Submit manuscript...
eISSN: 2378-315X

Biometrics & Biostatistics International Journal

Research Article Volume 13 Issue 4

Zero-adjusted defective regression models applied for modeling credit risk data

Cleide Mayra Menezes,1 Crystiane Fernanda de Souza,2 Lima Vera Lucia Damasceno Tomazella2

1Department of Statistics, Federal University of Piauí, Brazil
2Department of Statistics, Federal University of São Carlos, Brazil

Correspondence: V LD Tomazella, Department of Statistics, Federal University of São Carlos, São Paulo, Brazil, Tel +55 16 981671390

Received: July 10, 2024 | Published: October 21, 2024

Citation: Menezes CM, Souza CF, Tomazella LVLD. Zero-adjusted defective regression models applied for modeling credit risk data. Biom Biostat Int J. 2024;13(4):115-125. DOI: 10.15406/bbij.2024.13.00422

Download PDF

Abstract

As the consumption of goods, services, and granting of credit increase, it becomes necessary to control the risk of the process. This measure aims to avoid possible defaults greater than what financial institutions can support while allowing for profit generation. Various statistical techniques can be used to build models that present the risk panorama, one of which is survival analysis. The application of this technique in the financial market seeks to study, for example, the time it takes for an individual to recover credit after the end of a financial crisis in their country. The use of such data can support the prediction of the ideal amount of credit to be provisioned in possible crisis scenarios and infer when the resumption of credit operations may occur. In this context, this work aims to study two defective regression models for modeling zero-adjusted survival data in the credit risk scenario. This approach accommodates three types of units: customers with "zero" survival times, that is, early failures, customers susceptible, and not susceptible to the event of interest. The methodology studied will be applied to a database provided by a leading institution in credit services and information in Brazil.

Keywords: survival analysis, financial data, credit risk, cure fraction, defective distribution, zero-adjusted

Introduction

Risk can be defined as the volatility of unexpected events, such as the representation of the value of assets, equity or profit.1 In this context, in financial institutions, a credit granting operation is characterized as credit risk. This type of risk is inherent to any financial transaction, being defined as the possibility of non-compliance with contractual obligations by the debtor, who does not honor the agreement established with the creditor at the time of contracting. Therefore, it is extremely important that financial institutions adopt appropriate measures and procedures to manage credit risk, ensuring the financial health of the institution and the confidence of the market and clients.

Credit analysis plays a crucial role in companies, as it is essential to assess the individual’s financial capacity and relationship with the market to determine the viability of granting credit. The analysis takes into account income, credit history, among other factors, in order to avoid financial losses for the institution. In this sense, the use of credit score models proves to be beneficial for allowing consistency in decisions in credit analysis, creating automation in granting, increasing the value of the analysis, ability to monitor and manage the risk of portfolio credit, among others. Furthermore, according to Silva, when considering the dynamics to which economic scenarios are linked and the way in which this directly affects the risk of default, the decision to grant credit, based on risk models, must be monitored and revised when necessary.

The occurrence of a financial crisis in the country is characterized by a reduction in the level of production in the country, resulting in a series of impacts. Among these impacts, it is possible to highlight the population’s indebtedness, caused by several factors, such as increased inflation, high unemployment and restricted access to credit. In the current scenario, the recovery of the financial system could be a slow and uncertain process, lacking assertive predictions about the ideal moment for recovery. Therefore, it is essential to use statistical models, such as Survival Analysis, which is a tool that can provide important support in these circumstances.

Survival analysis is made up of a set of statistical techniques and methods used to study the time elapsed until the occurrence of an event of interest. The term survival analysis is commonly used in the medical field, where the time until failure can be characterized as: death, cure, onset of a disease, side effect of a medication, among others. However, in addition to the medical area, survival analysis can be applied in other areas, such as the financial market.

Cure fraction modeling, also known as long-term modeling, studies cases in which, presumably, there are observations that are not susceptible to the event of interest. Boag2 was one of the pioneers of long-term modeling. Subsequently, other models were proposed, such as the standard mixture model by Berkson & Gage,3 the unified cure fraction model by Rodrigues,4 among others. In this type of modeling, there are individuals who are not susceptible to the occurrence of the event of interest, and can be considered as cured individuals/immune to the event of interest and the survival data set to which they belong has a cure fraction. In the financial market, the objective is to predict the recovery time of customers, with the recovered customer being the customer who returns to payment status. The use of long-term models in the financial market is considered a good tool for studying the time until the event of interest occurs, such as the return period until the payment status or the realization/delay of a portion of loan Toledo.5

Thus, applied in the financial market, long-term survival analysis is used to estimate the time of an event, such as the time elapsed from the acquisition of a loan until the delay in one of the installments, or even, as studied by Granzotto et al,6 the beginning of the customer’s relationship with the institution until the breakdown of that relationship.

However, in some studies there are individuals susceptible to early failures, which result in survival time equal to or close to zero. In this case, this scenario will be referred to as zero-adjusted. Therefore, in the context of cure fraction, defective models offer the strategy to model zero-adjusted survival data. Although some articles have already used the idea of defective models, Balka,7 Rocha et al.,8 Scudilio et al.9 and Calsavara et al.10 have recently popularized the term "defective". In the literature, there are several probability distributions that have a defective form.

In this context,the main objective of this paper is to consider an approach proposed by Calsavara et al.,10 called “Zero-Adjusted regression models” for analyzing credit risk data in the financial market. This approach makes it possible to accommodate three types of units, such as customers with “zero” survival times, i.e., early failures, customers susceptible and not susceptible to the event of interest. To estimate the survival function with the possibility of cure fraction and a lifetime proportion set to zero, we consider the defective Gompertz and Inverse Gaussian models. The dataset used in the application was analyzed by Toledo et al.5 The data were provided by a Brazilian financial institution, which provides services aimed at the credit market, containing information involving characteristics related to the habits and customs of individuals regarding commitments involving credit requests.

The rest of the article is organized as follows. In Section 2, we present the background on cure rate model and defective model. In Section 3, we present the formulation the zero-adjusted defective model and Inference methods based on the likelihood function. In Section 4, we apply the proposed model to the real data set used in the application was analyzed by Toledo et al.5 The data were provided by a Brazilian financial institutions. Finally, some concluding remarks are considered in Section 5.

Background

In this section, we present a brief description of the cure rate model proposed by Tsodikov and Yakovlev et al.,1 Ibrahim et al.,11 later extended by Rodrigues et al.4 as well as description of defective model.7

Cure rate models

The survival theory has been widely explored by many researchers in various areas, with a major focus on analysis of clinical data. Generally the survival function S( t )=P(T>t) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4uamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaeyypa0Ja amiuaiaacIcacaWGubGaeyOpa4JaamiDaiaacMcaaaa@404F@ is the function used to represent the random behavior of T. A property of S( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4uamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaaaaa@3A41@ is that it goes to zero as the time pass, which characterizes an event of interest that eventually always occur.

However, there are situations in which a portion of the population is considered cured and cannot fail. For example, there are cases when it is considered the recurrence of a cancer. Some people can have the recurrence, however, there may be some others that is completely cured from that cancer and, therefore, it would never recur. To solve such problems, Berkson & Gage,3 based on the work of Boag,2 proposed the standard mixture model for cured fraction. The survival function is set to

S pop ( t )=p+( 1p ) S 0 ( t ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ua8aadaWgaaWcbaWdbiaadchacaWGVbGaamiCaaWdaeqaaOWd bmaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaeyypa0JaamiCai abgUcaRmaabmaapaqaa8qacaaIXaGaeyOeI0IaamiCaaGaayjkaiaa wMcaaiaadofapaWaaSbaaSqaa8qacaaIWaaapaqabaGcpeWaaeWaa8 aabaWdbiaadshaaiaawIcacaGLPaaacaGGSaaaaa@4A0C@   (1)

 in a way that S 0 ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ua8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qadaqadaWdaeaa peGaamiDaaGaayjkaiaawMcaaaaa@3B6F@ is a proper survival function. Thus, it follows that S( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4uamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaaaaa@3A41@ converges top as the time increases. The above function has the following properties:

  • If p=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCaiabg2da9iaaicdaaaa@397D@ , then S pop ( t )= S 0 ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ua8aadaWgaaWcbaWdbiaadchacaWGVbGaamiCaaWdaeqaaOWd bmaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaeyypa0Jaam4ua8 aadaWgaaWcbaWdbiaaicdaa8aabeaak8qadaqadaWdaeaapeGaamiD aaGaayjkaiaawMcaaaaa@4340@ ;
  • S pop ( t )=1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ua8aadaWgaaWcbaWdbiaadchacaWGVbGaamiCaaWdaeqaaOWd bmaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaeyypa0JaaGymaa aa@3F54@ ;
  • S pop ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ua8aadaWgaaWcbaWdbiaadchacaWGVbGaamiCaaWdaeqaaOWd bmaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaaaaa@3D93@ is decreasing;
  • lim t S pop ( t )=p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeiBaiaabMgacaqGTbWdamaaBaaaleaapeGaamiDaiabgkziUkab g6HiLcWdaeqaaOWdbiaadofapaWaaSbaaSqaa8qacaWGWbGaam4Bai aadchaa8aabeaak8qadaqadaWdaeaapeGaamiDaaGaayjkaiaawMca aiabg2da9iaadchaaaa@4724@

The last property demonstrates that the population survival function is improper, as the survival curve stabilizes at p, which exactly represents the cure probability of the population.

In addition to this approach, we have a unified long-term theory, proposed by Rodrigues et al.4 that generalizes, among others, the mixture model. Let N be a random variable that represents the number of causes of risk, for a particular event of interest, with probability distribution of p N =P( N=n ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCa8aadaWgaaWcbaWdbiaad6eaa8aabeaak8qacqGH9aqpcaWG qbWaaeWaa8aabaWdbiaad6eacqGH9aqpcaWGUbaacaGLOaGaayzkaa aaaa@3F53@  in which n=0,1,2, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBaiabg2da9iaaicdacaGGSaGaaGymaiaacYcacaaIYaGaaiil aiabgAci8caa@3E90@ . In this case,N is a latent random variable. Given N=n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOtaiabg2da9iaad6gaaaa@3994@ , let Z v ,v=1,,n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOwa8aadaWgaaWcbaWdbiaadAhaa8aabeaak8qacaGGSaGaamOD aiabg2da9iaaigdacaGGSaGaeyOjGWRaaiilaiaad6gaaaa@4063@ , be independent, non-negative random variables, with distribution F( t )=1S( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOramaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaeyypa0Ja aGymaiabgkHiTiaadofadaqadaWdaeaapeGaamiDaaGaayjkaiaawM caaaaa@405B@ . Consider also that N is independent of Z v MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOwa8aadaWgaaWcbaWdbiaadAhaa8aabeaaaaa@38FC@ , where Z v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOwa8aadaWgaaWcbaWdbiaadAhaa8aabeaaaaa@38FB@  represents the time until the occurrence of an particular event of interest, because of the v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamODaaaa@37C2@ -th cause of risk.

The time of occurrence of the event of interest is defined as:

T=min{ Z 1 , Z 2 ,, Z N }, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamivaiabg2da9iaad2gacaWGPbGaamOBamaacmaapaqaa8qacaWG AbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaacYcacaWGAbWdam aaBaaaleaapeGaaGOmaaWdaeqaaOWdbiaacYcacqGHMacVcaGGSaGa amOwa8aadaWgaaWcbaWdbiaad6eaa8aabeaaaOWdbiaawUhacaGL9b aacaGGSaaaaa@485A@   (2)

in which P[ Z 0 = ]=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiuamaadmaapaqaa8qacaWGAbWdamaaBaaaleaapeGaaGimaaWd aeqaaOWdbiabg2da9iabg6HiLcGaay5waiaaw2faaiabg2da9iaaig daaaa@3FF2@ , leads to a proportion p 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@38D0@  of the non-susceptible subjects to the event of interest. The variables Z v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOwa8aadaWgaaWcbaWdbiaadAhaa8aabeaaaaa@38FB@  are latent and T is an observable random variable or censoring. The survival function of the random variable T is given by: S pop ( t )=P[T>t] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ua8aadaWgaaWcbaWdbiaadchacaWGVbGaamiCaaWdaeqaaOWd bmaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaeyypa0Jaamiuai aacUfacaWGubGaeyOpa4JaamiDaiaac2faaaa@4407@ .

Let { a n } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaiWaa8aabaWdbiaadggapaWaaSbaaSqaa8qacaWGUbaapaqabaaa k8qacaGL7bGaayzFaaaaaa@3B64@  be a sequence of real numbers and s[ 0,1 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4CaiabgIGiopaadmaapaqaa8qacaaIWaGaaiilaiaaigdaaiaa wUfacaGLDbaaaaa@3D79@ . Consider then the following:

A( s )= a 0 + a 1 s+ a 2 s 2 +. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyqamaabmaapaqaa8qacaWGZbaacaGLOaGaayzkaaGaeyypa0Ja amyya8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacqGHRaWkcaWGHb WdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaadohacqGHRaWkcaWG HbWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiaadohapaWaaWbaaS qabeaapeGaaGOmaaaakiabgUcaRiabgAci8kaac6caaaa@495A@

According to Feller,12 if A( s ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyqamaabmaapaqaa8qacaWGZbaacaGLOaGaayzkaaaaaa@3A2D@ converges, then A( s ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyqamaabmaapaqaa8qacaWGZbaacaGLOaGaayzkaaaaaa@3A2D@ and defined as the generating function of the sequence fang. Given a proper survival function S( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4uamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaaaaa@3A40@ , the survival function of the random variable, as in (2), is given

S pop ( t )=A[ S( t ) ]= n=0   p n [S( t )] n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ua8aadaWgaaWcbaWdbiaadchacaWGVbGaamiCaaWdaeqaaOWd bmaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaeyypa0Jaamyqam aadmaapaqaa8qacaWGtbWaaeWaa8aabaWdbiaadshaaiaawIcacaGL PaaaaiaawUfacaGLDbaacqGH9aqpdaGfWbqabSWdaeaapeGaamOBai abg2da9iaaicdaa8aabaWdbiabg6HiLcqdpaqaa8qacqGHris5aaGc caqGnaIaaeiiaiaadchapaWaaSbaaSqaa8qacaWGUbaapaqabaGcpe Gaai4waiaadofadaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaiaa c2fapaWaaWbaaSqabeaapeGaamOBaaaaaaa@56EA@   (3)

This implies that lim t S pop ( t )=P[ N=0 ]= p 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeiBaiaabMgacaqGTbWdamaaBaaaleaapeGaamiDaiabgkziUkab g6HiLcWdaeqaaOWdbiaadofapaWaaSbaaSqaa8qacaWGWbGaam4Bai aadchaa8aabeaak8qadaqadaWdaeaapeGaamiDaaGaayjkaiaawMca aiabg2da9iaadcfadaWadaWdaeaapeGaamOtaiabg2da9iaaicdaai aawUfacaGLDbaacqGH9aqpcaWGWbWdamaaBaaaleaapeGaaGimaaWd aeqaaaaa@4EB6@ , with p 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@38D0@  denoting the cured fraction.

