Submit manuscript...
eISSN: 2378-315X

Biometrics & Biostatistics International Journal

Research Article Volume 10 Issue 1

Use of statistical models for predicting oral health status of children with cerebral palsy in Sri Lanka

HBWMDM Weerasekara,1 L.S. Nawarathna,2 E.M.U.C.K. Herath3

1Postgraduate Institute of Science, University of Peradeniya, Sri Lanka
2Department of Statistics and Computer Science, Faculty of Science, University of Peradeniya, Sri Lanka
3Division of Paedodontics, Department of Community Dental Health, Faculty of Dental Sciences, University of Peradeniya, Sri Lanka

Correspondence: L.S. Nawarathna, Department of Statistics and Computer Science, Faculty of Science, University of Peradeniya, Sri Lanka

Received: February 18, 2021 | Published: April 21, 2021

Citation: Weerasekara HBWMDM, Nawarathna LS, Herath EMUCK. Use of statistical models for predicting oral health status of children with cerebral palsy in Sri Lanka. Biom Biostat Int J. 2021;10(1):37-44. DOI: 10.15406/bbij.2021.10.00328

Download PDF

Abstract

Cerebral Palsy (CP) is the most common movement disorder in children, which is defined as ‘‘a group of permanent disorders of the development of movement and posture, causing activity limitations attributed to non-progressive disturbances occurred in developing fetal or infant brain. In this study, we consider the four most common CP types categorized by the location of movement problems named Monoplegia, Diplegia, Hemiplegia, and Quadriplegia. Oral health is a state of being free from the chronic mouth, facial pain, oral and throat cancer, oral sores, congenital disabilities such as cleft lip and palate, tooth decay and tooth loss, and other diseases disorders oral cavity.  The main goal of the study is to create suitable statistical models for predicting the oral health status of children with CP using Silness-Löe plaque index and DMFT Index (DMFTI). Also, to identify the relationships between DMFTI and demographic, DMFTI and CP location, Silness-Loe plaque index and demographic data, Silness-Loe plaque index and CP location, Care index (CI) and demographic data, and the CI and CP location. This analysis was performed on a sample of 93 children with CP in the Central Province, Sri Lanka. The independent sample t-test and one-way ANOVA test were used to identify the relationship between variables, and effect sizes were calculated using partial Eta squared value to measure the strength of the relationship. Further Multiple Linear Regression (MLR) model, Random Forest Regression (RFR) model, and the Support Vector Regression (SVR) model were used to predict the oral health status using DMFTI and plaque index separately. A comparison was conducted for the fitted models using the Coefficient of determination (R-squared). There is a significant difference between the mean values of the plaque index for different CP locations. Children with diplegia have the lowest plaque index, while children with hemiplegia have the highest plaque index. The accuracy of the MLR model for predicting DMFTI is 23.60% and 20.80% for Permanent and primary teeth separately, and 20.00% for predicting Plaque Index. Those accuracies for the RFR model are 92.64%, 93.11% and 90.32%, while 95.36%, 85.65% and 80.07% for SVR model respectively.  Therefore, the RFR Model was considered the best-fitted model for predicting oral health status using DMFTI and the plaque index of Sri Lankan children with CP. Besides, children with hemiplegia have a higher risk of having lower oral health status.

Keywords: oral health, cerebral palsy, multiple linear regression, random forest regression, support vector regression

Introduction

Cerebral palsy (CP) is primarily a disorder of movement and posture. It is defined as ‘‘a group of permanent disorders of the development of movement and posture, causing activity limitations, that are attributed to non-progressive disturbances that occurred in the developing fetal or infant brain’’.1 There are four major types of cerebral palsy, which are spastic, athetoid, ataxic, and mixed type. Spastic cerebral palsy is the most common type of CP, making up 70 to 80 per cent of cases. Moreover, the cerebral palsy location (CP-location) explained by the location of movement problems can be mainly categorized into four types, namely 1. Monoplegia: Only one limb movement is affected. It usually occurs in the arm or leg, 2. Diplegia: Two limbs, usually the legs, are affected, 3. Hemiplegia: One side of the body is affected, and 4. Quadriplegia: All four limbs are involved, but the legs are affected worse than the arms.2 Figure 1

Figure 1 Types of CP Locations.

Oral health is a state of being free from chronic mouth and facial pain, oral and throat cancer, oral sores, congenital disabilities such as cleft lip and palate, tooth decay and tooth loss, and other diseases and disorders affect the oral cavity. In most studies, oral health status is assessed using the Silness-Löe plaque index and Dental caries index.3 DMFT Index (DMFTI) can be obtained by calculating the total number of Decayed, Missing, and Filled Teeth in permanent dentition and primary dentition separately. The patient’s clinical oral examination was realized for the prevalence of dental caries in an individual. Silness-Löe plaque index is a measurement to state the oral hygiene recording debris and mineralized deposits in each of the four surfaces, and a score is given from 0-3.4 The Care Index (CI) is a measure of the proportion of carious teeth managed with restorations or by extraction.  It is defined as CI = F+M/D + M + F, where D: the number of restored teeth as a proportion of the total number of decayed, M: missing, and F: filled teeth. It provides an epidemiological measure of how much treatment has been provided to manage the disease.5,6

The main goal of the study is to create suitable statistical models for predicting the oral health status of children with cerebral palsy in Sri Lanka. In this study, we had described two types of statistical models to predict the oral health status using DMFTI and Silness-Loe plaque index of children with CP. Also, to identify the relationships between DMFTI and demographic data of children with CP, DMFTI and CP location, Silness-Loe plaque index and demographic data of children with CP, Silness-Loe plaque index, and CP location were other objectives. Many studies have been conducted worldwide regarding oral health status7,8 and caregiver support of children with CP.9 However, only one study was conducted on the prevalence of CP in Sri Lankan children, a descriptive cross-sectional study. Therefore, this study was conducted to identify the oral health status of Sri Lankan children with CP. Besides, we introduced novel models to predict Sri Lankan children's oral health status.10

This article is organized as follows. In Section 2, we describe the nature of the data set utilized for the analysis; Section 3 contains the description of the methods used in the analysis, such as the multiple linear regression model, Support Vector Regression model, and Random forest regression model. Section 4 illustrates the results obtained using statistical software (Rstudio, IBM SPSS) and Python libraries (scikit-learn, pandas, NumPy).  Section 5 includes the significant findings with the conclusions of the study.

