapaqaa8qacaWGfbaaaaGccaGLOaGaayzkaaGaai4laiaad2eaaSqa baaaaa@5C3F@

At the multilayer nano PZT engine M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaad2eaaaa@3D34@ = 1 kg, C e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadoeapaWaaSbaaSqaa8qacaWGLbaapaqa baaaaa@3E6E@ = 0.15∙107 N/m, C 33 E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadoeapaWaa0baaSqaa8qacaqGZaGaae4m aaWdaeaapeGaamyraaaaaaa@3FCB@ = 1.5∙107 N/m the time constant T t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadsfapaWaaSbaaSqaa8qacaWG0baapaqa baaaaa@3E8E@ =0.25∙10-3 s is founded.

The transient characteristic for the nano displacement of this multilayer piezo engine ξ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabe67a4naabmaapaqaa8qacaWG0baacaGL OaGaayzkaaaaaa@40C6@ at elastic inertial load has the form

ξ( t )= k t U m ( 1 e ξ t t T t 1 ξ t 2 sin( ω t t+ φ t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabe67a4naabmaapaqaa8qacaWG0baacaGL OaGaayzkaaGaeyypa0Jaam4Aa8aadaWgaaWcbaWdbiaadshaa8aabe aak8qacaWGvbWdamaaBaaaleaapeGaamyBaaWdaeqaaOWdbmaabmaa paqaa8qacaqGXaGaeyOeI0YaaSaaa8aabaWdbiaadwgapaWaaWbaaS qabeaapeGaeyOeI0YaaSaaa8aabaWdbiabe67a49aadaWgaaadbaWd biaadshaa8aabeaal8qacaWG0baapaqaa8qacaWGubWdamaaBaaame aapeGaamiDaaWdaeqaaaaaaaaakeaapeWaaOaaa8aabaWdbiaabgda cqGHsislcqaH+oaEpaWaa0baaSqaa8qacaWG0baapaqaa8qacaqGYa aaaaqabaaaaOGaci4CaiaacMgacaGGUbWaaeWaa8aabaWdbiabeM8a 39aadaWgaaWcbaWdbiaadshaa8aabeaak8qacaWG0bGaey4kaSIaeq OXdO2damaaBaaaleaapeGaamiDaaWdaeqaaaGcpeGaayjkaiaawMca aaGaayjkaiaawMcaaaaa@6539@

here U m , ω t , φ t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaaykW7caWGvbWdamaaBaaaleaapeGaamyB aaWdaeqaaOGaaiilaiaaykW7caaMc8UaaGPaV=qacqaHjpWDpaWaaS baaSqaa8qacaWG0baapaqabaGccaGGSaGaaGPaVlaaykW7caaMc8+d biabeA8aQ9aadaWgaaWcbaWdbiaadshaa8aabeaaaaa@5119@ are the amplitude voltage, the circular frequency, the phase.

Sectional nano piezo engine

In the sectional nano piezo engine there are N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacaWGobaaaa@3D15@ sections with the number n k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacaWGUbWcdaWgaaqaaiaadUgaaeqaaaaa@3E51@ of the piezo layers in the k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacaWGRbaaaa@3D32@ -th section. The sections of the piezo engine are mechanically connected in series, but electrically isolated. Than the piezo layers in the section are electrically connected in parallel and mechanically connected in series.

Let us consider the sectional nano piezo engine49−62 at longitudinal piezo effect, consisting of n piezo layers united in N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacaWGobaaaa@3D15@ sections, and n k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacaWGUbWcdaWgaaqaaiaadUgaaeqaaaaa@3E51@ number of piezo layers in the k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacaWGRbaaaa@3D32@ -th section

n k = 2 k1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaad6gapaWaaSbaaSqaa8qacaWGRbaapaqa baGcpeGaeyypa0JaaeOma8aadaahaaWcbeqaa8qacaWGRbGaeyOeI0 Iaaeymaaaaaaa@4351@

and length of the k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacaWGRbaaaa@3D32@ -th section

l k = 2 k1  δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadYgapaWaaSbaaSqaa8qacaWGRbaapaqa baGcpeGaeyypa0JaaeOma8aadaahaaWcbeqaa8qacaWGRbGaeyOeI0 IaaeymaaaakiaacckacqaH0oazaaa@4622@

here k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadUgaaaa@3D52@ = 1, 2, ..., N, l 1 =δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaad6eacaGGSaGaaGPaVlaaykW7caWGSbWd amaaBaaaleaapeGaaeymaaWdaeqaaOWdbiabg2da9iabes7aKbaa@45BF@ are the index and the length of the first section.