The survival function S pop ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ua8aadaWgaaWcbaWdbiaadchacaWGVbGaamiCaaWdaeqaaOWd bmaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaaaaa@3D92@  obtained in (3) is not proper. The associated density and hazard function are given, respectively, by:

f pop ( t )=f( t ) d ds [ A( s ) ] s s=S( t ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaWgaaWcbaWdbiaadchacaWGVbGaamiCaaWdaeqaaOWd bmaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaeyypa0JaamOzam aabmaapaqaa8qacaWG0baacaGLOaGaayzkaaWaaSaaa8aabaWdbiaa dsgaa8aabaWdbiaadsgacaWGZbaaamaadmaapaqaa8qacaWGbbWaae Waa8aabaWdbiaadohaaiaawIcacaGLPaaaaiaawUfacaGLDbaacaWG ZbWdamaaBaaaleaapeGaam4Caiabg2da9iaadofadaqadaWdaeaape GaamiDaaGaayjkaiaawMcaaaWdaeqaaOWdbiaacYcaaaa@5259@   (4)

h pop ( t )= f pop ( t ) S pop ( t ) =f( t ) [ A( s ) ] s s=S( t ) S pop ( t ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiAa8aadaWgaaWcbaWdbiaadchacaWGVbGaamiCaaWdaeqaaOWd bmaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaeyypa0ZaaSaaa8 aabaWdbiaadAgapaWaaSbaaSqaa8qacaWGWbGaam4Baiaadchaa8aa beaak8qadaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaaWdaeaape Gaam4ua8aadaWgaaWcbaWdbiaadchacaWGVbGaamiCaaWdaeqaaOWd bmaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaaaaiabg2da9iaadA gadaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaamaalaaapaqaa8qa daWadaWdaeaapeGaamyqamaabmaapaqaa8qacaWGZbaacaGLOaGaay zkaaaacaGLBbGaayzxaaGaam4Ca8aadaWgaaWcbaWdbiaadohacqGH 9aqpcaWGtbWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaaa8aabe aaaOqaa8qacaWGtbWdamaaBaaaleaapeGaamiCaiaad+gacaWGWbaa paqabaGcpeWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaaaaGaai Olaaaa@653C@   (5)

Some examples of generating function can be obtained by using the distributions: Bernoulli, binomial, negative binomial, Poisson, geometric, power series, among others. If we assume the distribution foris Bernoulli, then S pop ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ua8aadaWgaaWcbaWdbiaadchacaWGVbGaamiCaaWdaeqaaOWd bmaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaaaaa@3D92@  is the same proposed in Berkson & Gage.3

Defective model

A distribution is considered defective if the integral of its density function does not result in 1, but in a value p( 0,1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCaiabgIGiopaabmaapaqaa8qacaaIWaGaaiilaiaaigdaaiaa wIcacaGLPaaaaaa@3D0D@ when the domain of the parameters is changed. In defective models, it is possible to estimate a cure rate using a naturally improper distribution. Instead of directly estimating the proportionas a mixture model, we employ a distribution by altering the domain of its parameters.

In a defective distribution, the cumulative function no longer approaches to 1, but to p and, therefore, the survival function approaches to 1p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGymaiabgkHiTiaadchaaaa@3964@ . Figure 1 illustrates the cumulative function of a defective distribution. Obviously, the defective distribution is not proper.

Figure 1 Defective accumulated distribution function.

In the literature, there are two known distributions that can be used for this purpose: the inverse Gaussian and Gompertz distributio.8

The defective gompertz distribution: The Gompertz distribution is often used to model survival data in various areas of knowledge Gieser et al.13 The probability density function for the Gompertz distribution is given by

f( t )=b e at e b a ( e at1 ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOzamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaeyypa0Ja amOyaiaadwgapaWaaWbaaSqabeaapeGaamyyaiaadshaaaGccaWGLb WdamaaCaaaleqabaWdbiabgkHiTmaalaaapaqaa8qacaWGIbaapaqa a8qacaWGHbaaamaabmaapaqaa8qacaWGLbWdamaaCaaameqabaWdbi aadggacaWG0bGaeyOeI0IaaGymaaaaaSGaayjkaiaawMcaaaaakiaa c6caaaa@4ACA@   (6)

where a>0,b>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyyaiabg6da+iaaicdacaGGSaGaamOyaiabg6da+iaaicdaaaa@3CC8@ and t>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDaiabg6da+iaaicdaaaa@3982@ . The corresponding survival function and hazard function are given respectively by

S( t )= e b a ( e at1 ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4uamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaeyypa0Ja amyza8aadaahaaWcbeqaa8qacqGHsisldaWcaaWdaeaapeGaamOyaa WdaeaapeGaamyyaaaadaqadaWdaeaapeGaamyza8aadaahaaadbeqa a8qacaWGHbGaamiDaiabgkHiTiaaigdaaaaaliaawIcacaGLPaaaaa GccaGGSaaaaa@46AF@   (7)

h( t )=b e at . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiAamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaeyypa0Ja amOyaiaadwgapaWaaWbaaSqabeaapeGaamyyaiaadshaaaGccaGGUa aaaa@4013@   (8)

The defective Gompertz distribution is the Gompertz distribution that allows the scale parameter to have negative values ( a<0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyyaiabgYda8iaaicdaaaa@396B@ ). The cure fraction P in the population is calculated when the limit of the survival function (7) tends to infinity with ( a<0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyyaiabgYda8iaaicdaaaa@396B@ ), that is,

p= lim x S( t )= lim x e b a ( e at1 ) = e b/a ( 0,1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCaiabg2da98aadaWfqaqaa8qacaqGSbGaaeyAaiaab2gaaSWd aeaapeGaamiEaiabgkziUkabg6HiLcWdaeqaaOWdbiaadofadaqada WdaeaapeGaamiDaaGaayjkaiaawMcaaiabg2da98aadaWfqaqaa8qa caqGSbGaaeyAaiaab2gaaSWdaeaapeGaamiEaiabgkziUkabg6HiLc WdaeqaaOWdbiaadwgapaWaaWbaaSqabeaapeGaeyOeI0YaaSaaa8aa baWdbiaadkgaa8aabaWdbiaadggaaaWaaeWaa8aabaWdbiaadwgapa WaaWbaaWqabeaapeGaamyyaiaadshacqGHsislcaaIXaaaaaWccaGL OaGaayzkaaaaaOGaeyypa0Jaamyza8aadaahaaWcbeqaa8qacaWGIb Gaai4laiaadggaaaGccqGHiiIZdaqadaWdaeaapeGaaGimaiaacYca caaIXaaacaGLOaGaayzkaaaaaa@619D@   (9)

The defective inverse gaussian distribution: The inverse Gaussian distribution arises as the first passage time of a Wiener process.7 Lee and Whitmore14 noted its potential as models for cure rate. Its density function is

f( t )= 1 2bπ t 3 exp{ 1 2bt (1at) 2 }, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOzamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaeyypa0Za aSaaa8aabaWdbiaaigdaa8aabaWdbmaakaaapaqaa8qacaaIYaGaam Oyaiabec8aWjaadshapaWaaWbaaSqabeaapeGaaG4maaaaaeqaaaaa kiaabwgacaqG4bGaaeiCamaacmaapaqaa8qacqGHsisldaWcaaWdae aapeGaaGymaaWdaeaapeGaaGOmaiaadkgacaWG0baaaiaacIcacaaI XaGaeyOeI0IaamyyaiaadshacaGGPaWdamaaCaaaleqabaWdbiaaik daaaaakiaawUhacaGL9baacaGGSaaaaa@5257@   (10)

 where a>0,b>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyyaiabg6da+iaaicdacaGGSaGaamOyaiabg6da+iaaicdaaaa@3CC8@ and t>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDaiabg6da+iaaicdaaaa@3982@ . The corresponding survival function is given by,

S( t )=1[ Φ( 1+at bt )+ e 2a/b Φ( 1at bt ) ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4uamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaeyypa0Ja aGymaiabgkHiTmaadmaapaqaa8qacaqGMoWaaeWaa8aabaWdbmaala aapaqaa8qacqGHsislcaaIXaGaey4kaSIaamyyaiaadshaa8aabaWd bmaakaaapaqaa8qacaWGIbGaamiDaaWcbeaaaaaakiaawIcacaGLPa aacqGHRaWkcaWGLbWdamaaCaaaleqabaWdbiaaikdacaWGHbGaai4l aiaadkgaaaGccaqGMoWaaeWaa8aabaWdbmaalaaapaqaa8qacqGHsi slcaaIXaGaeyOeI0Iaamyyaiaadshaa8aabaWdbmaakaaapaqaa8qa caWGIbGaamiDaaWcbeaaaaaakiaawIcacaGLPaaaaiaawUfacaGLDb aacaGGSaaaaa@5876@   (11)

 where Φ( ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeOPdmaabmaapaqaa8qacqGHflY1aiaawIcacaGLPaaaaaa@3BE5@ denotes the cumulative distribution of the standard normal. The hazard function is

h( t )= 1 2bπ t 3 exp{ 1 2bt (1at) 2 } 1{ Φ( 1+at bt )+ e 2a/b Φ( 1at bt ) } . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiAamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaeyypa0Za aSaaa8aabaWdbmaalaaapaqaa8qacaaIXaaapaqaa8qadaGcaaWdae aapeGaaGOmaiaadkgacqaHapaCcaWG0bWdamaaCaaaleqabaWdbiaa iodaaaaabeaaaaGccaqGLbGaaeiEaiaabchadaGadaWdaeaapeGaey OeI0YaaSaaa8aabaWdbiaaigdaa8aabaWdbiaaikdacaWGIbGaamiD aaaacaGGOaGaaGymaiabgkHiTiaadggacaWG0bGaaiyka8aadaahaa Wcbeqaa8qacaaIYaaaaaGccaGL7bGaayzFaaaapaqaa8qacaaIXaGa eyOeI0YaaiWaa8aabaWdbiaabA6adaqadaWdaeaapeWaaSaaa8aaba WdbiabgkHiTiaaigdacqGHRaWkcaWGHbGaamiDaaWdaeaapeWaaOaa a8aabaWdbiaadkgacaWG0baaleqaaaaaaOGaayjkaiaawMcaaiabgU caRiaadwgapaWaaWbaaSqabeaapeGaaGOmaiaadggacaGGVaGaamOy aaaakiaabA6adaqadaWdaeaapeWaaSaaa8aabaWdbiabgkHiTiaaig dacqGHsislcaWGHbGaamiDaaWdaeaapeWaaOaaa8aabaWdbiaadkga caWG0baaleqaaaaaaOGaayjkaiaawMcaaaGaay5Eaiaaw2haaaaaca GGUaaaaa@6F68@   (12)

The defective inverse Gaussian distribution is the inverse Gaussian distribution that allows negative values of a. The cure fraction P in the population is calculated when the limit of the survival function (11) tends to infinity with ( a<0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaaeaacaWGHbGaeyipaWJaaGimaaGaayjkaiaawMcaaaaa@3AF4@ that is,

p= lim t S( t )= lim t 1[ Φ( 1+at bt )+ e 2a/b Φ( 1at bt ) ]=1exp{ 2a b }( 0,1 ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCaiabg2da98aadaWfqaqaa8qacaqGSbGaaeyAaiaab2gaaSWd aeaapeGaamiDaiabgkziUkabg6HiLcWdaeqaaOWdbiaadofadaqada WdaeaapeGaamiDaaGaayjkaiaawMcaaiabg2da98aadaWfqaqaa8qa caqGSbGaaeyAaiaab2gaaSWdaeaapeGaamiDaiabgkziUkabg6HiLc WdaeqaaOWdbiaaigdacqGHsisldaWadaWdaeaapeGaaeOPdmaabmaa paqaa8qadaWcaaWdaeaapeGaeyOeI0IaaGymaiabgUcaRiaadggaca WG0baapaqaa8qadaGcaaWdaeaapeGaamOyaiaadshaaSqabaaaaaGc caGLOaGaayzkaaGaey4kaSIaamyza8aadaahaaWcbeqaa8qacaaIYa Gaamyyaiaac+cacaWGIbaaaOGaaeOPdmaabmaapaqaa8qadaWcaaWd aeaapeGaeyOeI0IaaGymaiabgkHiTiaadggacaWG0baapaqaa8qada GcaaWdaeaapeGaamOyaiaadshaaSqabaaaaaGccaGLOaGaayzkaaaa caGLBbGaayzxaaGaeyypa0JaaGymaiabgkHiTiaabwgacaqG4bGaae iCamaacmaapaqaa8qadaWcaaWdaeaapeGaaGOmaiaadggaa8aabaWd biaadkgaaaaacaGL7bGaayzFaaGaeyicI48aaeWaa8aabaWdbiaaic dacaGGSaGaaGymaaGaayjkaiaawMcaaiaac6caaaa@79F3@   (13)

Zero-adjusted defective model

In the context of cure fraction, defectives models offer the strategy to model zero-adjusted survival data. In this sense, instead of estimating the cure fraction directly, as in the standard mixture model, the defective model is an alternative for modeling long-term service life data. To accommodate zero-adjusted lifetimes in defectivos models, Calsavara et al.,10 proposed a new survival function as follows:

S pop ( t; θ * )=( 1 p 0 )S( t;θ ),   t>0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ua8aadaWgaaWcbaWdbiaadchacaWGVbGaamiCaaWdaeqaaOWd bmaabmaapaqaa8qacaWG0bGaai4oaGqadiaa=H7apaWaaWbaaSqabe aapeGaaiOkaaaaaOGaayjkaiaawMcaaiabg2da9maabmaapaqaa8qa caaIXaGaeyOeI0IaamiCa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaO WdbiaawIcacaGLPaaacaWGtbWaaeWaa8aabaWdbiaadshacaGG7aGa a8hUdaGaayjkaiaawMcaaiaacYcacaGGGcGaaiiOaiaacckacaWG0b GaeyOpa4JaaGimaiaacYcaaaa@5411@   (14)

where S( ;θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4uamaabmaapaqaa8qacqGHflY1caGG7aacbmGaa8hUdaGaayjk aiaawMcaaaaa@3D98@ is a proper or improper survival function, 0 p 0 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGimaiabgsMiJkaadchapaWaaSbaaSqaa8qacaaIWaaapaqabaGc peGaeyizImQaaGymaaaa@3DC9@ denotes the zero-adjusted proportion and θ * = ( p 0 , θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGaa8hUd8aadaahaaWcbeqaa8qacaGGQaaaaOGaeyypa0ZaaeWa a8aabaWdbiaadchapaWaaSbaaSqaa8qacaaIWaaapaqabaGcpeGaai ilaiaa=H7apaWaaWbaaSqabeaatuuDJXwAK1uy0HwmaeHbfv3ySLgz G0uy0Hgip5wzaGqba8qacqGFKksLaaaakiaawIcacaGLPaaapaWaaW baaSqabeaapeGae4hPIujaaaaa@4DBA@  is a vector of parameters.

