
 
 
Research Article Volume 11 Issue 5
     
 
Uma distribution with properties and applications
 Rama  Shanker   
    
 
   
    
    
  
    
    
   
      
      
        
        Regret for the inconvenience: we are taking measures to prevent fraudulent form submissions by extractors and page crawlers. Please type the correct Captcha word to see email ID.
        
        
 
 
 
          
     
    
    
    
    
    
        
        
       
     
   
 
    
    
  
Department of Statistics, Assam University, Silchar, Assam, India
Correspondence: Rama Shanker, Department of Statistics, Assam University, Silchar, Assam, India
Received: December 09, 2022 | Published: December 22, 2022
Citation: Shanker R. Uma distribution with properties and applications. Biom Biostat Int J. 2022;11(5):165-169.  DOI: 10.15406/bbij.2022.11.00372
 Download PDF
        
       
  
 Abstract
The stochastic natures of lifetime data are really a challenge for statistician to search a suitable distribution for modeling and analysis of lifetime data. Keeping in mind the stochastic natures of lifetime data, a new lifetime distribution named Uma distribution has been suggested. Its several statistical properties, estimation of parameter and applications have been discussed. Applications of the distribution have been presented with three datasets and the goodness of fit of Uma distribution has been compared with exponential, Lindley, Shanker, Akash and Sujatha distributions.
Keywords: lifetime distributions, statistical properties, estimation of parameter, applications
 
  
 Introduction
Due to stochastic nature of lifetime data, the search for lifetime distribution in the field of lifetime data analysis is expanding exponentially and getting popularity among policy makers to model data. In recent decades several lifetime distributions have been suggested in statistics literature. For example, Lindley distribution by Lindley,1 Shanker distribution by Shanker,2 Akash distribution by Shanker,3 and Sujatha distribution by Shanker,4 is some among others. Shanker et al.5 discussed the modeling of lifetime data using exponential and Lindley distributions and observed that there are some datasets in which these two distributions do not give good fit. Further, Shanker et al.6 put an effort to have comparative study on modeling of lifetime data using exponential, Lindley and Akash distribution and found that Akash distributions gives much better fit than both exponential and Lindley distribution but still there are some data sets in which these three distributions do not give good fit. Then, Shanker and Hagos,7 tried to model the real lifetime datasets using exponential, Lindley, Shanker and Akash and observed that still there are some datasets in which these distributions do not give good fit. Flexibility and tractability are the two important characteristics of a lifetime distributions and if the existing distributions are not flexible or tractable for the given dataset, then the search for a new distribution starts. Sometimes, data are being transformed to satisfy some assumptions of the distribution so that distribution fits well. But this is not useful practice because the original nature of the dataset is lost. Therefore, the most preferable is to search a distribution which fits the given data well than to modify the existing distributions.
While testing the goodness of fit of some well-known one parameter lifetime distributions available in literature, it has been observed that the existing distributions do not fit the data well. In this paper, in the search for a new distribution, we propose a new distribution named Uma distribution which fits the data well over the existing distributions. The statistical properties, estimation of 
parameter and applications of the distribution has been presented systematically. It is hoped and expected that the distribution will draw attention of researchers to model lifetime data and preferred over the existing one parameter lifetime distributions.
 
  
 Uma distribution
Taking the convex combination of exponential 
, gamma 
 and gamma 
with respective mixing proportions 
and , 
a probability density function (pdf) can be expressed as
We would call this distribution as ‘Uma distribution’. Since it is a convex combination of exponential and gamma distributions, it is expected to give better fit over exponential and gamma distribution and other distributions developed using convex combinations of exponential and gamma distribution. The cumulative distribution function (cdf) of Uma distribution can be obtained as
The behaviour of the pdf and the cdf of Uma distribution for varying values of parameter 
have been presented in Figures 1,2 respectively.
         
Figure 1 Graphs of the pdf of Uma distribution for selected values of the parameter.
 
 
 
         
Figure 2 Graphs of the cdf of Uma distribution for selected values of the parameter.
 