We obtain the total length of the sectional nano piezo engine in the form

l= k=1 N l k =( 2 N 1 )δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadYgacqGH9aqpdaGfWbqabSWdaeaapeGa am4Aaiabg2da9iaabgdaa8aabaWdbiaad6eaa0WdaeaapeGaeyyeIu oaaOGaamiBa8aadaWgaaWcbaWdbiaadUgaa8aabeaak8qacqGH9aqp daqadaWdaeaapeGaaeOma8aadaahaaWcbeqaa8qacaWGobaaaOGaey OeI0IaaeymaaGaayjkaiaawMcaaiabes7aKbaa@4EAE@

The maximum nano displacement of the sectional piezo engine has the form

Δ l max = d 33 ( 2 N 1 )U= d 33 nU MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabfs5aejaadYgapaWaaSbaaSqaa8qacaqG TbGaaeyyaiaabIhaa8aabeaak8qacqGH9aqpcaWGKbWdamaaBaaale aapeGaae4maiaabodaa8aabeaak8qadaqadaWdaeaapeGaaeOma8aa daahaaWcbeqaa8qacaWGobaaaOGaeyOeI0IaaeymaaGaayjkaiaawM caaiaadwfacqGH9aqpcaWGKbWdamaaBaaaleaapeGaae4maiaaboda a8aabeaak8qacaWGUbGaamyvaaaa@5168@

here n= 2 N 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaad6gacqGH9aqpcaqGYaWdamaaCaaaleqa baWdbiaad6eaaaGccqGHsislcaqGXaaaaa@41DA@ is the number of the piezo layers in the sectional nano piezo engine.

The nano displacement of the sectional nano piezo engine has the form

Δl= k=1 N a k Δ l k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabfs5aejaadYgacqGH9aqpdaGfWbqabSWd aeaapeGaam4Aaiabg2da9iaabgdaa8aabaWdbiaad6eaa0Wdaeaape GaeyyeIuoaaOGaamyya8aadaWgaaWcbaWdbiaadUgaa8aabeaak8qa cqqHuoarcaWGSbWdamaaBaaaleaapeGaam4AaaWdaeqaaaaa@4BD8@

here a k { 0;1 }  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadggapaWaaSbaaSqaa8qacaWGRbaapaqa baGcpeGaeyicI48aaiWaa8aabaWdbiaabcdacaGG7aGaaeymaaGaay 5Eaiaaw2haaiaacckaaaa@45CA@ are digits of the binary code.

Than this nano displacement of the sectional piezo engine

Δl= k=1 N a k d 33 2 k1  U= d 33 ( k=1 N a k 2 k1 )U= d 33 n s U MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabfs5aejaadYgacqGH9aqpdaGfWbqabSWd aeaapeGaam4Aaiabg2da9iaabgdaa8aabaWdbiaad6eaa0Wdaeaape GaeyyeIuoaaOGaamyya8aadaWgaaWcbaWdbiaadUgaa8aabeaak8qa caWGKbWdamaaBaaaleaapeGaae4maiaabodaa8aabeaak8qacaqGYa WdamaaCaaaleqabaWdbiaabUgacqGHsislcaqGXaaaaOGaaeiOaiaa dwfacqGH9aqpcaWGKbWdamaaBaaaleaapeGaae4maiaabodaa8aabe aak8qadaqadaWdaeaapeWaaybCaeqal8aabaWdbiaadUgacqGH9aqp caqGXaaapaqaa8qacaWGobaan8aabaWdbiabggHiLdaakiaadggapa WaaSbaaSqaa8qacaWGRbaapaqabaGcpeGaaeOma8aadaahaaWcbeqa a8qacaWGRbGaeyOeI0IaaeymaaaaaOGaayjkaiaawMcaaiaadwfacq GH9aqpcaWGKbWdamaaBaaaleaapeGaae4maiaabodaa8aabeaak8qa caWGUbWdamaaBaaaleaapeGaam4CaaWdaeqaaOWdbiaadwfaaaa@6A04@

here n s = k=1 N a k 2 k1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaad6gapaWaaSbaaSqaa8qacaWGZbaapaqa baGcpeGaeyypa0ZaaybCaeqal8aabaWdbiaadUgacqGH9aqpcaqGXa aapaqaa8qacaWGobaan8aabaWdbiabggHiLdaakiaadggapaWaaSba aSqaa8qacaWGRbaapaqabaGcpeGaaeOma8aadaahaaWcbeqaa8qaca WGRbGaeyOeI0Iaaeymaaaaaaa@4BD1@ is the number of the piezo layers of the sectional nano piezo engine, connected to the voltage source.