Material and methods

Ethical approval

Ethical clearance was obtained from the Ethical Review Committee of the Faculty of Allied Health Sciences, University of Peradeniya. The permission to collect data from the respective hospitals was obtained from the hospital directors after getting the ethical clearance. Informed written consent was obtained from the participants (caregivers) before the data collection, after explaining the study's purpose.10

Data

Data were collected from 93 children with CP and their caregivers who attended the neurology clinic at Rehabilitation Hospital, Digana, and Sirimavo Bandaranayake Specialized Children Hospital, Peradeniya.  Medically diagnosed children and adolescents with CP aged between 3 -18 years were included in the study, and children whom parents or caregivers did not accompany were excluded from the study.

The questionnaire consisted of five parts of demographic data of parents and the child, medical history, mother's/caregiver's awareness about oral health, Family Impact Scale, and the dental examination. The family impact was measured by calculating the Family Impact Scale uses 14 questions in the questionnaire. Oral health statuses were examined by calibrated, trained dental surgeons attached to the Faculty of Dental Sciences, University of Peradeniya. Oral health statuses were tested using the DMFT score, and Silness-Löe Index. Oral health conditions such as anterior open bite, malocclusion, trauma, high-arched palate, tongue thrust, angular cheilitis, macroglossia, drooling, erosion, and bruxism were recorded. Table 1 illustrates the description of the variables which were used in the study.

Variable

Notation

Description with categories

Independent Variables

Age

x 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWG4bGcpaWaaSbaaSqaaKqzadWdbiaaigdaaSWdaeqaaaaa @3B35@

Scale Variable in years

Gender

x 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWG4bGcpaWaaSbaaSqaaKqzadWdbiaaikdaaSWdaeqaaaaa @3B36@

Male, Female

Ethnicity

x 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWG4bGcpaWaaSbaaSqaaKqzadWdbiaaiodaaSWdaeqaaaaa @3B37@

Sinhala, Tamil, Muslim, Other

Education level of Mother

x 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWG4bGcpaWaaSbaaSqaaKqzadWdbiaaisdaaSWdaeqaaaaa @3B38@

Below Ordinary Level, Up to Ordinary Level, Up to Advance Level, Degree or diploma holder

Education level of Father

x 5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWG4bGcpaWaaSbaaSqaaKqzadWdbiaaiwdaaSWdaeqaaaaa @3B39@

Below Ordinary Level, Up to Ordinary Level, Up to Advance Level, Degree or diploma holder

CP-Location

x 6 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWG4bGcpaWaaSbaaSqaaKqzadWdbiaaiAdaaSWdaeqaaaaa @3B3A@

Monoplegia, Diaplegia, Hemiplegia, Quadriplegia, Other

Usage of toothpaste contains Fluoride

x 7 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWG4bGcpaWaaSbaaSqaaKqzadWdbiaaiEdaaSWdaeqaaaaa @3B3B@

Fluoride, Non-fluoride

Brushing Frequency

x 8 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWG4bGcpaWaaSbaaSqaaKqzadWdbiaaiIdaaSWdaeqaaaaa @3B3C@

Once a day, twice a day, More than twice a day

Family Impact Scale

x 9 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWG4bGcpaWaaSbaaSqaaKqzadWdbiaaiMdaaSWdaeqaaaaa @3B3D@

Scale Variable 

Dependent Variables

Dental Caries Index

y 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMhadaWgaa WcbaqcLbmaqaaaaaaaaaWdbiaaigdaaSWdaeqaaaaa@3A7D@

Scale Variable

Silness-Leo plaque index

y 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMhadaWgaa WcbaqcLbmaqaaaaaaaaaWdbiaaikdaaSWdaeqaaaaa@3A7E@

Scale Variable

Table 1 Description of variables

 Three statistical models were used to predict the oral health status using DMFTI and Plaque index. Since the dependent variables (Plaque Index / DMFTI) are numerical and are using more than two independent variables, the Multi Linear Regression (MLR) model was used as the first statistical model to predict oral health status. Since machine learning models are designed to make the most accurate predictions possible as the second and third models, Support Vector Regression (SVR) and Random Forest Regression (RFR) advanced machine learning techniques were used.11 Model accuracies were calculated using the cross-validation method by splitting the data into training data (80% from the sample) and testing data. Independent sample t-test and One-way ANOVA test were used to identify the relationship between variables.