It is important to highlight that if S( ;θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4uamaabmaapaqaa8qacqGHflY1caGG7aacbmGaa8hUdaGaayjk aiaawMcaaaaa@3D98@ is a proper survival function, that is, lim t S( ;θ )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeiBaiaabMgacaqGTbWdamaaBaaaleaapeGaamiDaiabgkziUkab g6HiLcWdaeqaaOWdbiaadofadaqadaWdaeaapeGaeyyXICTaai4oaG qadiaa=H7aaiaawIcacaGLPaaacqGH9aqpcaaIWaaaaa@46EE@ , the model (14) becomes a standard zero-adjusted survival model. Otherwise, if the survival function S( ;θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4uamaabmaapaqaa8qacqGHflY1caGG7aacbmGaa8hUdaGaayjk aiaawMcaaaaa@3D98@ is improper, then the proposed model satisfies,

S pop ( t; θ * )=( 1 p 0 )1, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ua8aadaWgaaWcbaWdbiaadchacaWGVbGaamiCaaWdaeqaaOWd bmaabmaapaqaa8qacaWG0bGaai4oaGqadiaa=H7apaWaaWbaaSqabe aapeGaaiOkaaaaaOGaayjkaiaawMcaaiabg2da9maabmaapaqaa8qa caaIXaGaeyOeI0IaamiCa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaO WdbiaawIcacaGLPaaacqGHKjYOcaaIXaGaaiilaaaa@4A36@

and the limit of the survival function is

p 1 = lim t S p ( t; θ * )=( 1 p 0 ) lim t S( t;θ )=( 1 p 0 )p( 0,1 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGH9aqppaWa aCbeaeaapeGaaeiBaiaabMgacaqGTbaal8aabaWdbiaadshacqGHsg IRcqGHEisPa8aabeaak8qacaWGtbWdamaaBaaaleaapeGaamiCaaWd aeqaaOWdbmaabmaapaqaa8qacaWG0bGaai4oaGqadiaa=H7apaWaaW baaSqabeaapeGaaeOkaaaaaOGaayjkaiaawMcaaiabg2da9maabmaa paqaa8qacaaIXaGaeyOeI0IaamiCa8aadaWgaaWcbaWdbiaaicdaa8 aabeaaaOWdbiaawIcacaGLPaaapaWaaCbeaeaapeGaaeiBaiaabMga caqGTbaal8aabaWdbiaadshacqGHsgIRcqGHEisPa8aabeaak8qaca WGtbWaaeWaa8aabaWdbiaadshacaGG7aGaa8hUdaGaayjkaiaawMca aiabg2da9maabmaapaqaa8qacaaIXaGaeyOeI0IaamiCa8aadaWgaa WcbaWdbiaaicdaa8aabeaaaOWdbiaawIcacaGLPaaacaWGWbGaeyic I48aaeWaa8aabaWdbiaaicdacaGGSaGaaGymaaGaayjkaiaawMcaai aacYcaaaa@6ABD@

where P is the cure fraction of the improper/defective distribution. Models that consider such proportions simultaneously are called zero-inflated (or zero-adjusted) cure rate survival models, or zero-inflated cure rate models. Figure 2, we illustrate the behavior of the survival function for this model.

Figure 2 Survival function of the zero-inflated cure rate model.

 The associated cumulative distribution and probability density functions are, respectively,

F pop ( t; θ * )= p 0 +( 1 p 0 )F( t;θ ),   t>0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOra8aadaWgaaWcbaWdbiaadchacaWGVbGaamiCaaWdaeqaaOWd bmaabmaapaqaa8qacaWG0bGaai4oaGqadiaa=H7apaWaaWbaaSqabe aapeGaaiOkaaaaaOGaayjkaiaawMcaaiabg2da9iaadchapaWaaSba aSqaa8qacaaIWaaapaqabaGcpeGaey4kaSYaaeWaa8aabaWdbiaaig dacqGHsislcaWGWbWdamaaBaaaleaapeGaaGimaaWdaeqaaaGcpeGa ayjkaiaawMcaaiaadAeadaqadaWdaeaapeGaamiDaiaacUdacqaH4o qCaiaawIcacaGLPaaacaGGSaGaaiiOaiaacckacaGGGcGaamiDaiab g6da+iaaicdacaGGSaaaaa@5776@

 and

f pop ( t; θ * )={ p 0 ,    if  t=0, ( 1 p 0 )f( t;θ ),    if  t>0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaWgaaWcbaWdbiaadchacaWGVbGaamiCaaWdaeqaaOWd bmaabmaapaqaa8qacaWG0bGaai4oaGqadiaa=H7apaWaaWbaaSqabe aapeGaaiOkaaaaaOGaayjkaiaawMcaaiabg2da9maaceaapaqaauaa baqaceaaaeaapeGaamiCa8aadaWgaaWcbaWdbiaaicdaa8aabeaak8 qacaGGSaGaaiiOaiaacckacaGGGcGaaiiOaiaabMgacaqGMbGaaiiO aiaacckacaWG0bGaeyypa0JaaGimaiaacYcaa8aabaWdbmaabmaapa qaa8qacaaIXaGaeyOeI0IaamiCa8aadaWgaaWcbaWdbiaaicdaa8aa beaaaOWdbiaawIcacaGLPaaacaWGMbWaaeWaa8aabaWdbiaadshaca GG7aGaeqiUdehacaGLOaGaayzkaaGaaiilaiaacckacaGGGcGaaiiO aiaacckacaqGPbGaaeOzaiaacckacaGGGcGaamiDaiabg6da+iaaic dacaGGUaaaaaGaay5Eaaaaaa@6A41@

Note that if p 0 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCa8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacqGH9aqpcaaI Waaaaa@3AAA@ , the faulty standard model is obtained as a special case.

Defective model gompertz zero-adjusted

Based on the equation (14) with the survival function in (7), the survival function of the zero-adjusted Gompertz defective model will be given by:  

S pop ( t; θ * )=( 1 p 0 )exp{ b a ( e at 1 ) }, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ua8aadaWgaaWcbaWdbiaadchacaWGVbGaamiCaaWdaeqaaOWd bmaabmaapaqaa8qacaWG0bGaai4oaGqadiaa=H7apaWaaWbaaSqabe aapeGaaiOkaaaaaOGaayjkaiaawMcaaiabg2da9maabmaapaqaa8qa caaIXaGaeyOeI0IaamiCa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaO WdbiaawIcacaGLPaaacaqGLbGaaeiEaiaabchadaGadaWdaeaapeGa eyOeI0YaaSaaa8aabaWdbiaadkgaa8aabaWdbiaadggaaaWaaeWaa8 aabaWdbiaadwgapaWaaWbaaSqabeaapeGaamyyaiaadshaaaGccqGH sislcaaIXaaacaGLOaGaayzkaaaacaGL7bGaayzFaaGaaiilaaaa@5663@

where θ * = ( p 0 ,a,b) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGaa8hUd8aadaahaaWcbeqaa8qacaGGQaaaaOGaeyypa0Jaaiik aiaadchapaWaaSbaaSqaa8qacaaIWaaapaqabaGcpeGaaiilaiaadg gacaGGSaGaamOyaiaacMcapaWaaWbaaSqabeaatuuDJXwAK1uy0Hwm aeHbfv3ySLgzG0uy0Hgip5wzaGqba8qacqGFKksLaaaaaa@4C77@  is a vector of parameters, where 0 p 0 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGimaiabgsMiJkaadchapaWaaSbaaSqaa8qacaaIWaaapaqabaGc peGaeyizImQaaGymaaaa@3DC9@ , aR MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyyaiabgIGioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KB LbacfaGae83gHifaaa@43CE@ and b>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOyaiabg6da+iaaicdaaaa@3970@ .

The corresponding probability density function is defined by,

f pop ( t; θ * )=( 1 p 0 )bexp{ at b a ( e at 1 ) }. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaWgaaWcbaWdbiaadchacaWGVbGaamiCaaWdaeqaaOWd bmaabmaapaqaa8qacaWG0bGaai4oaGqadiaa=H7apaWaaWbaaSqabe aapeGaaiOkaaaaaOGaayjkaiaawMcaaiabg2da9maabmaapaqaa8qa caaIXaGaeyOeI0IaamiCa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaO WdbiaawIcacaGLPaaacaWGIbGaaeyzaiaabIhacaqGWbWaaiWaa8aa baWdbiaadggacaWG0bGaeyOeI0YaaSaaa8aabaWdbiaadkgaa8aaba WdbiaadggaaaWaaeWaa8aabaWdbiaadwgapaWaaWbaaSqabeaapeGa amyyaiaadshaaaGccqGHsislcaaIXaaacaGLOaGaayzkaaaacaGL7b GaayzFaaGaaiOlaaaa@593E@

As seen in the defective Gompertz distribution (6), the defective zero-adjusted Gompertz distribution also allows negative values for the parameter. In this case, the corresponding cure fraction whenis given by

p 1 = lim t S p ( t; θ * )=( 1 p 0 ) lim t e ( b/a )( e at 1 ) =( 1 p 0 ) e b/a =( 1 p 0 )p( 0,1 ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGH9aqppaWa aCbeaeaapeGaaeiBaiaabMgacaqGTbaal8aabaWdbiaadshacqGHsg IRcqGHEisPa8aabeaak8qacaWGtbWdamaaBaaaleaapeGaamiCaaWd aeqaaOWdbmaabmaapaqaa8qacaWG0bGaai4oaGqadiaa=H7apaWaaW baaSqabeaapeGaaiOkaaaaaOGaayjkaiaawMcaaiabg2da9maabmaa paqaa8qacaaIXaGaeyOeI0IaamiCa8aadaWgaaWcbaWdbiaaicdaa8 aabeaaaOWdbiaawIcacaGLPaaapaWaaCbeaeaapeGaaeiBaiaabMga caqGTbaal8aabaWdbiaadshacqGHsgIRcqGHEisPa8aabeaak8qaca WGLbWdamaaCaaaleqabaWdbmaabmaapaqaa8qacqGHsislcaWGIbGa ai4laiaadggaaiaawIcacaGLPaaadaqadaWdaeaapeGaamyza8aada ahaaadbeqaa8qacaWGHbGaamiDaaaaliabgkHiTiaaigdaaiaawIca caGLPaaaaaGccqGH9aqpdaqadaWdaeaapeGaaGymaiabgkHiTiaadc hapaWaaSbaaSqaa8qacaaIWaaapaqabaaak8qacaGLOaGaayzkaaGa amyza8aadaahaaWcbeqaa8qacaWGIbGaai4laiaadggaaaGccqGH9a qpdaqadaWdaeaapeGaaGymaiabgkHiTiaadchapaWaaSbaaSqaa8qa caaIWaaapaqabaaak8qacaGLOaGaayzkaaGaamiCaiabgIGiopaabm aapaqaa8qacaaIWaGaaiilaiaaigdaaiaawIcacaGLPaaacaGGUaaa aa@7C4A@   (15)

From (15) the defective zero-adjusted Gompertz distribution shows that the cure fraction decreases asincreases.

Defective model gaussian-inverse zero-adjusted

Again, based on the equation (14) with the survival function in (11), the survival function of the zero-adjusted Gaussian-Inverse defective model is given by:

S pop ( t; θ * )=( 1 p 0 )[ 1{ Φ( 1+at bt )+ e 2a/b Φ( 1at bt ) } ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ua8aadaWgaaWcbaWdbiaadchacaWGVbGaamiCaaWdaeqaaOWd bmaabmaapaqaa8qacaWG0bGaai4oaGqadiaa=H7apaWaaWbaaSqabe aapeGaaiOkaaaaaOGaayjkaiaawMcaaiabg2da9maabmaapaqaa8qa caaIXaGaeyOeI0IaamiCa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaO WdbiaawIcacaGLPaaadaWadaWdaeaapeGaaGymaiabgkHiTmaacmaa paqaa8qacaqGMoWaaeWaa8aabaWdbmaalaaapaqaa8qacqGHsislca aIXaGaey4kaSIaamyyaiaadshaa8aabaWdbmaakaaapaqaa8qacaWG IbGaamiDaaWcbeaaaaaakiaawIcacaGLPaaacqGHRaWkcaWGLbWdam aaCaaaleqabaWdbiaaikdacaWGHbGaai4laiaadkgaaaGccaqGMoWa aeWaa8aabaWdbmaalaaapaqaa8qacqGHsislcaaIXaGaeyOeI0Iaam yyaiaadshaa8aabaWdbmaakaaapaqaa8qacaWGIbGaamiDaaWcbeaa aaaakiaawIcacaGLPaaaaiaawUhacaGL9baaaiaawUfacaGLDbaaca GGSaaaaa@6696@

 where θ * = ( p 0 ,a,b) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGaa8hUd8aadaahaaWcbeqaa8qacaGGQaaaaOGaeyypa0Jaaiik aiaadchapaWaaSbaaSqaa8qacaaIWaaapaqabaGcpeGaaiilaiaadg gacaGGSaGaamOyaiaacMcapaWaaWbaaSqabeaatuuDJXwAK1uy0Hwm aeHbfv3ySLgzG0uy0Hgip5wzaGqba8qacqGFKksLaaaaaa@4C77@  is a vector of parameters, where 0 p 0 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGimaiabgsMiJkaadchapaWaaSbaaSqaa8qacaaIWaaapaqabaGc peGaeyizImQaaGymaaaa@3DC9@ , aR MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyyaiabgIGioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KB LbacfaGae83gHifaaa@43CE@ and b>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOyaiabg6da+iaaicdaaaa@3970@ .