Let us consider the mechanical and control characteristics of the sectional nano piezo engine. The equation of the mechanical static characteristic of the sectional nano piezo engine has the form

Δl= d 33 ( k=1 N a k 2 k1 )U s 33 E Fl/ S 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabfs5aejaadYgacqGH9aqpcaWGKbWdamaa BaaaleaapeGaae4maiaabodaa8aabeaak8qadaqadaWdaeaapeWaay bCaeqal8aabaWdbiaadUgacqGH9aqpcaqGXaaapaqaa8qacaWGobaa n8aabaWdbiabggHiLdaakiaadggapaWaaSbaaSqaa8qacaWGRbaapa qabaGcpeGaaeOma8aadaahaaWcbeqaa8qacaWGRbGaeyOeI0Iaaeym aaaaaOGaayjkaiaawMcaaiaadwfacqGHsislcaWGZbWdamaaDaaale aapeGaae4maiaabodaa8aabaWdbiaadweaaaGccaWGgbGaamiBaiaa c+cacaWGtbWdamaaBaaaleaapeGaaeimaaWdaeqaaaaa@5A02@

and after transformation

Δl= d 33 ( k=1 N a k 2 k1 )UF/ C 33 E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabfs5aejaadYgacqGH9aqpcaWGKbWdamaa BaaaleaapeGaae4maiaabodaa8aabeaak8qadaqadaWdaeaapeWaay bCaeqal8aabaWdbiaadUgacqGH9aqpcaqGXaaapaqaa8qacaWGobaa n8aabaWdbiabggHiLdaakiaadggapaWaaSbaaSqaa8qacaWGRbaapa qabaGcpeGaaeOma8aadaahaaWcbeqaa8qacaWGRbGaeyOeI0Iaaeym aaaaaOGaayjkaiaawMcaaiaadwfacqGHsislcaWGgbGaai4laiaado eapaWaa0baaSqaa8qacaqGZaGaae4maaWdaeaapeGaamyraaaaaaa@56F2@

here C 33 E = S 0 /( s 33 E l ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadoeapaWaa0baaSqaa8qacaqGZaGaae4m aaWdaeaapeGaamyraaaakiabg2da9iaadofapaWaaSbaaSqaa8qaca qGWaaapaqabaGcpeGaai4lamaabmaapaqaa8qacaWGZbWdamaaDaaa leaapeGaae4maiaabodaa8aabaWdbiaadweaaaGccaWGSbaacaGLOa Gaayzkaaaaaa@49C9@ is the rigidity of the sectional nano piezo engine.

The equation the mechanical static characteristic of the sectional nano piezo engine has the form

Δl=Δ l 3max ( 1F/ F 3max ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabfs5aejaadYgacqGH9aqpcqqHuoarcaWG SbWdamaaBaaaleaapeGaae4maiaab2gacaqGHbGaaeiEaaWdaeqaaO Wdbmaabmaapaqaa8qacaqGXaGaeyOeI0IaamOraiaac+cacaWGgbWd amaaBaaaleaapeGaae4maiaab2gacaqGHbGaaeiEaaWdaeqaaaGcpe GaayjkaiaawMcaaaaa@4F9A@ Δ l 3max = d 33 n s U, F 3max = d 33 n s U C 33 E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabfs5aejaadYgapaWaaSbaaSqaa8qacaqG ZaGaaeyBaiaabggacaqG4baapaqabaGcpeGaeyypa0Jaamiza8aada WgaaWcbaWdbiaabodacaqGZaaapaqabaGcpeGaamOBa8aadaWgaaWc baWdbiaadohaa8aabeaak8qacaWGvbGaaiilaiaaykW7caaMc8UaaG PaVlaadAeapaWaaSbaaSqaa8qacaqGZaGaaeyBaiaabggacaqG4baa paqabaGcpeGaeyypa0Jaamiza8aadaWgaaWcbaWdbiaabodacaqGZa aapaqabaGcpeGaamOBa8aadaWgaaWcbaWdbiaadohaa8aabeaak8qa caWGvbGaam4qa8aadaqhaaWcbaWdbiaabodacaqGZaaapaqaa8qaca WGfbaaaaaa@5E40@

here Δ l 3max MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabfs5aejaadYgapaWaaSbaaSqaa8qacaqG ZaGaaeyBaiaabggacaqG4baapaqabaaaaa@4298@ is the maximum displacement along the axis 3, F 3max MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadAeapaWaaSbaaSqaa8qacaqGZaGaaeyB aiaabggacaqG4baapaqabaaaaa@410C@ is the maximum force along the axis 3.