 Multiple linear regression model (MLR)

For p - 1 independent variables, the regression model can be written as,

Y i =  β 0 +  β 1 x 1i +  β 2 x 2i ++  β ( p1 )    x ( p1 ) +  ε i  ;  for i=1,2,., ( p1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamywa8aadaWgaaWcbaWdbiaadMgaa8aabeaak8qacqGH9aqpcaGG GcGaeqOSdi2damaaBaaaleaapeGaaGimaaWdaeqaaOWdbiabgUcaRi aacckacqaHYoGypaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaamiE a8aadaWgaaWcbaWdbiaaigdacaWGPbaapaqabaGcpeGaey4kaSIaai iOaiabek7aI9aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacaWG4bWd amaaBaaaleaapeGaaGOmaiaadMgaa8aabeaak8qacqGHRaWkcqGHMa cVcqGHRaWkcaGGGcGaeqOSdi2damaaBaaaleaapeWaaeWaa8aabaWd biaadchacqGHsislcaaIXaaacaGLOaGaayzkaaGaaiiOaiaacckaca GGGcaapaqabaGcpeGaamiEa8aadaWgaaWcbaWdbmaabmaapaqaa8qa caWGWbGaeyOeI0IaaGymaaGaayjkaiaawMcaaaWdaeqaaOWdbiabgU caRiaacckacqaH1oqzpaWaaSbaaSqaa8qacaWGPbaapaqabaGcpeGa aiiOaiaacUdacaGGGcGaaiiOaiaadAgacaWGVbGaamOCaiaacckaca WGPbGaeyypa0JaaGymaiaacYcacaaIYaGaaiilaiabgAci8kaac6ca caGGSaGaaiiOamaabmaapaqaa8qacaWGWbGaeyOeI0IaaGymaaGaay jkaiaawMcaaaaa@7CB4@ Y i =  β 0 +  β 1 x 1i +  β 2 x 2i ++  β ( p1 )    x ( p1 ) +  ε i  ;  for i=1,2,., ( p1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0=Mr0=MrY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeaabaWaaeaaeaaakeaaqaaaaaaaaaWdbiaadM fapaWaaSbaaSqaa8qacaWGPbaapaqabaGcpeGaeyypa0JaaiiOaiab ek7aI9aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacqGHRaWkcaGGGc GaeqOSdi2damaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaadIhapaWa aSbaaSqaa8qacaaIXaGaamyAaaWdaeqaaOWdbiabgUcaRiaacckacq aHYoGypaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaamiEa8aadaWg aaWcbaWdbiaaikdacaWGPbaapaqabaGcpeGaey4kaSIaeyOjGWRaey 4kaSIaaiiOaiabek7aI9aadaWgaaWcbaWdbmaabmaapaqaa8qacaWG WbGaeyOeI0IaaGymaaGaayjkaiaawMcaaiaacckacaGGGcGaaiiOaa WdaeqaaOWdbiaadIhapaWaaSbaaSqaa8qadaqadaWdaeaapeGaamiC aiabgkHiTiaaigdaaiaawIcacaGLPaaaa8aabeaak8qacqGHRaWkca GGGcGaeqyTdu2damaaBaaaleaapeGaamyAaaWdaeqaaOWdbiaaccka caGG7aGaaiiOaiaacckacaWGMbGaam4BaiaadkhacaGGGcGaamyAai abg2da9iaaigdacaGGSaGaaGOmaiaacYcacqGHMacVcaGGUaGaaiil aiaacckadaqadaWdaeaapeGaamiCaiabgkHiTiaaigdaaiaawIcaca GLPaaaaaa@7C2D@

where, Y i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGzbWdamaaBaaaleaapeGaamyAaaWdaeqaaaaa@383D@ is the dependent variable of the regression model, β i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdi2damaaBaaaleaapeGaamyAaaWdaeqaaaaa@3A3A@ : the slope of the regression, x 1i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEamaaBaaaleaacaaIXaGaamyAaaqabaaaaa@3A21@ : independent variable of the regression, β 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacqaHYoGyk8aadaWgaaWcbaqcLbmapeGaaGimaaWcpaqabaaa aa@3BD7@ : constant and ε i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeyTd8aadaWgaaWcbaWdbiaabMgaa8aabeaaaaa@39D0@ : random error. There are three main linear regression assumptions namely Homoscedasticity, Multicollinearity, and residuals should follow a normal distribution.

By checking the F-statistic or p-value in the ANOVA table, if the p-value is less than the significance level, we can reject the null hypothesis ( H 0 :  β 0 =  β 1 =  β 2 =  β 3 ==0  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGibGcpaWaaSbaaSqaaKqzadWdbiaaicdaaSWdaeqaaKqz GeWdbiaacQdacaGGGcGaeqOSdiMcpaWaaSbaaSqaaKqzadWdbiaaic daaSWdaeqaaKqzGeWdbiabg2da9iaacckacqaHYoGyk8aadaWgaaWc baqcLbmapeGaaGymaaWcpaqabaqcLbsapeGaeyypa0JaaiiOaiabek 7aIPWdamaaBaaaleaajugWa8qacaaIYaaal8aabeaajugib8qacqGH 9aqpcaGGGcGaeqOSdiMcpaWaaSbaaSqaaKqzadWdbiaaiodaaSWdae qaaKqzGeWdbiabg2da9iabgAci8kabg2da9iaaicdacaGGGcaaaa@5BDC@ ) and conclude that at least one value does not equal zero. In this study, the forward-selection method was used to identify the most suitable reduced model for predicting Sri Lankan children's oral health status with CP.12

 Support vector regression model (SVR)

SVR gives the flexibility to define how much error is acceptable in the model and find an appropriate line (or hyperplane in higher dimensions) to fit a data set. The objective function of SVR is to minimize the coefficients . MIN 1 2  ||w| | 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGnbGaamysaiaad6eakmaalaaapaqaaKqzGeWdbiaaigda aOWdaeaajugib8qacaaIYaaaaiaacckacaGG8bGaaiiFaiaadEhaca GG8bGaaiiFaOWdamaaCaaaleqabaqcLbmapeGaaGOmaaaaaaa@45AA@ More specifically, the l2-norm of the coefficient vector. The error term is instead handled in the constraints , y i   w i   x i    ε MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWG5bGcpaWaaSbaaSqaaKqzadWdbiaadMgaaSWdaeqaaKqz GeWdbiabgkHiTiaacckacaWG3bGcpaWaaSbaaSqaaKqzadWdbiaadM gaaSWdaeqaaKqzGeWdbiaacckacaWG4bGcpaWaaSbaaSqaaKqzadWd biaadMgaaSWdaeqaaKqzGeWdbiaacckacaGGGcGaeyizImQaaiiOai abew7aLbaa@4E52@ where we set the absolute error less than or equal to a specified margin, called the maximum error, ϵ (epsilon).13 We can tune epsilon to gain the desired accuracy of our model.