 
 
 
  
 Reliability properties
The hazard rate function of a random variable 
having pdf 
and cdf 
is defined as
Thus, the hazard rate function of Uma distribution can be obtained as
This gives. 
The behaviour of the hazard rate function of Uma distribution for various values of parameter is shown in the following Figure 3.
         
Figure 3 Graphs of the hazarad rate function of Uma distribution for selected values of the parameter.
 
 
 
  - Mean residual life function
 
Let 
be a random variable over the support 
representing the lifetime of a system. Mean Residual life (MRL) function measures the expected value of the remaining lifetime of the system, provided it has survived up to time. Let us consider the conditional random variable 
. Then, the MRL function, denoted by, 
is defined as
The MRL function of Uma distribution can thus be obtained as
This gives
. The behaviour of the mean residual life function of Uma distribution for various values of parameter 
is shown in the following Figure 4.
         
Figure 4 Graphs of the mean residual life function of Uma distribution for selected values of the parameter.
 
 
 
Reverse hazard rate and Mill’s ratio
The reverse hazard rate of a random variable 
having pdf 
and cdf 
is defined as
Thus, the reverse hazard rate function of Uma distribution can be obtained as
 Mill’s ratio of a random 
 xmlns='http://www.w3.org/1998/Math/MathML'>
 
  X
  MathType@MTEF@5@5@+=
  feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
  hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
  4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf
  ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
  0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfaaaa@37EB@
  
 
variable having pdf 
and cdf 
is defined as
 Mill’s ratio
Thus, the Mill’s ratio of Uma distribution can be obtained as
  
Stochastic ordering
In Probability theory and statistics, a stochastic order quantifies the concept of one random variable being bigger than another. A random variable  is said to be smaller than a random variable  in the
- Stochastic order  
  
for all
 
  x
  MathType@MTEF@5@5@+=
  feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
  hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
  4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf
  ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
  0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape
  GaamiEaaaa@382B@
  
 
 
- Hazard rate order 
 
  
   (
    
     X
      ≤
      
       hr
     
     Y
   )
  MathType@MTEF@5@5@+=
  feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
  hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
  4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf
  ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
  0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape
  WaaeWaa8aabaWdbiaadIfacqGHKjYOpaWaaSbaaSqaa8qacaWGObGa
  amOCaaWdaeqaaOWdbiaadMfaaiaawIcacaGLPaaaaaa@3E9E@
  
 
if 
 
  
   
    h
    X
   
   (
    x
   )≥
    h
    Y
   
   (
    y
   )
  MathType@MTEF@5@5@+=
  feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
  hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
  4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf
  ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
  0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape
  GaamiAa8aadaWgaaWcbaWdbiaadIfaa8aabeaak8qadaqadaWdaeaa
  peGaamiEaaGaayjkaiaawMcaaiabgwMiZkaadIgapaWaaSbaaSqaa8
  qacaWGzbaapaqabaGcpeWaaeWaa8aabaWdbiaadMhaaiaawIcacaGL
  Paaaaaa@42BC@
  
 
for all
 
  x
  MathType@MTEF@5@5@+=
  feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
  hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
  4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf
  ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
  0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape
  GaamiEaaaa@382B@
  
 
 
- Mean residual life order 
 
  
   (
    
     X
      ≤
      
       mrl
     
     Y
   )
  MathType@MTEF@5@5@+=
  feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
  hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
  4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf
  ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
  0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape
  WaaeWaa8aabaWdbiaadIfacqGHKjYOpaWaaSbaaSqaa8qacaWGTbGa
  amOCaiaadYgaa8aabeaak8qacaWGzbaacaGLOaGaayzkaaaaaa@3F94@
  
 
if 
 
  
    
    m
    X
   
   (
    x
   )≥
    m
    Y
   
   (
    y
   )
  MathType@MTEF@5@5@+=
  feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
  hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
  4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf
  ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
  0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape
  GaaiiOaiaad2gapaWaaSbaaSqaa8qacaWGybaapaqabaGcpeWaaeWa
  a8aabaWdbiaadIhaaiaawIcacaGLPaaacqGHLjYScaWGTbWdamaaBa
  aaleaapeGaamywaaWdaeqaaOWdbmaabmaapaqaa8qacaWG5baacaGL
  OaGaayzkaaaaaa@43EA@
  
 
for all
 
  x
  MathType@MTEF@5@5@+=
  feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
  hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
  4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf
  ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
  0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape
  GaamiEaaaa@382B@
  