The adjustment characteristic of the sectional nano piezo engine at the elastic load has the form

Δl= d 33 ( k=1 N a k 2 k1 )U 1+ C e / C 33 E = k t U MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabfs5aejaadYgacqGH9aqpdaWcaaWdaeaa peGaamiza8aadaWgaaWcbaWdbiaabodacaqGZaaapaqabaGcpeWaae Waa8aabaWdbmaavadabeWcpaqaa8qacaWGRbGaeyypa0JaaeymaaWd aeaapeGaamOtaaqdpaqaa8qacqGHris5aaGccaaMc8Uaamyya8aada WgaaWcbaWdbiaadUgaa8aabeaak8qacaqGYaWdamaaCaaaleqabaWd biaadUgacqGHsislcaqGXaaaaaGccaGLOaGaayzkaaGaamyvaaWdae aapeGaaeymaiabgUcaRiaadoeapaWaaSbaaSqaa8qacaWGLbaapaqa baGcpeGaai4laiaadoeapaWaa0baaSqaa8qacaqGZaGaae4maaWdae aapeGaamyraaaaaaGccqGH9aqpcaWGRbWdamaaBaaaleaapeGaamiD aaWdaeqaaOWdbiaadwfaaaa@5ED5@

here k t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacaWGRbWcdaWgaaqaaiaadshaaeqaaaaa@3E57@ is the transfer coefficient of the sectional nano piezo engine.

Than the transfer function of the sectional nano piezo engine at elastic inertial load has the form

W spe ( s )= Ξ( s ) U( s ) = k t T t 2 s 2 +2 T t ξ t s+1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadEfapaWaaSbaaSqaa8qacaWGZbGaamiC aiaadwgaa8aabeaak8qadaqadaWdaeaapeGaam4CaaGaayjkaiaawM caaiabg2da9maalaaapaqaa8qacqqHEoawdaqadaWdaeaapeGaam4C aaGaayjkaiaawMcaaaWdaeaapeGaamyvamaabmaapaqaa8qacaWGZb aacaGLOaGaayzkaaaaaiabg2da9maalaaapaqaa8qacaWGRbWdamaa BaaaleaapeGaamiDaaWdaeqaaaGcbaWdbiaadsfapaWaa0baaSqaa8 qacaWG0baapaqaa8qacaqGYaaaaOGaam4Ca8aadaahaaWcbeqaa8qa caqGYaaaaOGaey4kaSIaaeOmaiaadsfapaWaaSbaaSqaa8qacaWG0b aapaqabaGcpeGaeqOVdG3damaaBaaaleaapeGaamiDaaWdaeqaaOWd biaadohacqGHRaWkcaqGXaaaaaaa@5E47@