The corresponding probability density function,is given by,

f pop ( t; θ * )= 1 p 0 2bπ t 3 exp{ 1 2bt (1at) 2 }. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaWgaaWcbaWdbiaadchacaWGVbGaamiCaaWdaeqaaOWd bmaabmaapaqaa8qacaWG0bGaai4oaGqadiaa=H7apaWaaWbaaSqabe aapeGaaiOkaaaaaOGaayjkaiaawMcaaiabg2da9maalaaapaqaa8qa caaIXaGaeyOeI0IaamiCa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaO qaa8qadaGcaaWdaeaapeGaaGOmaiaadkgacqaHapaCcaWG0bWdamaa CaaaleqabaWdbiaaiodaaaaabeaaaaGccaqGLbGaaeiEaiaabchada GadaWdaeaapeGaeyOeI0YaaSaaa8aabaWdbiaaigdaa8aabaWdbiaa ikdacaWGIbGaamiDaaaacaGGOaGaaGymaiabgkHiTiaadggacaWG0b Gaaiyka8aadaahaaWcbeqaa8qacaaIYaaaaaGccaGL7bGaayzFaaGa aiOlaaaa@5BA7@

Following the same concept as the zero adjusted Gompertz defective model, the zero adjusted Gaussian-Inverse defective model allows a<0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyyaiabgYda8iaaicdaaaa@396B@ , and its cure fraction is, p 1 = lim t S p ( t; θ * )=( 1 p 0 ) lim t [ 1{ Φ( 1+at bt )+ e 2a/b Φ( 1at bt ) } ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGH9aqppaWa aCbeaeaapeGaaeiBaiaabMgacaqGTbaal8aabaWdbiaadshacqGHsg IRcqGHEisPa8aabeaak8qacaWGtbWdamaaBaaaleaapeGaamiCaaWd aeqaaOWdbmaabmaapaqaa8qacaWG0bGaai4oaGqadiaa=H7apaWaaW baaSqabeaapeGaaiOkaaaaaOGaayjkaiaawMcaaiabg2da9maabmaa paqaa8qacaaIXaGaeyOeI0IaamiCa8aadaWgaaWcbaWdbiaaicdaa8 aabeaaaOWdbiaawIcacaGLPaaapaWaaCbeaeaapeGaaeiBaiaabMga caqGTbaal8aabaWdbiaadshacqGHsgIRcqGHEisPa8aabeaak8qada WadaWdaeaapeGaaGymaiabgkHiTmaacmaapaqaa8qacaqGMoWaaeWa a8aabaWdbmaalaaapaqaa8qacqGHsislcaaIXaGaey4kaSIaamyyai aadshaa8aabaWdbmaakaaapaqaa8qacaWGIbGaamiDaaWcbeaaaaaa kiaawIcacaGLPaaacqGHRaWkcaWGLbWdamaaCaaaleqabaWdbiaaik dacaWGHbGaai4laiaadkgaaaGccaqGMoWaaeWaa8aabaWdbmaalaaa paqaa8qacqGHsislcaaIXaGaeyOeI0Iaamyyaiaadshaa8aabaWdbm aakaaapaqaa8qacaWGIbGaamiDaaWcbeaaaaaakiaawIcacaGLPaaa aiaawUhacaGL9baaaiaawUfacaGLDbaaaaa@76AB@ =( 1 p 0 )( 1 e 2a/b )=( 1 p 0 )p( 0,1 ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeyypa0ZaaeWaa8aabaWdbiaaigdacqGHsislcaWGWbWdamaaBaaa leaapeGaaGimaaWdaeqaaaGcpeGaayjkaiaawMcaamaabmaapaqaa8 qacaaIXaGaeyOeI0Iaamyza8aadaahaaWcbeqaa8qacaaIYaGaamyy aiaac+cacaWGIbaaaaGccaGLOaGaayzkaaGaeyypa0ZaaeWaa8aaba WdbiaaigdacqGHsislcaWGWbWdamaaBaaaleaapeGaaGimaaWdaeqa aaGcpeGaayjkaiaawMcaaiaadchacqGHiiIZdaqadaWdaeaapeGaaG imaiaacYcacaaIXaaacaGLOaGaayzkaaGaaiOlaaaa@527D@   (16)

From the (16) the zero-adjusted Inverse Gaussian distribution shows that the cure fraction decreases as  increases.

In this sense, if the estimated parameter is negative ( a<0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyyaiabgYda8iaaicdaaaa@396B@ ), then the cure fraction for the defective Gompertz and Inverse Gaussian models defined as zero can be obtained, respectively, from (15) and (16). Otherwise, if the estimated model parameter is positive, there will be no cure fraction, according to the zero-adjusted defective models.

The advantage of the model proposed by Calsavara et al.15 is the ability to accommodate a zero-adjusted life expectancy proportion, as well as the possibility of a fraction of cure in the population.

Inference

In this section, we describe the inference for the model parameters based on a maximum likelihood approach and also on the asymptotic theory of large samples. Let T0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamivaiabgwMiZkaaicdaaaa@3A20@ be a random variable that represents the time until the event of interest occurs. Consider the time of the indicator variable δ i * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdq2damaaDaaaleaapeGaamyAaaWdaeaapeGaaeOkaaaaaaa@3A72@ , that is, δ i * =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdq2damaaDaaaleaapeGaamyAaaWdaeaapeGaaeOkaaaakiab g2da9iaaicdaaaa@3C3C@ if T=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamivaiabg2da9iaaicdaaaa@3960@ (survival time set to zero) and δ i * =1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdq2damaaDaaaleaapeGaamyAaaWdaeaapeGaaeOkaaaakiab g2da9iaaigdaaaa@3C3D@  if T>0,=1,...,n. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamivaiabg6da+iaaicdacaGGSaGaeyypa0JaaGymaiaacYcacaGG UaGaaiOlaiaac6cacaGGSaGaamOBaiaac6caaaa@40EE@ Furthermore, let δ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdq2damaaBaaaleaapeGaamyAaaWdaeqaaaaa@39B4@  be the censorship indicator variable, where δ i =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdq2damaaBaaaleaapeGaamyAaaWdaeqaaOWdbiabg2da9iaa icdaaaa@3B8E@  if the data is censored and δ i =1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdq2damaaBaaaleaapeGaamyAaaWdaeqaaOWdbiabg2da9iaa igdaaaa@3B8F@  otherwise. The explanatory variables will be incorporated into the model with a set of two-variable vectors, x 1 s+1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaCiEa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGHiiIZtuuD JXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=1ris9aada ahaaWcbeqaa8qacaWGZbGaey4kaSIaaGymaaaaaaa@4814@ and x 2   in q+1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaCiEa8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacaGGGcGaaiiO aiaadMgacaWGUbWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39 gaiuaacqWFDeIupaWaaWbaaSqabeaapeGaamyCaiabgUcaRiaaigda aaaaaa@4AB8@ , such that x =( x 1 , x 2 ) w MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaCiEa8aadaahaaWcbeqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbst HrhAG8KBLbacfaWdbiab=rQivcaakiabg2da9maabmaapaqaa8qaca WH4bWdamaaBaaaleaapeGaaGymaaWdaeqaaOWaaWbaaSqabeaapeGa e8hPIujaaOGaaiilaiaahIhapaWaaSbaaSqaa8qacaaIYaaapaqaba GcdaahaaWcbeqaa8qacqWFKksLaaaakiaawIcacaGLPaaacqGHiiIZ tuuDJXwAK1uy0HMmaeXbfv3ySLgzG0uy0HgiuD3BaGGbaiab+1ris9 aadaahaaWcbeqaa8qacaWG3baaaaaa@5CFA@  is a covariate vector with dimension w, where w=s+q+2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Daiabg2da9iaadohacqGHRaWkcaWGXbGaey4kaSIaaGOmaaaa @3D37@ .

According to Calsavara et al.15 the logito and log link functions were considered, being:

ln( p 0 x 1i 1 p 0 x 1i )= x 1i β 0   e   lnb( x 2i )= x 2i β 1 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeiBaiaab6gadaqadaWdaeaapeWaaSaaa8aabaWdbiaadchapaWa aSbaaSqaa8qacaaIWaGaaCiEa8aadaWgaaadbaWdbiaaigdacaWHPb aapaqabaaaleqaaaGcbaWdbiaaigdacqGHsislcaWGWbWdamaaBaaa leaapeGaaGimaiaahIhapaWaaSbaaWqaa8qacaaIXaGaaCyAaaWdae qaaaWcbeaaaaaak8qacaGLOaGaayzkaaGaeyypa0JaaCiEa8aadaWg aaWcbaWdbiaaigdacaWHPbaapaqabaGcdaahaaWcbeqaamrr1ngBPr wtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaWdbiab=rQivcaaieWa kiaa+j7apaWaaSbaaSqaa8qacaaIWaaapaqabaGcpeGaaiiOaiaacc kacaqGLbGaaiiOaiaacckacaGGGcGaaeiBaiaab6gacaWGIbWaaeWa a8aabaWdbiaahIhapaWaaSbaaSqaa8qacaaIYaGaaCyAaaWdaeqaaa GcpeGaayjkaiaawMcaaiabg2da9iaahIhapaWaaSbaaSqaa8qacaaI YaGaaCyAaaWdaeqaaOWaaWbaaSqabeaapeGae8hPIujaaOGaa4NSd8 aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGGSaaaaa@7030@

 where x 1i =( 1, x 1 i1 ,..., x 1 is ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEa8aadaqhaaWcbaWdbiaaigdacaWGPbaapaqaamrr1ngBPrwt HrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaWdbiab=rQivcaakiabg2 da9maabmaapaqaa8qacaaIXaGaaiilaiaadIhapaWaaSbaaSqaa8qa caaIXaWdamaaBaaameaapeGaamyAaiaaigdaa8aabeaaaSqabaGcpe Gaaiilaiaac6cacaGGUaGaaiOlaiaacYcacaWG4bWdamaaBaaaleaa peGaaGyma8aadaWgaaadbaWdbiaadMgacaWGZbaapaqabaaaleqaaa GcpeGaayjkaiaawMcaaaaa@5570@  and x 2i =( 1, x 2 iq ,..., x 1 is ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEa8aadaqhaaWcbaWdbiaaikdacaWGPbaapaqaamrr1ngBPrwt HrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaWdbiab=rQivcaakiabg2 da9maabmaapaqaa8qacaaIXaGaaiilaiaadIhapaWaaSbaaSqaa8qa caaIYaWdamaaBaaameaapeGaamyAaiaadghaa8aabeaaaSqabaGcpe Gaaiilaiaac6cacaGGUaGaaiOlaiaacYcacaWG4bWdamaaBaaaleaa peGaaGyma8aadaWgaaadbaWdbiaadMgacaWGZbaapaqabaaaleqaaa GcpeGaayjkaiaawMcaaaaa@55AD@  are the sets of covariates and β 0 =( β 00 , β 01 ,..., β 0s ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdi2damaaDaaaleaapeGaaGimaaWdaeaatuuDJXwAK1uy0Hwm aeHbfv3ySLgzG0uy0Hgip5wzaGqba8qacqWFKksLaaGccqGH9aqpda qadaWdaeaapeGaeqOSdi2damaaBaaaleaapeGaaGimaiaaicdaa8aa beaak8qacaGGSaGaeqOSdi2damaaBaaaleaapeGaaGimaiaaigdaa8 aabeaak8qacaGGSaGaaiOlaiaac6cacaGGUaGaaiilaiabek7aI9aa daWgaaWcbaWdbiaaicdacaWGZbaapaqabaaak8qacaGLOaGaayzkaa aaaa@56AF@  and β 1 =( β 10 , β 11 ,..., β 1q ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdi2damaaDaaaleaapeGaaGymaaWdaeaatuuDJXwAK1uy0Hwm aeHbfv3ySLgzG0uy0Hgip5wzaGqba8qacqWFKksLaaGccqGH9aqpda qadaWdaeaapeGaeqOSdi2damaaBaaaleaapeGaaGymaiaaicdaa8aa beaak8qacaGGSaGaeqOSdi2damaaBaaaleaapeGaaGymaiaaigdaa8 aabeaak8qacaGGSaGaaiOlaiaac6cacaGGUaGaaiilaiabek7aI9aa daWgaaWcbaWdbiaaigdacaWGXbaapaqabaaak8qacaGLOaGaayzkaa aaaa@56B1@  and their regression coefficients, respectively. In this way, the link function will depend on the covariates and can be expressed as follows

p 0 x 1i = exp{ x 1i β 0 } 1+exp{ x 1i β 0 }    and  b( x 2i )=exp{ x 2i β 1 }. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCa8aadaWgaaWcbaWdbiaaicdacaWH4bWdamaaBaaameaapeGa aGymaiaahMgaa8aabeaaaSqabaGcpeGaeyypa0ZaaSaaa8aabaWdbi aabwgacaqG4bGaaeiCamaacmaapaqaa8qacaWH4bWdamaaBaaaleaa peGaaGymaiaahMgaa8aabeaakmaaCaaaleqabaWefv3ySLgznfgDOf daryqr1ngBPrginfgDObYtUvgaiuaapeGae8hPIujaaGqadOGaa4NS d8aadaWgaaWcbaWdbiaaicdaa8aabeaaaOWdbiaawUhacaGL9baaa8 aabaWdbiaaigdacqGHRaWkcaqGLbGaaeiEaiaabchadaGadaWdaeaa peGaaCiEa8aadaWgaaWcbaWdbiaaigdacaWHPbaapaqabaGcdaahaa Wcbeqaa8qacqWFKksLaaGccaGFYoWdamaaBaaaleaapeGaaGimaaWd aeqaaaGcpeGaay5Eaiaaw2haaaaacaGGGcGaaiiOaiaacckacaqGHb GaaeOBaiaabsgacaGGGcGaaiiOaiaadkgadaqadaWdaeaapeGaaCiE a8aadaWgaaWcbaWdbiaaikdacaWHPbaapaqabaaak8qacaGLOaGaay zkaaGaeyypa0JaaeyzaiaabIhacaqGWbWaaiWaa8aabaWdbiaahIha paWaaSbaaSqaa8qacaaIYaGaaCyAaaWdaeqaaOWaaWbaaSqabeaape Gae8hPIujaaOGaa4NSd8aadaWgaaWcbaWdbiaaigdaa8aabeaaaOWd biaawUhacaGL9baacaGGUaaaaa@7E98@

In practice, the covariate vectors can be the same, that is, x= x 1 = x 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEaiabg2da9iaadIhapaWaaSbaaSqaa8qacaaIXaaapaqabaGc peGaeyypa0JaamiEa8aadaWgaaWcbaWdbiaaikdaa8aabeaaaaa@3E0F@ . Furthermore, the logit and log link functions will be used to maintain the range of values of p 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@38D1@ and b, respectively. Other linkage functions can be used for the proportion of failures, such as the probit and complementary log-log linkage functions.