 
 
- Likelihood ratio order 
 
  
   (
    
     X
      ≤
      
       lr
     
     Y
   )
  MathType@MTEF@5@5@+=
  feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
  hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
  4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf
  ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
  0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape
  WaaeWaa8aabaWdbiaadIfacqGHKjYOpaWaaSbaaSqaa8qacaWGSbGa
  amOCaaWdaeqaaOWdbiaadMfaaiaawIcacaGLPaaaaaa@3EA2@
  
 
if 
 
  
   
    
     
      f
      X
     
     (
      x
     )
    
     
      f
      Y
     
     (
      y
     )
   
   
  MathType@MTEF@5@5@+=
  feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
  hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
  4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf
  ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
  0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape
  WaaSaaa8aabaWdbiaadAgapaWaaSbaaSqaa8qacaWGybaapaqabaGc
  peWaaeWaa8aabaWdbiaadIhaaiaawIcacaGLPaaaa8aabaWdbiaadA
  gapaWaaSbaaSqaa8qacaWGzbaapaqabaGcpeWaaeWaa8aabaWdbiaa
  dMhaaiaawIcacaGLPaaaaaaaaa@4140@
  
 
decrease in
 
  x
  MathType@MTEF@5@5@+=
  feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
  hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
  4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf
  ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
  0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape
  GaamiEaaaa@382B@
  
 
 
The following results due to Shaked and Shantikumar,8 are well known for establishing stochastic ordering of distributions
 
  
   
    
     X
      <
      
       lr
     
     Y⇒X
      <
      
       hr
     
     Y⇒X
      <
      
       mrl
     
     Y
    
     
      
       ⇓
      
     
     
      
       
        X
         <
         
          st
        
        Y
      
     
    
    
   
   
  MathType@MTEF@5@5@+=
  feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
  hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
  4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
  a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
  0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxababaGaam
  iwaiabgYda8maaBaaaleaacaWGSbGaamOCaaqabaGccaWGzbGaeyO0
  H4TaamiwaiabgYda8maaBaaaleaacaWGObGaamOCaaqabaGccaWGzb
  GaeyO0H4TaamiwaiabgYda8maaBaaaleaacaWGTbGaamOCaiaadYga
  aeqaaOGaamywaaWceaqabeaacqGHthY3aeaacaWGybGaeyipaWZaaS
  baaWqaaiaadohacaWG0baabeaaliaadMfaaaqabaaaaa@53F1@
  
 
Theorem: Let 
 
  
   X~
  MathType@MTEF@5@5@+=
  feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
  hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
  4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
  a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
  0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfacaGG+b
  aaaa@3A0B@
  
 
Uma distribution 
 
  
   (
    
     
      θ
      1
     
     
   )
  MathType@MTEF@5@5@+=
  feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
  hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
  4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
  a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
  0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq
  iUde3aaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzkaaaaaa@3C5C@
  
 
and 
 
  
   Y~
  MathType@MTEF@5@5@+=
  feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
  hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
  4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
  a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
  0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMfacaGG+b
  aaaa@3A0C@
  
 
Uma. 
 