here

k t = d 33 ( k=1 N a k 2 k1 )/( 1+ C e / C 33 E ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadUgapaWaaSbaaSqaa8qacaWG0baapaqa baGcpeGaeyypa0Jaamiza8aadaWgaaWcbaWdbiaabodacaqGZaaapa qabaGcpeWaaeWaa8aabaWdbmaawahabeWcpaqaa8qacaWGRbGaeyyp a0JaaeymaaWdaeaapeGaamOtaaqdpaqaa8qacqGHris5aaGccaWGHb WdamaaBaaaleaapeGaam4AaaWdaeqaaOWdbiaabkdapaWaaWbaaSqa beaapeGaam4AaiabgkHiTiaabgdaaaaakiaawIcacaGLPaaacaGGVa WaaeWaa8aabaWdbiaabgdacqGHRaWkcaWGdbWdamaaBaaaleaapeGa amyzaaWdaeqaaOWdbiaac+cacaWGdbWdamaaDaaaleaapeGaae4mai aabodaa8aabaWdbiaadweaaaaakiaawIcacaGLPaaaaaa@5A87@   T t = M/( C e + C 33 E ) ,  ω t = ( C e + C 33 E )/M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaacckacaWGubWdamaaBaaaleaapeGaamiD aaWdaeqaaOWdbiabg2da9maakaaapaqaa8qacaWGnbGaai4lamaabm aapaqaa8qacaWGdbWdamaaBaaaleaapeGaamyzaaWdaeqaaOWdbiab gUcaRiaadoeapaWaa0baaSqaa8qacaqGZaGaae4maaWdaeaapeGaam yraaaaaOGaayjkaiaawMcaaaWcbeaakiaacYcacaaMc8UaaGPaVlaa ykW7caGGGcGaaGPaVlaaykW7cqaHjpWDpaWaaSbaaSqaa8qacaWG0b aapaqabaGcpeGaeyypa0ZaaOaaa8aabaWdbmaabmaapaqaa8qacaWG dbWdamaaBaaaleaapeGaamyzaaWdaeqaaOWdbiabgUcaRiaadoeapa Waa0baaSqaa8qacaqGZaGaae4maaWdaeaapeGaamyraaaaaOGaayjk aiaawMcaaiaac+cacaWGnbaaleqaaaaa@626B@

The sectional nano piezo engine is determined for coded control in applied bionics and biomechanics.

Discussion

The model of the multilayer nano piezo engine with lumped parameters is obtained for applied bionics and biomechanics. The mechanical characteristic and the transient characteristic for the nano displacement of this multilayer piezo engine are founded.

Conclusion

The multilayer nano piezo engine and sectional piezo engine are widely used for applied bionics and biomechanics in nano moving objects for scanning microscopy and adaptive optics, compensating for vibrations and deformations. The parameters of the multilayer nano PZT engine are obtained. The parameters of nano engine are determined by using of mathematical physics method for the multilayer and sectional nano piezo engine with lumped parameters. The mechanical characteristic and transfer function of the multilayer and sectional nano piezo engine are founded.

Acknowledgments

None.

Funding

None.

Conflicts of interest

The author declares that there is no conflict of interest.