Random forest regression (RFR)

Random forests are a combination of tree predictors, such that each tree depends on the values of a random vector sampled independently and with the same distribution of all trees in the forest.14 Figure 2

Figure 2 Random Forest Regression Model from Abanto, et al. (2012)9

.

Model selection and model accuracy

The R2 value is used to measure the model accuracy. It is the proportion of the variance in the dependent variable that is predictable from the independent variables.

R 2 =1  i ( y i   y ^ i ) 2 i ( y i   y ¯ i ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGsbGcpaWaaWbaaSqabeaajugWa8qacaaIYaaaaKqzGeGa eyypa0JaaGymaiabgkHiTiaacckakmaalaaapaqaa8qadaqfqaqabS WdaeaajugWa8qacaWGPbaaleqan8aabaqcLbsapeGaeyyeIuoaaOWa aeWaa8aabaqcLbsapeGaamyEaOWdamaaBaaaleaajugWa8qacaWGPb aal8aabeaajugib8qacqGHsislcaGGGcGabmyEa8aagaqcaOWaaSba aSqaaKqzadWdbiaadMgaaSWdaeqaaaGcpeGaayjkaiaawMcaa8aada ahaaWcbeqaaKqzadWdbiaaikdaaaaak8aabaWdbmaavababeWcpaqa aKqzadWdbiaadMgaaSqab0Wdaeaajugib8qacqGHris5aaGaaiikai aadMhak8aadaWgaaWcbaqcLbmapeGaamyAaaWcpaqabaqcLbsapeGa eyOeI0IaaiiOaiqadMhapaGbaebakmaaBaaaleaajugWa8qacaWGPb aal8aabeaajugib8qacaGGPaGcpaWaaWbaaSqabeaajugWa8qacaaI Yaaaaaaaaaa@65EB@

where y i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyEa8aadaWgaaWcbaWdbiaadMgaa8aabeaaaaa@3995@ is ith observation, y i ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaanaaabaaeaa aaaaaaa8qacaWG5bWdamaaBaaaleaapeGaamyAaaWdaeqaaaaaaaa@39A6@ is the mean value of y, and y i ^   MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaHaaabaaeaa aaaaaaa8qacaWG5bWdamaaBaaaleaapeGaamyAaaWdaeqaaaGccaGL cmaapeGaaiiOaaaa@3B95@ is an estimated value for yi. Moreover, the post hoc test was used to find the differences between the groups of a categorical variable after the ANOVA test results showed that the dependent variable does not have equal means for at least two groups of the categorical variable.

Also, the Akaike Information Criterion (AIC) and Root Mean Square Error (RMSE) were used to select the best model. The smallest AIC and RMSE values suggest that the model is a better fit for the data than other models.

Result and Discussion

Table 2 shows the frequency table for demographic data associated with this study.  Then, the DMFTI and Silness-Loe plaque index for all the children was calculated. DMFTI for primary teeth and permanent teeth are 3.7419±5.0064 and 0.5269±2.3847 respectively. Silness-Loe plaque index for all the children was 2.3019±0.6151 and CI was 0.0499±0.1713.

Variable

Category

Frequency

Gender

Male

48 (51%)

Female

45 (48.4%)

Ethnicity

Sinhala

68 (73.1%)

Tamil

16 (17.2%)

Muslim

9 (9.7%)

Education level of Mother

Below O/L

31 (33.3%)

Up to O/L

39 (41.9%)

Up to A/L

17 (18.3%)

Degree or Diploma

5 (5.4%)

Education level of Father

Below O/L

31 (33.3%)

Up to O/L

40 (43.0%)

Up to A/L

18 (19.4%)

Degree or Diploma

4 (4.3%)

CP-location

Monoplegia

6 (6.5%)

Diplegia

20 (21.5%)

Hemiplegia

30 (32.3%)

Quadriplegia

28 (30.1%)

other

9 (9.7%)

Brushing Frequency

Once a day/ Occasionally

16 (17.2%)

Twice a day

69 (74.2%)

More than twice a day

8 (8.6 %)

Fluoride Contain

Fluoride

68 (73.1%)

Non Fluoride

25 (26.9%)

Table 2 Frequency table for demographic data

 The Effect size was calculated to measure the strength of the relationship between variables, using partial Eta Squared. Table 3 shows the relationship between dependent variables and demographic data; gender, frequency of brushing, education level of parents, and toothpaste usage containing fluoride.

Variables

Category

p-value

Effect size (Partial).