  
   (
    
     
      θ
      2
     
     
   )
  MathType@MTEF@5@5@+=
  feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
  hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
  4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
  a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
  0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq
  iUde3aaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaaaaa@3C5D@
  
 
If 
 
  
   
    θ
    1
   
   >
    θ
    2
   
   
  MathType@MTEF@5@5@+=
  feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
  hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
  4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
  a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
  0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXnaaBa
  aaleaacaaIXaaabeaakiabg6da+iabeI7aXnaaBaaaleaacaaIYaaa
  beaaaaa@3E79@
  
 
, then 
 
  
   X
    <
    
     lr
   
   Y
  MathType@MTEF@5@5@+=
  feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
  hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
  4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
  a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
  0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfacqGH8a
  apdaWgaaWcbaGaamiBaiaadkhaaeqaaOGaamywaaaa@3D09@
  
 
hence 
 
  
   X
    <
    
     hr
   
   Y
  MathType@MTEF@5@5@+=
  feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
  hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
  4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
  a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
  0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfacqGH8a
  apdaWgaaWcbaGaamiAaiaadkhaaeqaaOGaamywaaaa@3D05@
  
 
,
 
  
   X
    <
    
     mrl
   
   Y
  MathType@MTEF@5@5@+=
  feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
  hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
  4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
  a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
  0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfacqGH8a
  apdaWgaaWcbaGaamyBaiaadkhacaWGSbaabeaakiaadMfaaaa@3DFB@
  
 
and 
 
  
   X
    <
    
     st
   
   Y
  MathType@MTEF@5@5@+=
  feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
  hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
  4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
  a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
  0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfacqGH8a
  apdaWgaaWcbaGaam4CaiaadshaaeqaaOGaamywaaaa@3D12@
  
 
.
Proof: We have
 
  
   
    
     
      f
      X
     
     (
      x
     )
    
     
      f
      Y
     
     (
      x
     )
   
   ==
    
     
      θ
      1
     
     
      
      4
     
     (
      
       
        θ
        2
       
       
        
        3
       
       +
        θ
        2
       
       
        
        2
       
       +6
     )
    
      
      θ
      2
     
     
      
      4
     
     (
      
       
        θ
        1
       
       
        
        3
       
       +
        θ
        1
       
       
        
        2
       
       +6
     )
   
   
    e
    
     −(
      
       
        θ
        1
       
        −
        θ
        2
       
       
     )x
   
   
  MathType@MTEF@5@5@+=
  feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
  hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
  4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
  a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
  0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape
  WaaSaaa8aabaWdbiaadAgapaWaaSbaaSqaa8qacaWGybaapaqabaGc
  peWaaeWaa8aabaWdbiaadIhaaiaawIcacaGLPaaaa8aabaWdbiaadA
  gapaWaaSbaaSqaa8qacaWGzbaapaqabaGcpeWaaeWaa8aabaWdbiaa
  dIhaaiaawIcacaGLPaaaaaGaeyypa0Jaeyypa0ZaaSaaaeaapaGaeq
  iUde3aaSbaaSqaaiaaigdaaeqaaOWaaWbaaSqabeaacaaI0aaaaOWa
  aeWaaeaacqaH4oqCdaWgaaWcbaGaaGOmaaqabaGcdaahaaWcbeqaai
  aaiodaaaGccqGHRaWkcqaH4oqCdaWgaaWcbaGaaGOmaaqabaGcdaah
  aaWcbeqaaiaaikdaaaGccqGHRaWkcaaI2aaacaGLOaGaayzkaaaape
  qaa8aacaaMc8UaeqiUde3aaSbaaSqaaiaaikdaaeqaaOWaaWbaaSqa
  beaacaaI0aaaaOWaaeWaaeaacqaH4oqCdaWgaaWcbaGaaGymaaqaba
  GcdaahaaWcbeqaaiaaiodaaaGccqGHRaWkcqaH4oqCdaWgaaWcbaGa
  aGymaaqabaGcdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaI2aaaca
  GLOaGaayzkaaaaaiaadwgadaahaaWcbeqaaiabgkHiTmaabmaabaGa
  eqiUde3aaSbaaWqaaiaaigdaaeqaaSGaaGPaVlabgkHiTiabeI7aXn
  aaBaaameaacaaIYaaabeaaaSGaayjkaiaawMcaaiaadIhaaaaaaa@7045@
  