In this sense, in the data set to be observed, we have D=( t,δ, δ * ,X ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaCiraiabg2da9maabmaapaqaa8qacaWH0bGaaiilaGqadiaa=r7a caGGSaGaa8hTd8aadaahaaWcbeqaa8qacaGGQaaaaOGaaiilamrr1n gBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae43LWJfacaGL OaGaayzkaaaaaa@4CD6@ , on what t= ( t 1 ,..., t n ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaCiDaiabg2da9iaacIcacaWG0bWdamaaBaaaleaapeGaaGymaaWd aeqaaOWdbiaacYcacaGGUaGaaiOlaiaac6cacaGGSaGaamiDa8aada WgaaWcbaWdbiaad6gaa8aabeaak8qacaGGPaWdamaaCaaaleqabaWe fv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaapeGae8hPIu jaaaaa@4DD8@ will be the observed lifetimes, δ= ( δ 1 ,..., δ n ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGaa8hTdiabg2da9iaacIcacqaH0oazpaWaaSbaaSqaa8qacaaI XaaapaqabaGcpeGaaiilaiaac6cacaGGUaGaaiOlaiaacYcacqaH0o azpaWaaSbaaSqaa8qacaWGUbaapaqabaGcpeGaaiyka8aadaahaaWc beqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaWdbi ab+rQivcaaaaa@4F76@ and, δ * = ( δ 1 * ,..., δ n * ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGaa8hTd8aadaahaaWcbeqaa8qacaGGQaaaaOGaeyypa0Jaaiik aiabes7aK9aadaqhaaWcbaWdbiaaigdaa8aabaWdbiaabQcaaaGcca GGSaGaaiOlaiaac6cacaGGUaGaaiilaiabes7aK9aadaqhaaWcbaWd biaad6gaa8aabaWdbiaabQcaaaGccaGGPaWdamaaCaaaleqabaWefv 3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaapeGae4hPIuja aaaa@51D6@ are, respectively, the censoring and censoring time indicators, and X MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAYaqeguuDJXwAKbstHrhAGq1DVbacfaaeaaaaaaaaa8qacqWFxcpw aaa@42CF@ is the matrix containing the covariate information.

Considering that’s T i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiva8aadaWgaaWcbaWdbiaadMgaa8aabeaaaaa@38E9@ are dependent and identically distributed random variables with the survival function specified by S p ( ;ϑ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ua8aadaWgaaWcbaWdbiaadchaa8aabeaak8qadaqadaWdaeaa peGaeyyXICTaai4oaiabeg9akbGaayjkaiaawMcaaaaa@3F62@ ,on what ϑ= (a, β 0 , β 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeqy0dOKaeyypa0JaaiikaiaadggacaGGSaGaeqOSdi2damaaBaaa leaapeGaaGimaaWdaeqaaOWdbiaacYcacqaHYoGypaWaaSbaaSqaa8 qacaaIXaaapaqabaGcpeGaaiyka8aadaahaaWcbeqaamrr1ngBPrwt HrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaWdbiab=rQivcaaaaa@4E6A@  é um vetor de parâmetros desconhecidos. The likelihood function ofunder non-informative censoring is expressed as,  

L( ϑ;D ) i=1 n ( p 0 x 1i ) 1 δ i * { f p ( t i ;ϑ, x 1i , x 2i ) δ i S p ( t i ;ϑ, x 1i , x 2i ) 1 δ i } δ i * . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamitamaabmaapaqaaGGab8qacqWFrpGscaGG7aGaaCiraaGaayjk aiaawMcaaiabg2Hi1oaawahabeWcpaqaa8qacaWGPbGaeyypa0JaaG ymaaWdaeaapeGaamOBaaqdpaqaa8qacqGHpis1aaGccaqGnaIaaiik aiaadchapaWaaSbaaSqaa8qacaaIWaGaaCiEa8aadaWgaaadbaWdbi aaigdacaWHPbaapaqabaaaleqaaOWdbiaacMcapaWaaWbaaSqabeaa peGaaGymaiabgkHiTiabes7aK9aadaqhaaadbaWdbiaadMgaa8aaba WdbiaabQcaaaaaaOGaai4EaiaadAgapaWaaSbaaSqaa8qacaWGWbaa paqabaGcpeGaaiikaiaadshapaWaaSbaaSqaa8qacaWGPbaapaqaba GcpeGaai4oaiab=f9akjaacYcacaWH4bWdamaaBaaaleaapeGaaGym aiaahMgaa8aabeaak8qacaGGSaGaaCiEa8aadaWgaaWcbaWdbiaaik dacaWHPbaapaqabaGcpeGaaiyka8aadaahaaWcbeqaa8qacqaH0oaz paWaaSbaaWqaa8qacaWGPbaapaqabaaaaOWdbiaadofapaWaaSbaaS qaa8qacaWGWbaapaqabaGcpeGaaiikaiaadshapaWaaSbaaSqaa8qa caWGPbaapaqabaGcpeGaai4oaiab=f9akjaacYcacaWH4bWdamaaBa aaleaapeGaaGymaiaahMgaa8aabeaak8qacaGGSaGaaCiEa8aadaWg aaWcbaWdbiaaikdacaWHPbaapaqabaGcpeGaaiyka8aadaahaaWcbe qaa8qacaaIXaGaeyOeI0IaeqiTdq2damaaBaaameaapeGaamyAaaWd aeqaaaaak8qacaGG9bWdamaaCaaaleqabaWdbiabes7aK9aadaqhaa adbaWdbiaadMgaa8aabaWdbiaabQcaaaaaaOGaaiOlaaaa@8026@  (17)

The corresponding log-likelihood is given by

l( ϑ )=logL( ϑ;D ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiBamaabmaapaqaa8qacqaHrpGsaiaawIcacaGLPaaacqGH9aqp caqGSbGaae4BaiaabEgacaWGmbWaaeWaa8aabaWdbiabeg9akjaacU dacaWHebaacaGLOaGaayzkaaaaaa@4487@

i=1 n ( 1 δ * )log( p 0 x 1i )+ i=1 n δ i * δ i log f p ( t i ;ϑ, x 1i , x 2i )+ i=1 n ( 1 δ i ) δ i * log S p ( t i ;ϑ, x 1i , x 2i ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyyhIu7aaybCaeqal8aabaWdbiaadMgacqGH9aqpcaaIXaaapaqa a8qacaWGUbaan8aabaWdbiabggHiLdaakiaab2aidaqadaWdaeaape GaaGymaiabgkHiTiabes7aK9aadaahaaWcbeqaa8qacaqGQaaaaaGc caGLOaGaayzkaaGaaeiBaiaab+gacaqGNbWaaeWaa8aabaWdbiaadc hapaWaaSbaaSqaa8qacaaIWaGaaCiEa8aadaWgaaadbaWdbiaaigda caWHPbaapaqabaaaleqaaaGcpeGaayjkaiaawMcaaiabgUcaRmaawa habeWcpaqaa8qacaWGPbGaeyypa0JaaGymaaWdaeaapeGaamOBaaqd paqaa8qacqGHris5aaGccaqGnaIaeqiTdq2damaaDaaaleaapeGaam yAaaWdaeaapeGaaeOkaaaakiabes7aK9aadaWgaaWcbaWdbiaadMga a8aabeaak8qacaqGSbGaae4BaiaabEgacaWGMbWdamaaBaaaleaape GaamiCaaWdaeqaaOWdbmaabmaapaqaa8qacaWH0bWdamaaBaaaleaa peGaaCyAaaWdaeqaaOWdbiaacUdacqaHrpGscaGGSaGaaCiEa8aada WgaaWcbaWdbiaaigdacaWHPbaapaqabaGcpeGaaiilaiaahIhapaWa aSbaaSqaa8qacaaIYaGaaCyAaaWdaeqaaaGcpeGaayjkaiaawMcaai abgUcaRmaawahabeWcpaqaa8qacaWGPbGaeyypa0JaaGymaaWdaeaa peGaamOBaaqdpaqaa8qacqGHris5aaGccaqGnaYaaeWaa8aabaWdbi aaigdacqGHsislcqaH0oazpaWaaSbaaSqaa8qacaWGPbaapaqabaaa k8qacaGLOaGaayzkaaGaeqiTdq2damaaDaaaleaapeGaamyAaaWdae aapeGaaeOkaaaakiaabYgacaqGVbGaae4zaiaadofapaWaaSbaaSqa a8qacaWGWbaapaqabaGcpeWaaeWaa8aabaWdbiaahshapaWaaSbaaS qaa8qacaWHPbaapaqabaGcpeGaai4oaiabeg9akjaacYcacaWH4bWd amaaBaaaleaapeGaaGymaiaahMgaa8aabeaak8qacaGGSaGaaCiEa8 aadaWgaaWcbaWdbiaaikdacaWHPbaapaqabaaak8qacaGLOaGaayzk aaGaaiOlaaaa@967B@

The previous log-likelihood function can be rewritten as follows,  

l( ϑ ) i=1 n ( 1 δ * )log( p 0 x 1i )+ i=1 n δ i * δ i log( 1 p 0 x 1i ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiBamaabmaapaqaa8qacqaHrpGsaiaawIcacaGLPaaacqGHDisT daGfWbqabSWdaeaapeGaamyAaiabg2da9iaaigdaa8aabaWdbiaad6 gaa0WdaeaapeGaeyyeIuoaaOGaaeydGmaabmaapaqaa8qacaaIXaGa eyOeI0IaeqiTdq2damaaCaaaleqabaWdbiaabQcaaaaakiaawIcaca GLPaaacaqGSbGaae4BaiaabEgadaqadaWdaeaapeGaamiCa8aadaWg aaWcbaWdbiaaicdacaWH4bWdamaaBaaameaapeGaaGymaiaahMgaa8 aabeaaaSqabaaak8qacaGLOaGaayzkaaGaey4kaSYaaybCaeqal8aa baWdbiaadMgacqGH9aqpcaaIXaaapaqaa8qacaWGUbaan8aabaWdbi abggHiLdaakiaab2aicqaH0oazpaWaa0baaSqaa8qacaWGPbaapaqa a8qacaqGQaaaaOGaeqiTdq2damaaBaaaleaapeGaamyAaaWdaeqaaO WdbiaabYgacaqGVbGaae4zamaabmaapaqaa8qacaaIXaGaeyOeI0Ia amiCa8aadaWgaaWcbaWdbiaaicdacaWH4bWdamaaBaaameaapeGaaG ymaiaahMgaa8aabeaaaSqabaaak8qacaGLOaGaayzkaaaaaa@6D03@

+ i=1 n δ i * δ i logf( t i ;ϑ, x 1i , x 2i )+ i=1 n ( 1 δ i ) δ i * logS( t i ;ϑ, x 1i , x 2i ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaey4kaSYaaybCaeqal8aabaWdbiaadMgacqGH9aqpcaaIXaaapaqa a8qacaWGUbaan8aabaWdbiabggHiLdaakiaab2aicqaH0oazpaWaa0 baaSqaa8qacaWGPbaapaqaa8qacaqGQaaaaOGaeqiTdq2damaaBaaa leaapeGaamyAaaWdaeqaaOWdbiaabYgacaqGVbGaae4zaiaadAgada qadaWdaeaapeGaaCiDa8aadaWgaaWcbaWdbiaahMgaa8aabeaak8qa caGG7aGaeqy0dOKaaiilaiaahIhapaWaaSbaaSqaa8qacaaIXaGaaC yAaaWdaeqaaOWdbiaacYcacaWH4bWdamaaBaaaleaapeGaaGOmaiaa hMgaa8aabeaaaOWdbiaawIcacaGLPaaacqGHRaWkdaGfWbqabSWdae aapeGaamyAaiabg2da9iaaigdaa8aabaWdbiaad6gaa0WdaeaapeGa eyyeIuoaaOGaaeydGmaabmaapaqaa8qacaaIXaGaeyOeI0IaeqiTdq 2damaaBaaaleaapeGaamyAaaWdaeqaaaGcpeGaayjkaiaawMcaaiab es7aK9aadaqhaaWcbaWdbiaadMgaa8aabaWdbiaabQcaaaGccaqGSb Gaae4BaiaabEgacaWGtbWaaeWaa8aabaWdbiaahshapaWaaSbaaSqa a8qacaWHPbaapaqabaGcpeGaai4oaiabeg9akjaacYcacaWH4bWdam aaBaaaleaapeGaaGymaiaahMgaa8aabeaak8qacaGGSaGaaCiEa8aa daWgaaWcbaWdbiaaikdacaWHPbaapaqabaaak8qacaGLOaGaayzkaa Gaaiilaaaa@7B91@

on what f( ;ϑ, x 1i , x 2i ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOzamaabmaapaqaa8qacqGHflY1caGG7aGaeqy0dOKaaiilaiaa hIhapaWaaSbaaSqaa8qacaaIXaGaaCyAaaWdaeqaaOWdbiaacYcaca WH4bWdamaaBaaaleaapeGaaGOmaiaahMgaa8aabeaaaOWdbiaawIca caGLPaaaaaa@45B1@ e S( ;ϑ, x 1i , x 2i ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4uamaabmaapaqaa8qacqGHflY1caGG7aGaeqy0dOKaaiilaiaa hIhapaWaaSbaaSqaa8qacaaIXaGaaCyAaaWdaeqaaOWdbiaacYcaca WH4bWdamaaBaaaleaapeGaaGOmaiaahMgaa8aabeaaaOWdbiaawIca caGLPaaaaaa@459E@ are, respectively, the probability density function and the survival function associated with the defective distribution. The full proof of the likelihood function can be found in Calsavara et al.15

Maximum likelihood estimates of the parameters are obtained by numerically maximizing the log-likelihood function. There are several methods for this numerical maximization, however, the optim routine in the statistical software R was used for this maximization.