References

  1. Schultz J, Ueda J, Asada H. Cellular actuators. Butterworth-Heinemann Publisher, Oxford. 2017;382.
  2. Afonin SM. Absolute stability conditions for a system controlling the deformation of an elecromagnetoelastic transduser. Dokl Math. 2006;74(3):943–948.
  3. Uchino K. Piezoelectric actuator and ultrasonic motors. Boston, MA: Kluwer Academic Publisher. 1997;8:350.
  4. Afonin SM. Generalized parametric structural model of a compound elecromagnetoelastic transduser. Dokl Phys. 2005;50(2):77–82.
  5. Afonin SM. Structural parametric model of a piezoelectric nanodisplacement transducer. Dokl Phys. 2008;53(3):137–143.
  6. Afonin SM. Solution of the wave equation for the control of an elecromagnetoelastic transduser. Dokl Math. 2006;73(2):307–313.
  7. Cady WG. Piezoelectricity: An introduction to the theory and applications of electromechancial phenomena in crystals. McGraw-Hill Book Company, New York, London, 1946;806.
  8. Mason W, editor. Physical acoustics: Principles and methods. 1. Part A. Methods and devices. Academic Press, New York, 1964;515.
  9. Zhao C, Li Z, Xu F, et al. Design of a novel three-degree-of-freedom piezoelectric-driven micro-positioning platform with compact structure. Actuators. 2024;13(7):248.
  10. Zwillinger D. Handbook of differential equations. Academic Press, Boston, 1989;673.
  11. Afonin SM. A generalized structural-parametric model of an elecromagnetoelastic converter for nano- and micrometric movement control systems: III. Transformation parametric structural circuits of an elecromagnetoelastic converter for nano- and micrometric movement control systems. J Comput Syst Sci Int. 2006;45(2):317–325.
  12. Afonin SM. Generalized structural-parametric model of an electromagnetoelastic converter for control systems of nano-and micrometric movements: IV. Investigation and calculation of characteristics of step-piezodrive of nano-and micrometric movements. J Comput Syst Sci Int. 2006;45(6):1006–1013.
  13. Afonin SM. Decision wave equation and block diagram of electromagnetoelastic actuator nano- and microdisplacement for communications systems. Int J Info Comm Sci. 2016;1(2):22–29.
  14. Afonin SM. Structural-parametric model and transfer functions of electroelastic actuator for nano- and microdisplacement. Chapter 9 in Piezoelectrics and Nanomaterials: Fundamentals, Developments and Applications. Ed. Parinov IA. Nova Science, New York. 2015;225–242.
  15. Afonin SM. A structural-parametric model of electroelastic actuator for nano- and microdisplacement of mechatronic system. Chapter 8 in Advances in Nanotechnology. Volume 19. Eds. Bartul Z, Trenor J, Nova Science, New York, 2017;259–284.
  16. Afonin SM. Structural scheme of electroelastic engine micro and nano displacement for applied bionics and biomechanics. MOJ App Bio Biomech. 2025;9(1):1–4.
  17. Afonin SM. Electromagnetoelastic nano- and microactuators for mechatronic systems. Russ Engin Res. 2018;38(12):938–944.
  18. Afonin SM. Nano- and micro-scale piezomotors. Russ Engin Res. 2012;32(7–8):519–522.
  19. Afonin SM. Elastic compliances and mechanical and adjusting characteristics of composite piezoelectric transducers. Mech Solids. 2007;42(1):43–49.
  20. Afonin SM. Stability of strain control systems of nano-and microdisplacement piezotransducers. Mech Solids. 2014;49(2):196–207.
  21. Afonin SM. Structural-parametric model electromagnetoelastic actuator nanodisplacement for mechatronics. Int J Phys. 2017;5(1):9–15.
  22. Afonin SM. Structural-parametric model multilayer electromagnetoelastic actuator for nanomechatronics. Int J Phys. 2019;7(2):50–57.
  23. Afonin SM. Calculation deformation of an engine for nano biomedical research. Int J Biomed Res. 2021;1(5):1–4.
  24. Afonin SM. Precision engine for nanobiomedical research. Biomed Res Clinic Rev. 2021;3(4):1–5.
  25. Afonin SM. Solution wave equation and parametric structural schematic diagrams of electromagnetoelastic actuators nano- and microdisplacement. Int J Math Analy Appl. 2016;3(4):31–38.
  26. Afonin SM. Structural-parametric model of electromagnetoelastic actuator for nanomechanics. Actuators. 2018;7(1):6.
  27. Afonin SM. Structural-parametric model and diagram of a multilayer electromagnetoelastic actuator for nanomechanics. Actuators. 2019;8(3):52.
  28. Afonin SM. Structural-parametric models and transfer functions of electromagnetoelastic actuators nano- and microdisplacement for mechatronic systems. Int J Theor Appl Math. 2016;2(2):52–59.
  29. Afonin SM. Design static and dynamic characteristics of a piezoelectric nanomicrotransducers. Mech Solids. 2010;45(1):123–132.
  30. Afonin SM. Electromagnetoelastic actuator for nanomechanics. Global J Res Eng. 2018;18(2):19–23.
  31. Afonin SM. Multilayer electromagnetoelastic actuator for robotics systems of nanotechnology. Proceedings of the 2018 IEEE Conference EIConRus, 2018;1698–1701.
  32. Afonin SM. A block diagram of electromagnetoelastic actuator nanodisplacement for communications systems. Trans Netw Comm. 2018;6(3):1–9.