 
We have ,
 
  
   log[ 
    
     
      
       f
       X
      
      (
       x
      )
     
      
       f
       Y
      
      (
       x
      )
    
     ]=log[ 
    
     
      
       θ
       1
      
      
       
       4
      
      (
       
        
         θ
         2
        
        
         
         3
        
        +
         θ
         2
        
        
         
         2
        
        +6
      )
     
       
       θ
       2
      
      
       
       4
      
      (
       
        
         θ
         1
        
        
         
         3
        
        +
         θ
         1
        
        
         
         2
        
        +6
      )
    
     ]−(
    θ
    1
   
   − 
    θ
    2
   
   )x
  MathType@MTEF@5@5@+=
  feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
  hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
  4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
  a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
  0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape
  GaciiBaiaac+gacaGGNbWdamaadmaabaWdbmaalaaapaqaa8qacaWG
  MbWdamaaBaaaleaapeGaamiwaaWdaeqaaOWdbmaabmaapaqaa8qaca
  WG4baacaGLOaGaayzkaaaapaqaa8qacaWGMbWdamaaBaaaleaapeGa
  amywaaWdaeqaaOWdbmaabmaapaqaa8qacaWG4baacaGLOaGaayzkaa
  aaaaWdaiaawUfacaGLDbaapeGaeyypa0JaciiBaiaac+gacaGGNbWd
  amaadmaabaWdbmaalaaabaWdaiabeI7aXnaaBaaaleaacaaIXaaabe
  aakmaaCaaaleqabaGaaGinaaaakmaabmaabaGaeqiUde3aaSbaaSqa
  aiaaikdaaeqaaOWaaWbaaSqabeaacaaIZaaaaOGaey4kaSIaeqiUde
  3aaSbaaSqaaiaaikdaaeqaaOWaaWbaaSqabeaacaaIYaaaaOGaey4k
  aSIaaGOnaaGaayjkaiaawMcaaaWdbeaapaGaaGPaVlabeI7aXnaaBa
  aaleaacaaIYaaabeaakmaaCaaaleqabaGaaGinaaaakmaabmaabaGa
  eqiUde3aaSbaaSqaaiaaigdaaeqaaOWaaWbaaSqabeaacaaIZaaaaO
  Gaey4kaSIaeqiUde3aaSbaaSqaaiaaigdaaeqaaOWaaWbaaSqabeaa
  caaIYaaaaOGaey4kaSIaaGOnaaGaayjkaiaawMcaaaaaaiaawUfaca
  GLDbaacqGHsislcaGGOaGaeqiUde3aaSbaaSqaaiaaigdaaeqaaOGa
  eyOeI0IaaGPaVlabeI7aXnaaBaaaleaacaaIYaaabeaakiaacMcaca
  WG4baaaa@77D5@
  
 
Therefore,
 
  
   
    d
    
     dx
   
   log[ 
    
     
      
       f
       X
      
      (
       x
      )
     
      
       f
       Y
      
      (
       x
      )
    
     ]=−(
    θ
    1
   
   − 
    θ
    2
   
   )
  MathType@MTEF@5@5@+=
  feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
  hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
  4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
  a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
  0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape
  WaaSaaa8aabaWdbiaadsgaa8aabaGaamizaiaadIhaaaWdbiGacYga
  caGGVbGaai4za8aadaWadaqaa8qadaWcaaWdaeaapeGaamOza8aada
  WgaaWcbaWdbiaadIfaa8aabeaak8qadaqadaWdaeaapeGaamiEaaGa
  ayjkaiaawMcaaaWdaeaapeGaamOza8aadaWgaaWcbaWdbiaadMfaa8
  aabeaak8qadaqadaWdaeaapeGaamiEaaGaayjkaiaawMcaaaaaa8aa
  caGLBbGaayzxaaGaeyypa0JaeyOeI0IaaiikaiabeI7aXnaaBaaale
  aacaaIXaaabeaakiabgkHiTiaaykW7cqaH4oqCdaWgaaWcbaGaaGOm
  aaqabaGccaGGPaaaaa@557C@
  