Therefore, the asymptotic properties of maximum likelihood estimates are necessary to construct confidence intervals and test hypotheses about model parameters. Under certain conditions,has an asymptotic multivariate normal distribution with meanand variance Σ( ϑ ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaC4Odmaabmaapaqaa8qacuaHrpGspaGbaKaaa8qacaGLOaGaayzk aaaaaa@3B76@ , being estimated by,  

Σ ^ ( ϑ ^ )= { l( ϑ )ϑd ϑ ϑ= ϑ ^ = ϑ ^ } 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabC4Od8aagaqca8qadaqadaWdaeaapeGafqy0dO0dayaajaaapeGa ayjkaiaawMcaaiabg2da9maacmaapaqaa8qacqGHsislcaWGSbWaae Waa8aabaWdbiabeg9akbGaayjkaiaawMcaaiabeg9akjaadsgacqaH rpGspaWaaWbaaSqabeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0H gip5wzaGqba8qacqWFKksLaaGcpaWaaSbaaSqaa8qacqaHrpGscqGH 9aqpcuaHrpGspaGbaKaaaeqaaOWdbiabg2da9iqbeg9ak9aagaqcaa WdbiaawUhacaGL9baapaWaaWbaaSqabeaapeGaeyOeI0IaaGymaaaa aaa@5DCD@

Thus, an approximate confidence interval of 100( 1α )% MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGymaiaaicdacaaIWaWaaeWaa8aabaWdbiaaigdacqGHsislcqaH XoqyaiaawIcacaGLPaaacaqGLaaaaa@3E8E@  for ϑ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeqy0dO0damaaBaaaleaapeGaamyAaaWdaeqaaaaa@39B8@  is ( ϑ ^ i ± z α/2 Σ ii ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiqbeg9ak9aagaqcamaaBaaaleaapeGaamyAaaWd aeqaaOWdbiabgglaXkaadQhapaWaaSbaaSqaa8qacqaHXoqycaGGVa GaaGOmaaWdaeqaaOWdbmaakaaapaqaa8qacaqGJoWdamaaCaaaleqa baWdbiaadMgacaWGPbaaaaqabaaakiaawIcacaGLPaaaaaa@4583@ , where Σ ii MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaae4Od8aadaahaaWcbeqaa8qacaWGPbGaamyAaaaaaaa@3A19@  denotes the ith element of the diagonal of the inverse of Σ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaC4Odaaa@37F7@ evaluated at ϑ ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gafqy0dO0dayaajaaaaa@388F@ and z α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOEa8aadaWgaaWcbaWdbiabeg7aHbWdaeqaaaaa@39C0@ denotes the 100( 1α ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGymaiaaicdacaaIWaWaaeWaa8aabaWdbiaaigdacqGHsislcqaH XoqyaiaawIcacaGLPaaaaaa@3DE6@  percentile of the standard normal random variable.

The results of the asymptotic normality of maximum likelihood estimates are valid under certain conditions. In Calsavara et al.15 a simulation study was carried out to verify whether the usual asymptotes of maximum likelihood estimates are valid, since simulations have been used in many works to verify the asymptotic behavior of maximum likelihood estimates, especially when a Analytical investigation is not trivial.

Application

Data description

In this study, the dataset for this application was provided by a financial institution providing credit-oriented services. These data were analysed by Toledo et al.5 considering the model proposed by Ribeiro et al.16 The period considered was after the Brazilian economic recession, starting in mid-2014, in which there was an increase in the financial crisis in the country. For this application, a random sample of 9,645 CPFs will be considered. The main characteristic of the individuals that make up this data set is the acquisition of debts, that is, there are customers with overdue and unpaid debts in the period from July/2015 to December/2015.

The process of collecting outstanding debts is done in a traditional way. This type of process can be carried out through telephone charges, collection letters or extrajudicial calls. Devido ao cenário da crise econômica, há a lentidão do processo de restituição do status do clientes de inadimplente para adimplente, sendo necessário a utilização de modelos estatísticos para estimar o prazo para a ocorrência destes eventos. The failure time in this study is the time from the date of debt acquisition to the completion of the study, a period of 24 months. In this context, to identify differences in customer behaviors for different scenarios, the situation will be studied using two covariates.

  • Consultation information: Indicates whether the customer in question has been consulted by companies (from any segment) on credit reports in the past 180 days.
  • Type of debt: Indicates whether the debt acquired in the period of the economic crisis is from the financial segment (Banks) or other segments.

In Table 1 shows the covariates according to their categories.

  Covariable

 Description

 Category 

 n

 %

X 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiwa8aadaWgaaWcbaWdbiaaigdaa8aabeaaaaa@38BA@  

 Consultation information

 0: without consultation

295

3.06%

 

 

 1: with consultation

9350

96.90%

X 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiwa8aadaWgaaWcbaGaaGOmaaqabaaaaa@389C@  

 Type of debt

 0: Banks

5103

52.90%

 

 

 1: Other segments

4542

47.10%

Table 1 Description of covariables

Furthermore, through the data set it is possible to verify the distribution of clients subgroups, since it is possible to perceive different behaviours in relation to the payment status recovery time for different clients subgroups, being,

  1. Client having an event at time zero: Indicates clients who have settled their debt at time zero, immediately recovering their ability to pay;
  2. Client susceptible to the event: Indicates clients who settled their debt within the observed period of 24 months, that is, they reversed their debts over the period and as of such settlement recovered their ability to pay;
  3. Client not susceptible to the event: Clients not susceptible to the event of interest, which according to the theory are considered immune/cured, that is, they are clients who continued with their outstanding debts after the 24-month period, thus remaining with the status of default.

In Table 2 there is the number of each subgroup present in the data set.

  Subgroups

 No. of Clients

 % of Clients

 (I) Client having an event at time zero

2292

23.76%

(II) Client susceptible to event

5268

54.62%

(III) Client not susceptible to event

2085

21.62%

 Total

9645

100%

Table 2 Subgroups of customers in the dataset

Therefore, Table 2 shows that there is a concentration of events at time zero, accounting for about 23.76% of the observations, identifying an excess of zeros. In addition, aroundof clients do not present the event of interest, which is theoretically considered immune. Finally, aboutof the clients had an interest event, that is, they paid off the debt within 24 months.

The Figure 3 shows the distribution of debt settlement times for the observed data set. In this sense, it is possible to notice in the Figure 3, the inflation of the zeros for this data set. This is interesting given that the study is being conducted in a scenario of economic crisis and most indebted clients were paying off their debts at the start of the study. This may be due to the client’s interest in normalising their status in order to perform other actions that a default might prevent.

Figure 3 Debt settlement time (in months).

In Figure 4 we have the Kaplan-Meier curve estimated for the clients debt settlement times. It is possible to see a large number of censures on the right, that is, a large number of clients who did not pay off their debts within the 24-month period. Furthermore, it is important to highlight that the survival curve estimated in Figure 4 starts approximately at point 0.75, due to the presence of zero inflation in Figure 3.

Figure 4 Survival curve for debt repayment times (in months).

The estimated Kaplan-Meier curves stratified by the categorical covariate are shown in Figure 5, where there are differences in the curves for different categories within the covariate, representing a difference in survival.

Figure 5 Estimated Kaplan-Meier curves considering covariates: Consult credit reports and segment of adquired debt.

Therefore, in Figure 5 it is possible to highlight the Debt Type covariate, in which clients who have debts in banks pay off their debts in a greater proportion when compared to debts that come from other segments. In relation to the covariate Consultation Information, it can be observed that customers who do not have consultations on their credit reports tend to prioritise paying off their debts more than those who do.

Application of the proposed model

 In this section we present the implementation of the Zero-adjusted defective model Gompertz and inverse Gaussian. The model will be adjusted in the presence of covariates separately and jointly. To select the best model, two metrics are used to measure its quality, the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC).

Thus, the goal is to evaluate whether the type of Debit and the Consulation information influence the Debt settlement time (in months). To simplify the interpretations, it should be noted that the coefficients β 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdi2damaaBaaaleaapeGaaGimaaWdaeqaaaaa@397D@  , i=1,2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyAaiabg2da9iaaigdacaGGSaGaaGOmaaaa@3AE3@ , are related to the influence of the covariates type of Debit and the Consulation information on zero inflation, while the coefficients β 1i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdi2damaaBaaaleaapeGaaGymaiaadMgaa8aabeaaaaa@3A6C@ , i=1,2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyAaiabg2da9iaaigdacaGGSaGaaGOmaaaa@3AE3@ , are related to the influence of the same covariates on the parameter  of the Gompertz and Inverse Gaussian distributions. So, we have the following relations, to proportion of the zeros, p 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@38D1@  and b respectively,

p 0 ( x )= exp{ β 00 + x 1 β 01 + x 2 β 02 } 1+exp{ β 00 + x 1 β 01 + x 2 β 02 } , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCa8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qadaqadaWdaeaa peGaaCiEaaGaayjkaiaawMcaaiabg2da9maalaaapaqaa8qacaqGLb GaaeiEaiaabchadaGadaWdaeaapeGaeqOSdi2damaaBaaaleaapeGa aGimaiaaicdaa8aabeaak8qacqGHRaWkcaWG4bWdamaaBaaaleaape GaaGymaaWdaeqaaOWdbiabek7aI9aadaWgaaWcbaWdbiaaicdacaaI XaaapaqabaGcpeGaey4kaSIaamiEa8aadaWgaaWcbaWdbiaaikdaa8 aabeaak8qacqaHYoGypaWaaSbaaSqaa8qacaaIWaGaaGOmaaWdaeqa aaGcpeGaay5Eaiaaw2haaaWdaeaapeGaaGymaiabgUcaRiaabwgaca qG4bGaaeiCamaacmaapaqaa8qacqaHYoGypaWaaSbaaSqaa8qacaaI WaGaaGimaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8qaca aIXaaapaqabaGcpeGaeqOSdi2damaaBaaaleaapeGaaGimaiaaigda a8aabeaak8qacqGHRaWkcaWG4bWdamaaBaaaleaapeGaaGOmaaWdae qaaOWdbiabek7aI9aadaWgaaWcbaWdbiaaicdacaaIYaaapaqabaaa k8qacaGL7bGaayzFaaaaaiaacYcaaaa@6AF7@

b( x )=exp{ β 10 + x 1 β 11 + x 2 β 12 }. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOyamaabmaapaqaa8qacaWH4baacaGLOaGaayzkaaGaeyypa0Ja aeyzaiaabIhacaqGWbWaaiWaa8aabaWdbiabek7aI9aadaWgaaWcba WdbiaaigdacaaIWaaapaqabaGcpeGaey4kaSIaamiEa8aadaWgaaWc baWdbiaaigdaa8aabeaak8qacqaHYoGypaWaaSbaaSqaa8qacaaIXa GaaGymaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8qacaaI YaaapaqabaGcpeGaeqOSdi2damaaBaaaleaapeGaaGymaiaaikdaa8 aabeaaaOWdbiaawUhacaGL9baacaGGUaaaaa@51F4@

 where x =( x 1 , x 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaCiEa8aadaahaaWcbeqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbst HrhAG8KBLbacfaWdbiab=rQivcaakiabg2da9maabmaapaqaa8qaca WG4bWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaacYcacaWG4bWd amaaBaaaleaapeGaaGOmaaWdaeqaaaGcpeGaayjkaiaawMcaaaaa@4B40@  is a covariate vector, where x 1 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGH9aqpcaaI Waaaaa@3AB4@  indicates Consultation information (without consultation) and x 1 =1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGH9aqpcaaI Xaaaaa@3AB5@  (with consultation); x 2 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEa8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacqGH9aqpcaaI Waaaaa@3AB5@ type of debt (bank) and x 2 =1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEa8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacqGH9aqpcaaI Xaaaaa@3AB6@ (other segments) and β 0 =( β 00 , β 01 , β 02 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdi2damaaDaaaleaapeGaaGimaaWdaeaatuuDJXwAK1uy0Hwm aeHbfv3ySLgzG0uy0Hgip5wzaGqba8qacqWFKksLaaGccqGH9aqpda qadaWdaeaapeGaeqOSdi2damaaBaaaleaapeGaaGimaiaaicdaa8aa beaak8qacaGGSaGaeqOSdi2damaaBaaaleaapeGaaGimaiaaigdaa8 aabeaak8qacaGGSaGaeqOSdi2damaaBaaaleaapeGaaGimaiaaikda a8aabeaaaOWdbiaawIcacaGLPaaaaaa@53AE@  and β 1 =( β 10 , β 11 , β 12 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdi2damaaDaaaleaapeGaaGymaaWdaeaatuuDJXwAK1uy0Hwm aeHbfv3ySLgzG0uy0Hgip5wzaGqba8qacqWFKksLaaGccqGH9aqpda qadaWdaeaapeGaeqOSdi2damaaBaaaleaapeGaaGymaiaaicdaa8aa beaak8qacaGGSaGaeqOSdi2damaaBaaaleaapeGaaGymaiaaigdaa8 aabeaak8qacaGGSaGaeqOSdi2damaaBaaaleaapeGaaGymaiaaikda a8aabeaaaOWdbiaawIcacaGLPaaaaaa@53B2@  and their regression coefficients, respectively.

Adjustment of the model without the effect of covariates: Table 3 shows the results of the parameter estimates (MLE), standard errors (SE) and  confidence intervals obtained by fitting the zero-adjusted Gompertz and inverse Gaussian models, respectively, without the presence of covariates. It is important to note that all parameters are significant at the  significance level, as the confidence intervals do not include the zero value. We can see that the estimates of the parameters associated with the proportion of zeros ( p 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@38D1@ ) are very close for both models. Also can be noted that the cure rate found for the Gompertz model is higher than for the Inverse Gaussian model with respect to the cure rate parameter ( p 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCa8aadaWgaaWcbaWdbiaaigdaa8aabeaaaaa@38D2@ ).