  33. Afonin SM. Decision matrix equation and block diagram of multilayer electromagnetoelastic actuator micro and nanodisplacement for communications systems. Trans Netw Comm. 2019;7(3):11–21.
  34. Afonin SM. Condition absolute stability control system of electromagnetoelastic actuator for communication equipment. Trans Netw Comm. 2020;8(1):8–15.
  35. Afonin SM. A Block diagram of electromagnetoelastic actuator for control systems in nanoscience and nanotechnology. Trans Mach Learn Artifi Intell. 2020;8(4):23–33.
  36. Afonin SM. Optimal control of a multilayer electroelastic engine with a longitudinal piezoeffect for nanomechatronics systems. Appl Syst Innov. 2020;3(4):53.
  37. Afonin SM. Coded сontrol of a sectional electroelastic engine for nanomechatronics systems. Appl Syst Innov. 2021;4(3):47.
  38. Afonin SM. Structural scheme actuator for nano research. COJ Rev Res. 2020;2(5):1–3.
  39. Afonin SM. Structural–parametric model electroelastic actuator nano- and microdisplacement of mechatronics systems for nanotechnology and ecology research. MOJ Eco Environ Sci. 2018;3(5):306‒309.
  40. Afonin SM. Deformation of electromagnetoelastic actuator for nano robotics system. Int Rob Auto J. 2020;6(2):84–86.
  41. Afonin SM. Correction of characteristics compound longitudinal piezodrive at elastic inertial load for nanorobotics research. Int Rob Auto J. 2024;10(3):103–106.
  42. Afonin SM. A multi-layer electro elastic drive for micro and nano robotics. Int Rob Auto J. 2024;10(2):73–76.
  43. Afonin SM. Electromagnetoelastic actuator for large telescopes. Aeron Aero Open Access J. 2018;2(5):270–272.
  44. Afonin SM. Condition absolute stability of control system with electro elastic actuator for nano bioengineering and microsurgery. Surg Case Stud Open Access J. 2019;3(3):307–309.
  45. Afonin SM. Piezo actuators for nanomedicine research. MOJ App Bio Biomech. 2019;3(2):56–57.
  46. Afonin SM. Frequency criterion absolute stability of electromagnetoelastic system for nano and micro displacement in biomechanics. MOJ App Bio Biomech. 2019;3(6):137–140.
  47. Afonin SM. Multilayer piezo engine for nanomedicine research. MOJ App Bio Biomech. 2020;4(2):30–31.
  48. Afonin SM. Structural scheme of electromagnetoelastic actuator for nano biomechanics. MOJ App Bio Biomech. 2021;5(2):36–39.
  49. Afonin SM. Parallel and coded control of multi layered longitudinal piezo engine for nano biomedical research. MOJ App Bio Biomech. 2024;8(1):62–65.
  50. Afonin SM. DAC electro elastic engine for nanomedicine. MOJ App Bio Biomech. 2024;8(1):38–40.
  51. Afonin SM. Multilayer engine for microsurgery and nano biomedicine. Surg Case Stud Open Access J. 2020;4(4):423–425.
  52. Afonin SM. A structural-parametric model of a multilayer electroelastic actuator for mechatronics and nanotechnology. Chapter 7 in Advances in Nanotechnology. Volume 22. Eds. Bartul Z, Trenor J, Nova Science, New York. 2019;169–186.
  53. Afonin SM. Electroelastic digital-to-analog converter actuator nano and microdisplacement for nanotechnology. Chapter 6 in Advances in Nanotechnology. Volume 24. Eds. Bartul Z, Trenor J, Nova Science, New York. 2020;205–218.
  54. Afonin SM. Characteristics of an electroelastic actuator nano- and microdisplacement for nanotechnology. Chapter 8 in Advances in Nanotechnology. Volume 25. Eds. Bartul Z, Trenor J, Nova Science, New York. 2021;251–266.
  55. Afonin SM. An absolute stability of nanomechatronics system with electroelastic actuator. Chapter 9 in Advances in Nanotechnology. Volume 27. Eds. Bartul Z, Trenor J, Nova Science, New York. 2022;183–198.
  56. Afonin SM. Rigidity of a multilayer piezoelectric actuator for the nano and micro range. Russ Engin Res. 2021;41(4):285–288.
  57. Afonin SM. Structural scheme of an electromagnetoelastic actuator for nanotechnology research. Chapter 45 in Physics and Mechanics of New Materials and Their Applications. PHENMA 2023. Springer Proceedings in Materials. Volume 41. Eds. Parinov I.A., Chang S.H., Putri E.P., Springer, Cham. 2024;486–501.
  58. Afonin SM. Structural model and scheme of a multilayer electromagnetoelastic actuator for nanotechnology. Chapter 45 in Physics and Mechanics of New Materials and Their Applications. PHENMA 2024. Springer Proceedings in Materials. Volume 3. Eds. Parinov I.A., Chang S.H., Sohani, N., Gupta, V.K., Springer, Cham. P2025;527–544.
  59. Shevtsov SN, Soloviev AN, Parinov IA, et al. Piezoelectric actuators and generators for energy harvesting. Research and Development. Springer, Switzerland, Cham. 2018;182.
  60. Akpinar M, Uzun B, Yayli MO. Dynamics of a piezoelectric restrained nanowire in an elactic matrix. Mech Solids. 2024;59(5): 2936–2959.
  61. Nalwa HS, editor. Encyclopedia of nanoscience and nanotechnology. USA: American Scientific Publishers. 25 Volumes. 2019.
  62. Bhushan B, editor. Springer handbook of nanotechnology. Germany: Springer. 2017;1500.
Creative Commons Attribution License

©2025 Afonin. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.