 
Thus, for 
 
  
   
    θ
    1
   
   >
    θ
    2
   
   
  MathType@MTEF@5@5@+=
  feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
  hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
  4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
  a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
  0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXnaaBa
  aaleaacaaIXaaabeaakiabg6da+iabeI7aXnaaBaaaleaacaaIYaaa
  beaaaaa@3E78@
  
 
,
 
  
   
    d
    
     dx
   
   log[ 
    
     
      
       f
       X
      
      (
       x
      )
     
      
       f
       Y
      
      (
       x
      )
    
     ]<0
  MathType@MTEF@5@5@+=
  feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
  hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
  4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
  a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
  0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape
  WaaSaaa8aabaWdbiaadsgaa8aabaGaamizaiaadIhaaaWdbiGacYga
  caGGVbGaai4za8aadaWadaqaa8qadaWcaaWdaeaapeGaamOza8aada
  WgaaWcbaWdbiaadIfaa8aabeaak8qadaqadaWdaeaapeGaamiEaaGa
  ayjkaiaawMcaaaWdaeaapeGaamOza8aadaWgaaWcbaWdbiaadMfaa8
  aabeaak8qadaqadaWdaeaapeGaamiEaaGaayjkaiaawMcaaaaaa8aa
  caGLBbGaayzxaaGaeyipaWJaaGimaaaa@4C27@
  
 
 . this means that 
 
  
   X
    <
    
     lr
   
   Y
  MathType@MTEF@5@5@+=
  feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
  hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
  4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
  a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
  0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfacqGH8a
  apdaWgaaWcbaGaamiBaiaadkhaaeqaaOGaamywaaaa@3D08@
  
 
hence 
 
  
   X
    <
    
     hr
   
   Y
  MathType@MTEF@5@5@+=
  feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
  hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
  4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
  a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
  0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfacqGH8a
  apdaWgaaWcbaGaamiAaiaadkhaaeqaaOGaamywaaaa@3D04@
  
 
,and 
 
  
   X
    <
    
     st
   
   Y
  MathType@MTEF@5@5@+=
  feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
  hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
  4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
  a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
  0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfacqGH8a
  apdaWgaaWcbaGaam4CaiaadshaaeqaaOGaamywaaaa@3D11@
  
 
.
 
 
 Moments based descriptive measures
The 
 
  r
  MathType@MTEF@5@5@+=
  feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
  hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
  4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
  a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
  0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhaaaa@3922@
  
 
th moment about origin 
 
  
   
    μ
    r
   
   
    
    ′
   
   
  MathType@MTEF@5@5@+=
  feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
  hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
  4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
  a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
  0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa
  aaleaacaWGYbaabeaakmaaCaaaleqabaGccWaGGBOmGikaaaaa@3E2D@
  
 
of Uma distribution can be obtained as
 
  
   
    μ
    r
   
   
    
    ′
   
   =E(
    
     
      X
      r
     
     
   )=
    
     
      θ
      4
     
     
    
     
      θ
      3
     
     +
      θ
      2
     
     +6
   
   
    
     ∫
     0
     ∞
    
    
     
      x
      r
     
     (
      
       1+x+
        x
        2
       
       
     )
   
   
   