  3*Parameters

 Zero-adjusted defective models

 

 

 

 Gompertz

 Inverse Gaussian

 

 

 MLE

 SE

 CI (95%)

 MLE

 SE

 CI (95%)

a

-0.147

0.002

( 0.152;0.142 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiabgkHiTiaaicdacaGGUaGaaGymaiaaiwdacaaI YaGaai4oaiabgkHiTiaaicdacaGGUaGaaGymaiaaisdacaaIYaaaca GLOaGaayzkaaaaaa@424C@  

-0.065

0.003

( 0.071;0.059 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiabgkHiTiaaicdacaGGUaGaaGimaiaaiEdacaaI XaGaai4oaiabgkHiTiaaicdacaGGUaGaaGimaiaaiwdacaaI5aaaca GLOaGaayzkaaaaaa@4253@  

b

0.187

0.007

( 0.173;0.200 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiaaicdacaGGUaGaaGymaiaaiEdacaaIZaGaai4o aiaaicdacaGGUaGaaGOmaiaaicdacaaIWaaacaGLOaGaayzkaaaaaa@4070@  

0.454

0.007

( 0.440;0.467 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiaaicdacaGGUaGaaGinaiaaisdacaaIWaGaai4o aiaaicdacaGGUaGaaGinaiaaiAdacaaI3aaacaGLOaGaayzkaaaaaa@407C@  
β 00 ( intercepto ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdi2damaaBaaaleaapeGaaGimaiaaicdapaWaaSbaaWqaa8qa daqadaWdaeaapeGaamyAaiaad6gacaWG0bGaamyzaiaadkhacaWGJb GaamyzaiaadchacaWG0bGaam4BaaGaayjkaiaawMcaaaWdaeqaaaWc beaaaaa@45A5@  

-1.166

0.024

( 1.213;1.119 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiabgkHiTiaaigdacaGGUaGaaGOmaiaaigdacaaI ZaGaai4oaiabgkHiTiaaigdacaGGUaGaaGymaiaaigdacaaI5aaaca GLOaGaayzkaaaaaa@4250@  

-1.166

0.024

( 1.213;1.119 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiabgkHiTiaaigdacaGGUaGaaGOmaiaaigdacaaI ZaGaai4oaiabgkHiTiaaigdacaGGUaGaaGymaiaaigdacaaI5aaaca GLOaGaayzkaaaaaa@4250@  
β 10 ( intercepto ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdi2damaaBaaaleaapeGaaGymaiaaicdapaWaaSbaaWqaa8qa daqadaWdaeaapeGaamyAaiaad6gacaWG0bGaamyzaiaadkhacaWGJb GaamyzaiaadchacaWG0bGaam4BaaGaayjkaiaawMcaaaWdaeqaaaWc beaaaaa@45A6@  

1.679

0.018

( 1.715;1.643 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiabgkHiTiaaigdacaGGUaGaaG4naiaaigdacaaI 1aGaai4oaiabgkHiTiaaigdacaGGUaGaaGOnaiaaisdacaaIZaaaca GLOaGaayzkaaaaaa@4259@  

-0.79

0.018

( 0.826;0.754 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiabgkHiTiaaicdacaGGUaGaaGioaiaaikdacaaI 2aGaai4oaiabgkHiTiaaicdacaGGUaGaaG4naiaaiwdacaaI0aaaca GLOaGaayzkaaaaaa@425D@  
p 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@38D1@  

0.238

0.004

( 0.230;0.245 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiaaicdacaGGUaGaaGOmaiaaiodacaaIWaGaai4o aiaaicdacaGGUaGaaGOmaiaaisdacaaI1aaacaGLOaGaayzkaaaaaa@4073@  

0.238

0.004

( 0.230;0.245 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiaaicdacaGGUaGaaGOmaiaaiodacaaIWaGaai4o aiaaicdacaGGUaGaaGOmaiaaisdacaaI1aaacaGLOaGaayzkaaaaaa@4073@  

p 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCa8aadaWgaaWcbaWdbiaaigdaa8aabeaaaaa@38D2@  

0.213

0.004

( 0.206;0.221 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiaaicdacaGGUaGaaGOmaiaaicdacaaI2aGaai4o aiaaicdacaGGUaGaaGOmaiaaikdacaaIXaaacaGLOaGaayzkaaaaaa@4070@  

0.19

0.007

( 0.177;0.204 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiaaicdacaGGUaGaaGymaiaaiEdacaaI3aGaai4o aiaaicdacaGGUaGaaGOmaiaaicdacaaI0aaacaGLOaGaayzkaaaaaa@4078@  

Table 3 MLE, Maximum likelihood estimates; SE, Standard error; CI, Confidence interval; CI (95%) for the zero-adjusted gompertz and inverse gaussian models without effect of covariates

Figure 6 shows the adjustment of the defective zero-adjusted Gompertz (a) and Inverse Gaussian (b) models, respectively, without the presence of covariates. In this sense, it is possible to verify that the Gompertz model (a) obtained a better fit than the inverse Gaussian model (b), since the survival curve estimated by the Gompertz model is very close to the Kaplan-Meier curve.

Figure 6 Kaplan-Meier estimate and the survival curve estimated by the Gompertz Adjusted Zero Defective Model (a) and Gaussian-Inverse Adjusted Zero Defective Model (b), without the presence of a covariate.

By analysing the survival functions represented by equations and, it is possible to establish a relationship with the population accumulated risk function, where H ^ pop ( t )=log( S ^ pop ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gabmisa8aagaqcamaaBaaaleaapeGaamiCaiaad+gacaWGWbaapaqa baGcpeWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaacqGH9aqpcq GHsislcaqGSbGaae4BaiaabEgadaqadaWdaeaapeGabm4ua8aagaqc amaaBaaaleaapeGaamiCaiaad+gacaWGWbaapaqabaGcpeWaaeWaa8 aabaWdbiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@4AD9@ .

Figure 7 shows the estimated curves of the cumulative risk function for each of the models. In this sense, the when analysing the Gompertz model showed the best fit to the data, we can observe that there is a greater risk that the individual who acquired a debt has a greater chance of paying it off by month , as the estimated cumulative curve stabilises shortly after this point. However, it is worth noting that the risk is almost the same if the debt is repaid in up to 35 months or up to 60 months.

Figure 7 Estimation of the cumulative risk function (H(t)) by the Gompertz Adjusted Zero Defective Model (a) and Gaussian-inverse adjusted zero defective model (b), without the presence of a covariate.

Adjustment of the model by considering each covariate separately: Table 4 shows the parameter estimates, standard errors and theirconfidence intervals for the covariates "Consultation information" and "type of debt" for each of the proposed models. "It is also possible to observe that all the parameters of the models adjusted considering the Debt Type covariate are significant, since the confidence intervals established in both models do not include the value zero.

  3*

 3*Parameters

 Zero-adjusted defective models

 

 

 

 

 

 Gompertz

 Inverse Gaussian

 

 

 MLE

 SE

 CI (95%)

 

 MLE

 SE

 CI (95%)

 10*Consultation information

 a

 -0.147

0.002

 (-0.152;-0.142)

 

 -0.065

0.003

 (-0.071; -0.059)

 

 b

0.186

0.054

 (0.171;0.292)

 

0.454

0.008

 (0.438; 0.469)

 

β 00 ( intercepto ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdi2damaaBaaaleaapeGaaGimaiaaicdapaWaaSbaaWqaa8qa daqadaWdaeaapeGaamyAaiaad6gacaWG0bGaamyzaiaadkhacaWGJb GaamyzaiaadchacaWG0bGaam4BaaGaayjkaiaawMcaaaWdaeqaaaWc beaaaaa@45A5@  

 -0.855

0.127

 (-1.105;-0.606)

 

 -0.856

0.127

 (-1.105; -0.067)

 

β 01 ( x 1 =1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdi2damaaBaaaleaapeGaaGimaiaaigdapaWaaSbaaWqaa8qa daqadaWdaeaapeGaamiEa8aadaWgaaqaa8qacaaIXaaapaqabaWdbi abg2da9iaaigdaaiaawIcacaGLPaaaa8aabeaaaSqabaaaaa@400F@  

 -0.321

0.130

 (-0.575;-0.067)

 

 -0.320

0.13

 (-0.574; -0.066)

 

β 10 ( intercept ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdi2damaaBaaaleaapeGaaGymaiaaicdapaWaaSbaaWqaa8qa daqadaWdaeaapeGaamyAaiaad6gacaWG0bGaamyzaiaadkhacaWGJb GaamyzaiaadchacaWG0baacaGLOaGaayzkaaaapaqabaaaleqaaaaa @44B2@  

 -1.641

0.082

 (-1.802;-1.481)

 

 -0.800

0.094

 (-0.985; -0.615)

 

β 11 ( x 1 =1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdi2damaaBaaaleaapeGaaGymaiaaigdapaWaaSbaaWqaa8qa daqadaWdaeaapeGaamiEa8aadaWgaaqaa8qacaaIXaaapaqabaWdbi abg2da9iaaigdaaiaawIcacaGLPaaaa8aabeaaaSqabaaaaa@4010@  

 -0.038

0.082

 (-0.199;-0.122)

 

0.010

0.095

 (-0.176; 0.196)

 

p 00 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCa8aadaWgaaWcbaWdbiaaicdacaaIWaaapaqabaaaaa@398B@  

0.298

0.027

 (0.245;0.351)

 

0.298

0.027

 (0.245;0.351)

 

p 01 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCa8aadaWgaaWcbaWdbiaaicdacaaIXaaapaqabaaaaa@398C@  

0.236

0.004

 (0.228;0.244)

 

0.236

0.004

 (0.228;0.244)

 

p 10 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCa8aadaWgaaWcbaWdbiaaigdacaaIWaaapaqabaaaaa@398C@  

0.187

0.021

 (0.146;0.228)

 

0.177

0.017

 (0.143;0.210)

 

p 11 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCa8aadaWgaaWcbaWdbiaaigdacaaIXaaapaqabaaaaa@398D@  

0.214

0.004

 (0.206;0.222)

 

0.191

0.007

 (0.177;0.205)

 

 AIC

-46305.09

   

 

-45249.05

   
 

 BIC

-46223.35

   

 

-45167.31

   

10*type of debt

 a

 -0.142

0.002

 (-0.146;-0.137)

 

 -0.066

0.003

 (-0.071; 0.060)

 

 b

136

0.01

 (0.116; 0.155)

 

0.367

0.01

 (0.347; 0.387)

 

β 00 ( intercepto ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdi2damaaBaaaleaapeGaaGimaiaaicdapaWaaSbaaWqaa8qa daqadaWdaeaapeGaamyAaiaad6gacaWG0bGaamyzaiaadkhacaWGJb GaamyzaiaadchacaWG0bGaam4BaaGaayjkaiaawMcaaaWdaeqaaaWc beaaaaa@45A5@  

 -1.030

0.032

 (-1.092;-0.967)

 

 -1.030

0.032

 (1.092; -0.967)

 

β 02 ( x 2 =1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdi2damaaBaaaleaapeGaaGimaiaaikdapaWaaSbaaWqaa8qa daqadaWdaeaapeGaamiEa8aadaWgaaqaa8qacaaIYaaapaqabaWdbi abg2da9iaaigdaaiaawIcacaGLPaaaa8aabeaaaSqabaaaaa@4011@  

-1.030

0.048

 (-0.397; -0.207)

 

-0.302

0.048

 (-0.397; -0.207)

 

β 10 ( intercept ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdi2damaaBaaaleaapeGaaGymaiaaicdapaWaaSbaaWqaa8qa daqadaWdaeaapeGaamyAaiaad6gacaWG0bGaamyzaiaadkhacaWGJb GaamyzaiaadchacaWG0baacaGLOaGaayzkaaaapaqabaaaleqaaaaa @44B2@  

 -0.302

0.021

 (-1.467; -1.481)

 

-0.606

0.024

 (-0.653; -0.558)

 

β 12 ( x 2 =1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdi2damaaBaaaleaapeGaaGymaiaaikdapaWaaSbaaWqaa8qa daqadaWdaeaapeGaamiEa8aadaWgaaqaa8qacaaIYaaapaqabaWdbi abg2da9iaaigdaaiaawIcacaGLPaaaa8aabeaaaSqabaaaaa@4012@  

 -1.426

0.028

 (-0.626; -0.516)

 

-0.397

0.031

 (-0.458; 0.335)

 

p 00 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCa8aadaWgaaWcbaWdbiaaicdacaaIWaaapaqabaaaaa@398B@  

0.263

0.006

 (0.251;0.275)

 

0.263

0.006

 (0.251;0.275)

 

p 01 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCa8aadaWgaaWcbaWdbiaaicdacaaIXaaapaqabaaaaa@398C@  

0.209

0.006

 (0.197;0.221)

 

0.209

0.006

 (0.197;0.221)

 

p 10 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCa8aadaWgaaWcbaWdbiaaigdacaaIWaaapaqabaaaaa@398C@  

0.135

0.005

 (0.125;0.145)

 

0.158

0.006

 (0.146;0.170)

 

p 11 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCa8aadaWgaaWcbaWdbiaaigdacaaIXaaapaqabaaaaa@398D@  

0.303

0.007

 (0.290;0.317)

 

0.238

0.008

 (0.223;0.254)

 

 AIC

-45851.5

   

 

-45055.3

   

 

 BIC

-45769.4

 

 

 

-44973.6

 

 

Table 4 MLE, Maximum likelihood estimates; SE, Standard error; CI, Confidence interval; CI (95%) for the zero-adjusted gompertz and inverse gaussian models without effect of covariates

For the covariate "Consultation information", it can be seen that the estimates of the parameters associated with the proportion of zeros ( p 00 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCa8aadaWgaaWcbaWdbiaaicdacaaIWaaapaqabaaaaa@398B@ ) are very close for both models, indicating that this covariate has a greater inflation of zeros p 00 =0.298 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCa8aadaWgaaWcbaWdbiaaicdacaaIWaaapaqabaGcpeGaeyyp a0JaaGimaiaac6cacaaIYaGaaGyoaiaaiIdaaaa@3E58@  for customers who have not received any consultation from companies on their credit report. In terms of the cure rate, the highest cure rate is given by modelling using the Gompertz distribution p 11 =0.214 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCa8aadaWgaaWcbaWdbiaaigdacaaIXaaapaqabaGcpeGaeyyp a0JaaGimaiaac6cacaaIYaGaaGymaiaaisdaaaa@3E4E@  for clients who received consultations from companies on their credit report, while the lowest cure rate is given by modelling using the Inverse Gaussian distribution p 10 =0.177 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCa8aadaWgaaWcbaWdbiaaigdacaaIWaaapaqabaGcpeGaeyyp a0JaaGimaiaac6cacaaIXaGaaG4naiaaiEdaaaa@3E55@  for clients who did not receive any consultation.

For the covariate "type of debt", in the table 4, can also be seen that the estimates of the parameters associated with the proportion of zeros ( p 00 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCa8aadaWgaaWcbaWdbiaaicdacaaIWaaapaqabaaaaa@398B@ ) are very close for both models. In this case, the variable "type of debt" has a higher inflation of zeros p 00 =0.263 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCa8aadaWgaaWcbaWdbiaaicdacaaIWaaapaqabaGcpeGaeyyp a0JaaGimaiaac6cacaaIYaGaaGOnaiaaiodaaaa@3E50@  for clients with bank debts, while the lower inflation of zeros p 01 =0.209 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCa8aadaWgaaWcbaWdbiaaicdacaaIXaaapaqabaGcpeGaeyyp a0JaaGimaiaac6cacaaIYaGaaGimaiaaiMdaaaa@3E51@  for clients with debts from other segments. Furthermore, in both models, the highest proportion of cure is given to clients with debts to other segments, while the lowest proportion of cure is given to clients with debts to banks.