DMFTI for Permanent teeth

DMFTI for Primary teeth

Plaque Index

Care Index

DMFTI for Permanent teeth

DMFTI for Primary teeth

Plaque Index

Care Index

Gender

Male
Female

0.093α

0.474α

0.323α

0.200α

0.031

0.006

0.011

0.032

Frequency of brushing

once a day/occasionally
twice a day
more than twice a day

0.572 β

0.593 β

0.441β

0.525β

0.012

0.012

0.018

0.025

Education level of mother

Below O/L
Up to O/L
Up to A/L
Degree or diploma holder

0.818β

0.872β

 

0.317β

0.720β

0.010

0.008

0.039

0.027

Education level of father

Below O/L
Up to O/L
Up to A/L
Degree or diploma holder

0.595β

0.051β

0.822β

0.998β

0.021

0.084

0.010

0.001

Fluoride contains

Fluoride
Non fluoride

0.276 α

0.108 α

0.838α

0.274 α

0.013

0.028

<0.001

0.023

CP Location

Monoplegia
Diplegia
Hemiplegia
Quadriplegia
Other

0.691β

0.413β

0.008β

0.592β

0.025

0.043

0.143

0.055

Table 3 Relation between dependent variables and demographic data

‘α' indicates that the p-value was obtained using the independent sample t-test and similarly, ‘β’ indicates that the p-value obtained using one-way ANOVA (at significant level = 0.05).  Since all the p-values for DMFTI  of both permanent teeth and primary teeth; and Plaque index are greater than the significant level (0.05), there is no significant difference between the mean values of the dependent variable (DMFTI – permanent, Plaque index) for each demographic variables.  Also, all the partial Eta squared values are less than 0.14,15 and hence no prominent effect on dependent variable from demographic data was observed.

According to Table 4, since the p-value of one-way ANOVA for DMFTI are greater than the significance level (0.05) no significant difference between mean values of DMFTI for all five categories of CP location were detected. A significant difference between mean values of Silness-Loe plaque index among the five categories of CP location for the plaque index was found. That implies that at least one group is different from other groups. To find which group/groups are different from which other groups, the Post Hoc Test was used. The partial Eta squared value for the relationship between CP location and Plaque index is greater than 0.14. Therefore we can conclude that CP location has a significant effect on the Plaque index.

CP Location

Monoplegia

Diplegia

Hemiplegia

Quadriplegia

Other

Monoplegia

-

0.967

0.429

0.879

0.989

Diplegia

0.967

-

0.003

0.104

0.636

Hemiplegia

0.429

0.003

-

0.688

0.663

Quadriplegia

0.879

0.104

0.688

-

0.992

Other

0.989

0.636

0.663

0.992

-

Table 4 Summary p-values obtained from the Post Hoc Test

Table 4 shows the summary p-values obtained from the post hoc test results. p-value between Diplegia and Hemiplegia is less than 0.05. Therefore, a significant difference between the mean of the plaque index among Hemiplegic and Diplegia.

Multiple linear regression model (MLR)

For the MLR models, all three full models are significant at 95% confidence level. The fitted three MLR models are as follows.