   e
   
    −θ x
  
  dx
 MathType@MTEF@5@5@+=
 feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
 hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
 a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa
 aaleaacaWGYbaabeaakmaaCaaaleqabaGccWaGGBOmGikaaiabg2da
 9iaadweadaqadaqaaiaadIfadaahaaWcbeqaaiaadkhaaaaakiaawI
 cacaGLPaaacqGH9aqpdaWcaaqaaiabeI7aXnaaCaaaleqabaGaaGin
 aaaaaOqaaiabeI7aXnaaCaaaleqabaGaaG4maaaakiabgUcaRiabeI
 7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaiAdaaaWaa8qCaeaa
 caWG4bWaaWbaaSqabeaacaWGYbaaaOWaaeWaaeaacaaIXaGaey4kaS
 IaamiEaiabgUcaRiaadIhadaahaaWcbeqaaiaaikdaaaaakiaawIca
 caGLPaaaaSqaaiaaicdaaeaacqGHEisPa0Gaey4kIipakiaaykW7ca
 WGLbWaaWbaaSqabeaacqGHsislcqaH4oqCcaaMc8UaamiEaaaakiaa
 dsgacaWG4baaaa@66A4@
 
 
  
   =
    
     r!{ 
      
       θ
       3
      
      +(
       
        r+1
      )
       θ
       2
      
      +(
       
        r+1
      )(
       
        r+2
      )(
       
        r+3
      ) }
    
     
      θ
      r
     
     (
      
       
        θ
        3
       
       +
        θ
        2
       
       +6
     )
   
   ;r=1,2,3,⋅⋅⋅
  MathType@MTEF@5@5@+=
  feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
  hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
  4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
  a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
  0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabg2da9maala
  aabaGaamOCaiaacgcadaGadaqaaiabeI7aXnaaCaaaleqabaGaaG4m
  aaaakiabgUcaRmaabmaabaGaamOCaiabgUcaRiaaigdaaiaawIcaca
  GLPaaacqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkdaqadaqa
  aiaadkhacqGHRaWkcaaIXaaacaGLOaGaayzkaaWaaeWaaeaacaWGYb
  Gaey4kaSIaaGOmaaGaayjkaiaawMcaamaabmaabaGaamOCaiabgUca
  RiaaiodaaiaawIcacaGLPaaaaiaawUhacaGL9baaaeaacqaH4oqCda
  ahaaWcbeqaaiaadkhaaaGcdaqadaqaaiabeI7aXnaaCaaaleqabaGa
  aG4maaaakiabgUcaRiabeI7aXnaaCaaaleqabaGaaGOmaaaakiabgU
  caRiaaiAdaaiaawIcacaGLPaaaaaGaai4oaiaadkhacqGH9aqpcaaI
  XaGaaiilaiaaikdacaGGSaGaaG4maiaacYcacqGHflY1cqGHflY1cq
  GHflY1aaa@6EBE@
  
 
  Substituting 
 
  
   r=1,2,3,4
  MathType@MTEF@5@5@+=
  feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
  hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
  4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
  a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
  0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhacqGH9a
  qpcaaIXaGaaiilaiaaikdacaGGSaGaaG4maiaacYcacaaI0aaaaa@3F2A@
  
 
in the above equation, the first four moments about origin of Uma distribution can be obtained as
 
  
   
    μ
    1
   
   
    
    ′
   
   =
    
     
      θ
      3
     
     +2
      θ
      2
     
     +24
    
     θ(
      
       
        θ
        3
       
       +
        θ
        2
       
       +6
     )
   
   
  MathType@MTEF@5@5@+=
  feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
  hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
  4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
  a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
  0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa
  aaleaacaaIXaaabeaakmaaCaaaleqabaGccWaGGBOmGikaaiabg2da
  9maalaaabaGaeqiUde3aaWbaaSqabeaacaaIZaaaaOGaey4kaSIaaG
  OmaiabeI7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaikdacaaI
  0aaabaGaeqiUde3aaeWaaeaacqaH4oqCdaahaaWcbeqaaiaaiodaaa
  GccqGHRaWkcqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaI
  2aaacaGLOaGaayzkaaaaaaaa@536A@
  
 
,
 
  
   
    μ
    2
   
   
    
    ′
   
   =
    
     2(
      
       
        θ
        3
       
       +3
        θ
        2
       
       +60
     )
    
     
      θ
      2
     
     (
      
       
        θ
        3
       
       +
        θ
        2
       
       +6
     )
   