Figure 8 shows the survival curve estimated by the defective zero-adjusted Gompertz (a) and Inverse-Gaussian (b) models, respectively, with the presence of the covariate consultation Information on credit reports. It can be seen that the Gompertz model provides a better fit to the data than the inverse Gaussian model. The emphasis on the Gompertz model is due to the fact that its estimated survival curve is significantly close to the Kaplan-Meier estimated survival curve.

Figure 8 Kaplan-Meier estimate and the survival curve estimated by the defective Zero- Adjusted Gompertz model (a) and defective Zero-Adjusted Gaussian-Inverse model (b), with the presence of the covariate information from checking credit reports.

Figure 9 shows the estimated curves of the population cumulative risk function, H ^ pop ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gabmisa8aagaqcamaaBaaaleaapeGaamiCaiaad+gacaWGWbaapaqa baGcpeWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaaaaa@3D98@ , for each of the models. We can observed that the risk of an individual repaying their debt at a given point in time is greater for clients who have not had any consultation on their credit reports.

Figure 9 Estimation of the accumulated risk function (H(t)) by the defective Zero-Adjusted Gompertz model (a) and the defective Zero-Adjusted Gaussian-Inverse model (b), with the presence of the covariate Information from consultation credit reports.

Figure 10 shows the survival curve estimated by the defective zero-adjusted Gompertz (a) and Inverse-Gaussian (b) models, respectively, for the debt type covariate. It is possible to verify that the best fit occurs in the Gompertz model compared to the Inverse Gaussian model.

Figure 10 Kaplan-Meier estimate and the survival curve estimated by the defective Zero- Adjusted Gompertz model (a) and defective Zero-Adjusted Gaussian-Inverse model (b), with the presence of the covariate debt type.

Figure 11 shows the estimated curves of the population accumulated risk function, H ^ pop ( t )=log( S ^ pop ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gabmisa8aagaqcamaaBaaaleaapeGaamiCaiaad+gacaWGWbaapaqa baGcpeWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaacqGH9aqpcq GHsislcaqGSbGaae4BaiaabEgadaqadaWdaeaapeGabm4ua8aagaqc amaaBaaaleaapeGaamiCaiaad+gacaWGWbaapaqabaGcpeWaaeWaa8 aabaWdbiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@4AD9@ , for each of the models, considering the covariate Type of Debt. In this sense, can be seen that the risk of an individual repaying his debt at a given time is higher for clients who owe money to the financial sector, i.e. to banks. On the other hand, the risk that an individual will repay his debt in a given period is lower for clients with debts in other segments.

Figure 11 Estimation of the accumulated risk function (H(t)) by the defective Zero-Adjusted Gompertz model (a) and the defective Zero-Adjusted Gaussian-Inverse model (b), with the presence of the covariate debt type.

Adjustment of the model with the presence of covariates jointly: Table 5 shows the adjustment of the Gompertz and Inverse Gaussian zero-adjusted defective models, considering both covariates. It is observed that the parameters associated with the Gompertz and Inverse Gaussian distributions are significant, in addition it is verified that the majority of the estimates of the regression parametersassociated with the parameterand the proportion of zero are significant, considering the same criteria for trust regions observed in previous models.

   3*Parameters

 Zero-adjusted defective models

 

 

 

 

 Gompertz

 

 Inverse Gaussian

 

 

 MLE

 SE

 CI(95%)

 MLE

 SE

 CI(95%)

 a

-0.142

0.002

 (-0.146; -0.137)

-0.066

0.003

(-0.071; -0.060)

 b

0.136

0.01

 (0.188; 0.227)

0.367

0.01

(0.348; 0.387)

β 00 ( intercept ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdi2damaaBaaaleaapeGaaGimaiaaicdapaWaaSbaaWqaa8qa daqadaWdaeaapeGaamyAaiaad6gacaWG0bGaamyzaiaadkhacaWGJb GaamyzaiaadchacaWG0baacaGLOaGaayzkaaaapaqabaaaleqaaaaa @44B1@  

-0.723

0.129

 (0.976; -0.470)

-0.721

0.129

(-0.974; -0.468)

β 01 ( X 1 =1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdi2damaaBaaaleaapeGaaGimaiaaigdapaWaaSbaaWqaa8qa daqadaWdaeaapeGaamiwa8aadaWgaaqaa8qacaaIXaaapaqabaWdbi abg2da9iaaigdaaiaawIcacaGLPaaaa8aabeaaaSqabaaaaa@3FEF@  

-0.317

0.13

 (-0.572; -0.206)

-0.318

0.13

(-0.573; -0.064)

β 02 ( X 2 =1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdi2damaaBaaaleaapeGaaGimaiaaikdapaWaaSbaaWqaa8qa daqadaWdaeaapeGaamiwa8aadaWgaaqaa8qacaaIYaaapaqabaWdbi abg2da9iaaigdaaiaawIcacaGLPaaaa8aabeaaaSqabaaaaa@3FF1@  

-0.301

0.048

 (-0.396; -0.206)

-0.303

0.048

(-0.398; -0.208)

β 10 ( intercept ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdi2damaaBaaaleaapeGaaGymaiaaicdapaWaaSbaaWqaa8qa daqadaWdaeaapeGaamyAaiaad6gacaWG0bGaamyzaiaadkhacaWGJb GaamyzaiaadchacaWG0baacaGLOaGaayzkaaaapaqabaaaleqaaaaa @44B2@  

-1.397

0.082

 (-1.558; -1.235)

-0.618

0.095

 (-0.805; -0.431)

β 11 ( X 1 =1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdi2damaaBaaaleaapeGaaGymaiaaigdapaWaaSbaaWqaa8qa daqadaWdaeaapeGaamiwa8aadaWgaaqaa8qacaaIXaaapaqabaWdbi abg2da9iaaigdaaiaawIcacaGLPaaaa8aabeaaaSqabaaaaa@3FF0@  

-0.031

0.082

(-0.626; -0.516)

0.011

0.095

(-0.175; 0.197)

β 12 ( X 2 =1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdi2damaaBaaaleaapeGaaGymaiaaikdapaWaaSbaaWqaa8qa daqadaWdaeaapeGaamiwa8aadaWgaaqaa8qacaaIYaaapaqabaWdbi abg2da9iaaigdaaiaawIcacaGLPaaaa8aabeaaaSqabaaaaa@3FF1@  

-0.571

0.028

 

-0.395

0.031

(-0.456; -0.334)

AIC

-45841.3

   

-45045.6

   

BIC

-45726.9

 

 

-44931.2

 

 

Table 5 MLE, Maximum likelihood estimates; SE, Standard error; CI, Confidence interval; CI (95%) for the zero-adjusted Gompertz and Inverse Gaussian models without effect conjunto of covariates

The Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) for model selection show that the Gompertz zero-adjusted defective model is the most appropriate, as it presents the lowest AIC and BIC values. Thus, in Table 6, we present the estimates of the zero proportions and cure proportions for the zero-adjusted Gompertz defective model for the covariates consultation information and debt type. In this context, it is possible to observe from Table 6 that the highest proportion of individuals who regularise their debts at time zero is associated with customers who have not had their credit reports consulted by companies and who have debts in the financial segment i.e. banks, with a proportion of p 000 =0.3267 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCa8aadaWgaaWcbaWdbiaaicdacaaIWaGaaGimaaWdaeqaaOWd biabg2da9iaaicdacaGGUaGaaG4maiaaikdacaaI2aGaaG4naaaa@3FCB@ . On the other hand, the lower proportion of individuals paying off their debts at time zero is associated with customers who have had their credit reports checked and who have debts from other segments.

   2*Proportions of zeros and cures

 2* x 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEa8aadaWgaaWcbaWdbiaaigdaa8aabeaaaaa@38DA@

 2* x 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEamaaBaaaleaacaaIYaaabeaaaaa@38AD@

 2*Estimativa

 2*Erro padrão

 IC (95%)

 

 

 

 

 

 

 LI

 LS

 4*p0

 2*0

0

0.3267

0.028

0.2718

0.3816

 

 

1

0.2642

0.025

0.2152

0.3132

 

 2*1

0

0.2611

0.006

0.2494

0.2729

 

 

1

0.2073

0.006

0.1955

0.2190

 4*p1

 2*0

0

0.1173

0.018

0.0820

0.1526

 

 

1

0.2742

0.024

0.2271

0.3212

 

 2*1

0

0.1356

0.005

0.1258

0.1454

 

 

1

0.3041

0.007

0.2904

0.3178

Table 6 Estimates of the proportions of zeros and cure for the gompertz zero-adjusted defective Model for the covariates x 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEa8aadaWgaaWcbaWdbiaaigdaa8aabeaaaaa@38DA@ and x 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEamaaBaaaleaacaaIYaaabeaaaaa@38AD@ jointly

It is also worth noting that clients whose credit reports have been consulted by a company and who have debts from other segments are those with the highest concentration of people who have not paid their debts within the 24-month period, as the cure rate is given by p 111 =0.3041 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCa8aadaWgaaWcbaWdbiaaigdacaaIXaGaaGymaaWdaeqaaOWd biabg2da9iaaicdacaGGUaGaaG4maiaaicdacaaI0aGaaGymaaaa@3FC4@ . With regard to clients whose credit reports have not been consulted by any company and who have debts from banks, it is important to note that they have the smallest amount of outstanding debts, as the cure proportion is p 100 =0.1173 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCa8aadaWgaaWcbaWdbiaaigdacaaIWaGaaGimaaWdaeqaaOWd biabg2da9iaaicdacaGGUaGaaGymaiaaigdacaaI3aGaaG4maaaa@3FC6@ . If we compare the results obtained by Toledo et al.,16 and the results in Table 6, we can see that the estimates of the proportions of zeros and cure are quite similar, which highlights the effectiveness of the model. It is important to highlight that the methodology used in this study has the advantage of only having to estimate the parameters of the defective model and the proportion of zeros ( p 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@38D1@ ), whereas in the other methodology it was necessary to estimate the proportion of zeros ( p 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@38D1@ ), the cure rate ( p 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCa8aadaWgaaWcbaWdbiaaigdaa8aabeaaaaa@38D2@ ) and the parameters of the basic survival models. Finally, through Table 6, it was observed which patterns of clients tend to pay or not pay their debts within the 24-month period, using the Gompertz zero-adjusted defective model.

Conclusion

In this study, statistical survival models called Zero-adjusted defective regression models were studied. These models have two main characteristics that differentiate them from usual survival models: the incorporation of a portion of individuals who do not present the event of interest, even after a long period of follow-up, and also the possibility that a proportion of the times under study are equal to zero. To illustrate the modelling presented here, we analysed survival data from a real database of clients who acquired debt between the months of July and December 2015, provided by Serasa Experian, a leading institution in credit information and services in Brazil. The model made it possible to estimate the proportions of three groups of clients in a given dataset: a group in which time equals zero (clients who paid off their debts at time zero and immediately regained the ability to pay); another group of clients susceptible to the interest event (clients who paid off their debts over time and then regained the ability to pay); and a group of clients not susceptible to the event (clients who did not pay off their debts).

The results showed that the Gompertz zero-adjusted defective model performed better. The criteria used to select the best model were measured by AIC and BIC.However, it is important to emphasise that the real performance of the models presented here can be assessed in the light of their daily use by companies, using a greater variety of available data and covariates, since the model allows the use of as many covariates as necessary, whether continuous or categorical. Furthermore, it was found that the modelling presented here is similar to the modelling of the zero-adjusted cure rate models studied by Toledo et al.,5 However, zero-adjusted defective models have a significant advantage, as they require the estimation of one less parameter, the parameters of the defective model and the proportion of zeros, i.e. the proportion of clients who paid off their debts at the beginning of the study.

At the end of this study, it was found that it is possible to gain additional knowledge, leading to the conclusion that we can use the survival analysis technique to estimate and select an efficient model in customer portfolios with access to credit, such as those of large banks or retailers.

Acknowledgments

None.

Conflicts of interest

The authors declare that they have no conflicts of interest.

References

  1. Tsodikov AD, Yakovlev AY, Asselain B. Stochastic models of tumor latency and their biostatistical applications. World Scientific. 1996;1.
  2. Boag JW. Maximum likelihood estimates of the proportion of patients cured by cancer therapy. Journal of the Royal Statistical Society. Series B (Methodological). 1949;11(1):15–53.
  3. Berkson J, Gage RP. Survival curve for cancer patients following treatment. Journal of the American Statistical Association. 1952;47(259):501–515.
  4. Rodrigues J, Cancho VG, de Castro M, et al. On the unification of long-term survival models. Statistics & Probability Letters. 2009;79(6):753–759.
  5. Toled JS, Tomazella VLD, Lima CMM, et al. Gompertz zero-inflated cure rate regression models applied to credit risk data. Applied Stochastic Models in Business and Industry. 2023;39(2):177–197.
  6. Granzotto DCT. Seleção de modelos de tempos com longa-duração para dados de finanças. 2008.
  7. Balka J, Desmond AF, McNicholas PD. Bayesian and likelihood inference for cure rates based on defective inverse gaussian regression models. Journal of Applied Statistics. 2011;38:127–144.
  8. Rocha R, Nadarajah S, Tomazella V, et al. A new class of defective models based on the marshall–olkin family of distributions for cure rate modeling. Computational Statistics & Data Analysis. 2017;107:48–63.
  9. Scudilio J, Calsavara VF, Rocha R, et al. Defective models induced by gamma frailty term for survival data with cured fraction. Journal of Applied Statistics. 2019;46(3):484–507.
  10. Calsavara VF, Rodrigues AS, Rocha R, et al. Defective regression models for cure rate modeling with interval-censored data. Biom J. 2019;61(4):841–859.
  11. Ibrahim J, Chen M, Sinha D. Bayesian survival analysis. Statistics. 2014.
  12. Feller W. An introduction to probability theory and its applications. John Wiley & Sons. 1991.
  13. Gieser PW, Chang MN, Rao P, et al. Modelling cure rates using the gompertz model with covariate information. Stat Med. 1998;17(8):831–839.
  14. Lee MLT, Whitmore GA. Threshold regression for survival analysis: modeling event times by a stochastic process reaching a boundary. Statist Sci. 2006;21(4):501–513.
  15. Calsavara VF, Rodrigues AS, Rocha R, et al. Zero-adjusted defective regression models for modeling lifetime data. Journal of Applied Statistics. 2019;46(3):2434–2459.
  16. Oliveira RM, Moreira F, Louzada F. The zero-inflated promotion cure rate model applied to financial data on time-to-default. Cogent Economics & Finance. 2017;5(1):1395950.
Creative Commons Attribution License

©2024 Menezes, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.