DC I Permenant teeth  = 4.7843+0.0247  x 1 +0.5722  x 2 +0.8543  x 3  0.0225  x 4 +0.1469 x 5  0.2528 x 6 0.0950 x 7 +0.0601  x 8   +0.0652  x 9 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGebGaam4qaiaadMeak8aadaWgaaWcbaqcLbmapeGaamiu aiaadwgacaWGYbGaamyBaiaadwgacaWGUbGaamyyaiaad6gacaWG0b GaaiiOaiaadshacaWGLbGaamyzaiaadshacaWGObqcLbsacaGGGcaa l8aabeaajugib8qacqGH9aqpcaGGGcGaeyOeI0IaaGinaiaac6caca aI3aGaaGioaiaaisdacaaIZaGaey4kaSIaaGimaiaac6cacaaIWaGa aGOmaiaaisdacaaI3aGaaiiOaiaadIhak8aadaWgaaWcbaqcLbmape GaaGymaaWcpaqabaqcLbsapeGaey4kaSIaaGimaiaac6cacaaI1aGa aG4naiaaikdacaaIYaGaaiiOaiaadIhak8aadaWgaaWcbaqcLbmape GaaGOmaaWcpaqabaqcLbsapeGaey4kaSIaaGimaiaac6cacaaI4aGa aGynaiaaisdacaaIZaGaaiiOaiaadIhak8aadaWgaaWcbaqcLbmape GaaG4maaWcpaqabaqcLbsapeGaaiiOaiabgkHiTiaaicdacaGGUaGa aGimaiaaikdacaaIYaGaaGynaiaacckacaWG4bGcpaWaaSbaaSqaaK qzadWdbiaaisdaaSWdaeqaaKqzGeWdbiabgUcaRiaaicdacaGGUaGa aGymaiaaisdacaaI2aGaaGyoaiaadIhak8aadaWgaaWcbaqcLbmape GaaGynaKqzGeGaaiiOaaWcpaqabaqcLbsapeGaeyOeI0IaaGimaiaa c6cacaaIYaGaaGynaiaaikdacaaI4aGaamiEaOWdamaaBaaaleaaju gWa8qacaaI2aaal8aabeaajugib8qacqGHsislcaaIWaGaaiOlaiaa icdacaaI5aGaaGynaiaaicdacaWG4bGcpaWaaSbaaSqaaKqzadWdbi aaiEdaaSWdaeqaaKqzGeWdbiabgUcaRiaaicdacaGGUaGaaGimaiaa iAdacaaIWaGaaGymaiaacckacaWG4bGcpaWaaSbaaSqaaKqzadWdbi aaiIdaaSWdaeqaaKqzGeWdbiaacckacaGGGcGaey4kaSIaaGimaiaa c6cacaaIWaGaaGOnaiaaiwdacaaIYaGaaiiOaiaadIhak8aadaWgaa WcbaqcLbmapeGaaGyoaaWcpaqabaaaaa@B279@ DC I primary teeth = 0.87450.0517  x 1 +0.2241  x 2 +0.61810  x 3  0.4231  x 4 +0.7918 x 5  0.2057 x 6  +0.4978 x 7  0.9747 x 8   +0.2688  x 9 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGebGaam4qaiaadMeak8aadaWgaaWcbaqcLbmapeGaamiC aiaadkhacaWGPbGaamyBaiaadggacaWGYbGaamyEaiaacckacaWG0b GaamyzaiaadwgacaWG0bGaamiAaaWcpaqabaqcLbsapeGaeyypa0Ja aiiOaiaaicdacaGGUaGaaGioaiaaiEdacaaI0aGaaGynaiabgkHiTi aaicdacaGGUaGaaGimaiaaiwdacaaIXaGaaG4naiaacckacaWG4bGc paWaaSbaaSqaaKqzadWdbiaaigdaaSWdaeqaaKqzGeWdbiabgUcaRi aaicdacaGGUaGaaGOmaiaaikdacaaI0aGaaGymaiaacckacaWG4bGc paWaaSbaaSqaaKqzadWdbiaaikdaaSWdaeqaaKqzGeWdbiabgUcaRi aaicdacaGGUaGaaGOnaiaaigdacaaI4aGaaGymaiaaicdacaGGGcGa amiEaOWdamaaBaaaleaajugWa8qacaaIZaaal8aabeaajugib8qaca GGGcGaeyOeI0IaaGimaiaac6cacaaI0aGaaGOmaiaaiodacaaIXaGa aiiOaiaadIhak8aadaWgaaWcbaqcLbmapeGaaGinaaWcpaqabaqcLb sapeGaey4kaSIaaGimaiaac6cacaaI3aGaaGyoaiaaigdacaaI4aGa amiEaOWdamaaBaaaleaajugWa8qacaaI1aqcLbsacaGGGcaal8aabe aajugib8qacqGHsislcaaIWaGaaiOlaiaaikdacaaIWaGaaGynaiaa iEdacaWG4bGcpaWaaSbaaSqaaKqzadWdbiaaiAdaaSWdaeqaaKqzGe WdbiaacckacqGHRaWkcaaIWaGaaiOlaiaaisdacaaI5aGaaG4naiaa iIdacaWG4bGcpaWaaSbaaSqaaKqzadWdbiaaiEdaaSWdaeqaaKqzGe WdbiabgkHiTiaacckacaaIWaGaaiOlaiaaiMdacaaI3aGaaGinaiaa iEdacaWG4bGcpaWaaSbaaSqaaKqzadWdbiaaiIdaaSWdaeqaaKqzGe WdbiaacckacaGGGcGaey4kaSIaaGimaiaac6cacaaIYaGaaGOnaiaa iIdacaaI4aGaaiiOaiaadIhak8aadaWgaaWcbaqcLbmapeGaaGyoaa Wcpaqabaaaaa@B035@ Plaque Index= 0.6949 0.0020 x 1  0.1686 x 2 0.1293 x 3  +0.1238 x 4   0.0201 x 5 +  0.0933 x 6  + 0.0423 x 7  0.0652 x 8 + 0.0334 x 9 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGqbGaamiBaiaadggacaWGXbGaamyDaiaadwgacaGGGcGa amysaiaad6gacaWGKbGaamyzaiaadIhacqGH9aqpcaGGGcGaaGimai aac6cacaaI2aGaaGyoaiaaisdacaaI5aGaeyOeI0IaaeiOaiaaicda caGGUaGaaGimaiaaicdacaaIYaGaaGimaiaadIhak8aadaWgaaWcba qcLbmapeGaaGymaaWcpaqabaqcLbsapeGaai4eGiaabckacaaIWaGa aiOlaiaaigdacaaI2aGaaGioaiaaiAdacaWG4bGcpaWaaSbaaSqaaK qzadWdbiaaikdaaSWdaeqaaKqzGeWdbiabgkHiTiaaicdacaGGUaGa aGymaiaaikdacaaI5aGaaG4maiaadIhak8aadaWgaaWcbaqcLbmape GaaG4maaWcpaqabaqcLbsapeGaaeiOaiabgUcaRiaaicdacaGGUaGa aGymaiaaikdacaaIZaGaaGioaiaadIhak8aadaWgaaWcbaqcLbmape GaaGinaaWcpaqabaqcLbsapeGaeyOeI0IaaeiOaiaabckacaaIWaGa aiOlaiaaicdacaaIYaGaaGimaiaaigdacaWG4bGcpaWaaSbaaSqaaK qzadWdbiaaiwdaaSWdaeqaaKqzGeWdbiabgUcaRiaabckacaqGGcGa aGimaiaac6cacaaIWaGaaGyoaiaaiodacaaIZaGaamiEaOWdamaaBa aaleaajugWa8qacaaI2aaal8aabeaajugib8qacaqGGcGaey4kaSIa aeiOaiaaicdacaGGUaGaaGimaiaaisdacaaIYaGaaG4maiaadIhak8 aadaWgaaWcbaqcLbmapeGaaG4naaWcpaqabaqcLbsapeGaeyOeI0Ia aeiOaiaaicdacaGGUaGaaGimaiaaiAdacaaI1aGaaGOmaiaadIhak8 aadaWgaaWcbaqcLbmapeGaaGioaaWcpaqabaqcLbsapeGaey4kaSIa aeiOaiaaicdacaGGUaGaaGimaiaaiodacaaIZaGaaGinaiaadIhak8 aadaWgaaWcbaqcLbmapeGaaGyoaaWcpaqabaaaaa@A89C@

Table 5 shows the p-values of each predictor variable for three dependent variables separately. For the first dependent variable (DMFTI-Permanent Teeth), two parameters related to age and family impact scale variables are significant.

Variables

Parameter

DMFTI-Permanent Teeth

DMFTI-Primary Teeth

Plaque index

Intercept

β 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacqaHYoGyk8aadaWgaaWcbaqcLbmapeGaaGimaaWcpaqabaaa aa@3BD8@

0.01645

0.833553

0.19190

x 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWG4bGcpaWaaSbaaSqaaKqzadWdbiaaigdaaSWdaeqaaaaa @3B35@

β 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacqaHYoGyk8aadaWgaaWcbaqcLbmapeGaaGymaaWcpaqabaaa aa@3BD9@

0.00019

0.000231

0.23170

x 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWG4bGcpaWaaSbaaSqaaKqzadWdbiaaikdaaSWdaeqaaaaa @3B36@

β 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacqaHYoGyk8aadaWgaaWcbaqcLbmapeGaaGOmaaWcpaqabaaa aa@3BDA@

0.22414

0.821849

0.18554

x 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWG4bGcpaWaaSbaaSqaaKqzadWdbiaaiodaaSWdaeqaaaaa @3B37@

β 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacqaHYoGyk8aadaWgaaWcbaqcLbmapeGaaG4maaWcpaqabaaa aa@3BDB@

0.01752

0.656532

0.17828

x 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWG4bGcpaWaaSbaaSqaaKqzadWdbiaaisdaaSWdaeqaaaaa @3B38@

β 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacqaHYoGyk8aadaWgaaWcbaqcLbmapeGaaGinaaWcpaqabaaa aa@3BDC@

0.93699

0.486471

0.11180

x 5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWG4bGcpaWaaSbaaSqaaKqzadWdbiaaiwdaaSWdaeqaaaaa @3B39@

β 5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacqaHYoGyk8aadaWgaaWcbaqcLbmapeGaaGynaaWcpaqabaaa aa@3BDD@

0.62004

0.210073

0.80143

x 6 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWG4bGcpaWaaSbaaSqaaKqzadWdbiaaiAdaaSWdaeqaaaaa @3B3A@

β 6 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacqaHYoGyk8aadaWgaaWcbaqcLbmapeGaaGOnaaWcpaqabaaa aa@3BDE@

0.24836

0.657163

0.11621

x 7 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWG4bGcpaWaaSbaaSqaaKqzadWdbiaaiEdaaSWdaeqaaaaa @3B3B@

β 7 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacqaHYoGyk8aadaWgaaWcbaqcLbmapeGaaG4naaWcpaqabaaa aa@3BDF@

0.85802

0.659345

0.76809

x 8 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWG4bGcpaWaaSbaaSqaaKqzadWdbiaaiIdaaSWdaeqaaaaa @3B3C@

β 8 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacqaHYoGyk8aadaWgaaWcbaqcLbmapeGaaGioaaWcpaqabaaa aa@3BE0@

0.89809

0.329756

0.60748

x 9 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWG4bGcpaWaaSbaaSqaaKqzadWdbiaaiMdaaSWdaeqaaaaa @3B3D@

β 9 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacqaHYoGyk8aadaWgaaWcbaqcLbmapeGaaGyoaaWcpaqabaaa aa@3BE1@

0.10603

0.002157

0.00266

Table 5 p- values for MLR model coefficients

Lastly, a stepwise selection procedure was used to select the best model for three dependent variables separately. Table 6 shows the best model for each dependent variable, and the best models are listed as follows.

DMFT I Permenant teeth  = 4.7843+0.0247  x 1 +0.8543  x 3   MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGebGaamytaiaadAeacaWGubGaamysaOWdamaaBaaaleaa jugWa8qacaWGqbGaamyzaiaadkhacaWGTbGaamyzaiaad6gacaWGHb GaamOBaiaadshacaGGGcGaamiDaiaadwgacaWGLbGaamiDaiaadIga jugibiaacckaaSWdaeqaaKqzGeWdbiabg2da9iaacckacqGHsislca aI0aGaaiOlaiaaiEdacaaI4aGaaGinaiaaiodacqGHRaWkcaaIWaGa aiOlaiaaicdacaaIYaGaaGinaiaaiEdacaGGGcGaamiEaOWdamaaBa aaleaajugWa8qacaaIXaaal8aabeaajugib8qacqGHRaWkcaaIWaGa aiOlaiaaiIdacaaI1aGaaGinaiaaiodacaGGGcGaamiEaOWdamaaBa aaleaajugWa8qacaaIZaaal8aabeaajugib8qacaGGGcaaaa@6B72@ DMFT I primary teeth = 0.87450.0517  x 1 +0.2688  x 9 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGebGaamytaiaadAeacaWGubGaamysaOWdamaaBaaaleaa jugWa8qacaWGWbGaamOCaiaadMgacaWGTbGaamyyaiaadkhacaWG5b GaaiiOaiaadshacaWGLbGaamyzaiaadshacaWGObaal8aabeaajugi b8qacqGH9aqpcaGGGcGaaGimaiaac6cacaaI4aGaaG4naiaaisdaca aI1aGaeyOeI0IaaGimaiaac6cacaaIWaGaaGynaiaaigdacaaI3aGa aiiOaiaadIhak8aadaWgaaWcbaqcLbmapeGaaGymaaWcpaqabaqcLb sapeGaey4kaSIaaGimaiaac6cacaaIYaGaaGOnaiaaiIdacaaI4aGa aiiOaiaadIhak8aadaWgaaWcbaqcLbmapeGaaGyoaaWcpaqabaaaaa@6572@ Plaque Index= 0.6949+ 0.0334 x 9 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGqbGaamiBaiaadggacaWGXbGaamyDaiaadwgacaGGGcGa amysaiaad6gacaWGKbGaamyzaiaadIhacqGH9aqpcaGGGcGaaGimai aac6cacaaI2aGaaGyoaiaaisdacaaI5aGaey4kaSIaaeiOaiaaicda caGGUaGaaGimaiaaiodacaaIZaGaaGinaiaadIhak8aadaWgaaWcba qcLbmapeGaaGyoaaWcpaqabaaaaa@5375@

Dependent Variable

Best Model

p-value

R-squared

RMSE

AIC

DMFTI-Permanent Teeth

Age, Ethnicity

<0.001

0.236

2.107

407.5298

DMFTI-Primary Teeth

Age, Family Impact Scale

<0.001

0.208

4.504

548.7978

Plaque index

Family Impact Scale

0.0014

0.107

0.585

168.0366

Table 6 Stepwise selection procedure summary

Random forest regression model (RFR)

Figure 3 shows the comparison of actual vs predicted DMFTI values for permanent teeth, primary teeth, and Plaque index. For each graph, actual and predicted values lie approximately the same line.16

Figure 3 Comparison of actual and predicted a) DMFTI for permanent teeth, b) DMFTI for primary teeth, and c) Plaque index of RFR model

.

 Support vector regression model (SVM)

Figure 4 shows the comparison of actual vs predicted DMFTI values for permanent and primary teeth and Plaque index.

Figure 4 Comparison of actual and predicted a) DMFTI for permanent teeth, b) DMFTI for primary teeth, and c) Plaque index of SVR model

.

Table 7 illustrates the comparison of the three models for each dependent variable separately using MLR, SVR and RFR methods. The RFR model has the highest accuracy for DMFTI for primary teeth and Plaque index than the other two models, while the SVR model has the highest accuracy for DMFTI for permanent teeth.

Dependent Variable

MLR

SVR

RFR

R-square

Accuracy

R-square

Accuracy

R-Square

Accuracy

DMFTI for Permanent Teeth

0.284

28.4%

0. 9536

95.36%

0.9264

92.64%

DMFTI for Primary Teeth

0.2632

26.32%

0. 8564

85.64%

0.9311

93.11%

Plaque Index

0.2118

21.18%

0.8007

80.07 %

0.9032

90.32%

Table 7 Comparison of fitted model using MLR, SVR and RFR methods

Conclusion

In this research, the oral health status of 93 children with cerebral palsy was measured using DMFT index, Plaque Index and Care index and the relationship between those variables and the demographic data were observed. The best model for predicting oral health status was selected from the Multiple Linear Regression, Support Vector Regression and the Random Forest Regression models. A significant relationship was observed between the Plaque index and CP location. Also, CP-location had an enormous effect on the Plaque index. Children with hemiplegia have a higher risk of having lower oral health status, while children with diplegia had the lowest risk. The Random Forest Regression model was the best model for predicting children's oral health status with CP from the three models.

This research will help identify and compare children's oral health status with CP for different CP-location types. The updated database can be used to improve the accuracy of the predictions in the future of the higher number of patients.

Acknowledgments

The authors wish to acknowledge the Faculty of Dental Sciences of the University of Peradeniya for data collection and grant us access to use the data for statistical analysis.

Conflicts of interest

None.

References

  1. Pervin R, Ahmed S, Hyder R, et al. Cerebral Palsy–an update. Northern International Medical College. 2015;5(1):293–296.
  2. Agrawal, A., & Indreshwar, V. Cerebral palsy in children: An overview. Journal of clinical orthopaedics and trauma. 2012;3(2):77–81.
  3. WHO. oral–health. 2018.
  4. Aukstakalnis R, Jurgelevicius T. The oral health status and behaviour of methadone users. Stomatologija, Baltic Dental and Maxillofacial Journal. 2018;20(1):27–31.
  5. Robertson, M. D., Schwendicke, F., de Araujo, et al. Dental caries experience, care index and restorative index in children with learning disabilities and children without learning disabilities; a systematic review and meta–analysis. BMC Oral Health. 2019;19(1):146.
  6. Farhadi F, Milab HF, Zarandi A. Determination of Decayed, Missing and Filled Teeth (DMFT) Index. pacificejournals. 2016;3(3).
  7. Akhter R, Hassan NM. Oral Health in Children with Cerebral Palsy. Intech Open. 2018.
  8. Rodriguez JP, Herrera JL, Gomez, et al. Dental decay and oral findings in children and adolescents affected by different types of cerebral palsy: A Comparative Study. The Journal of clinical pediatric dentistry .2018;42(1):62–66.
  9.  Abanto, J., Carvalho, T. S. Parental reports of the oral health–related quality of life of children with cerebral palsy. BMC Oral Health. 2012;12(1):15.
  10.  Daraniyagala T, Herath C, Gunasinghe M. Oral health status of children with cerebral palsy and its relationship with caregivers’ knowledge related to oral health. Journal of South Asian Association of Pediatric Dentistry. 2019;02.
  11. Lesaffre E, Declerck D. Statistical methods in oral health research. Statistical Modelling. 2014;14(6).
  12. Helland IS. Model reduction for prediction in regression models. Journal of Statistic. 2000;27(1):1–20.
  13.  Awad M, Khanna R. Support vector regression. In: Awad M, Khanna R. Efficient Learning Machines. 2015;pp.67–80).
  14. Breiman L. Random forests. Machine Learning. 2001;45:5–32.
  15. Sullivan GM, Feinn R. Using effect size–or why the p value is not enough. J Grad Med Educ. 2012;4(3):279–282.
  16.  Chakure A. Machine Learning..
Creative Commons Attribution License

©2021 Weerasekara, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.