   
  MathType@MTEF@5@5@+=
  feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
  hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
  4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
  a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
  0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa
  aaleaacaaIYaaabeaakmaaCaaaleqabaGccWaGGBOmGikaaiabg2da
  9maalaaabaGaaGOmamaabmaabaGaeqiUde3aaWbaaSqabeaacaaIZa
  aaaOGaey4kaSIaaG4maiabeI7aXnaaCaaaleqabaGaaGOmaaaakiab
  gUcaRiaaiAdacaaIWaaacaGLOaGaayzkaaaabaGaeqiUde3aaWbaaS
  qabeaacaaIYaaaaOWaaeWaaeaacqaH4oqCdaahaaWcbeqaaiaaioda
  aaGccqGHRaWkcqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkca
  aI2aaacaGLOaGaayzkaaaaaaaa@56A4@
  
 
 
  
   
    μ
    3
   
   
    
    ′
   
   =
    
     6(
      
       
        θ
        3
       
       +4
        θ
        2
       
       +120
     )
    
     
      θ
      3
     
     (
      
       
        θ
        3
       
       +
        θ
        2
       
       +6
     )
   
   
  MathType@MTEF@5@5@+=
  feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
  hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
  4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
  a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
  0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa
  aaleaacaaIZaaabeaakmaaCaaaleqabaGccWaGGBOmGikaaiabg2da
  9maalaaabaGaaGOnamaabmaabaGaeqiUde3aaWbaaSqabeaacaaIZa
  aaaOGaey4kaSIaaGinaiabeI7aXnaaCaaaleqabaGaaGOmaaaakiab
  gUcaRiaaigdacaaIYaGaaGimaaGaayjkaiaawMcaaaqaaiabeI7aXn
  aaCaaaleqabaGaaG4maaaakmaabmaabaGaeqiUde3aaWbaaSqabeaa
  caaIZaaaaOGaey4kaSIaeqiUde3aaWbaaSqabeaacaaIYaaaaOGaey
  4kaSIaaGOnaaGaayjkaiaawMcaaaaaaaa@5762@
  
 
,
 
  
   
    μ
    4
   
   
    
    ′
   
   =
    
     24(
      
       
        θ
        3
       
       +5
        θ
        2
       
       +210
     )
    
     
      θ
      4
     
     (
      
       
        θ
        3
       
       +
        θ
        2
       
       +6
     )
   
   
  MathType@MTEF@5@5@+=
  feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
  hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
  4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
  a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
  0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa
  aaleaacaaI0aaabeaakmaaCaaaleqabaGccWaGGBOmGikaaiabg2da
  9maalaaabaGaaGOmaiaaisdadaqadaqaaiabeI7aXnaaCaaaleqaba
  GaaG4maaaakiabgUcaRiaaiwdacqaH4oqCdaahaaWcbeqaaiaaikda
  aaGccqGHRaWkcaaIYaGaaGymaiaaicdaaiaawIcacaGLPaaaaeaacq
  aH4oqCdaahaaWcbeqaaiaaisdaaaGcdaqadaqaaiabeI7aXnaaCaaa
  leqabaGaaG4maaaakiabgUcaRiabeI7aXnaaCaaaleqabaGaaGOmaa
  aakiabgUcaRiaaiAdaaiaawIcacaGLPaaaaaaaaa@581F@
  
 
 .
The moments about the mean, using relationship between moments about the mean and the moments about the origin, can thus be obtained as
 
  
   
    μ
    2
   
   =
    
     
      θ
      6
     
     +4
      θ
      5
     
     +2
      θ
      4
     
     +84
      θ
      3
     
     +60
      θ
      2
     
     +144
    
     
      θ
      2
     
     
      
       (
        
         
          θ
          3
         
         +
          θ
          2
         
         +6
       )
      2
     
     
   
   
  MathType@MTEF@5@5@+=
  feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
  hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
  4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
  a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
  0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa
  aaleaacaaIYaaabeaakiabg2da9maalaaabaGaeqiUde3aaWbaaSqa
  beaacaaI2aaaaOGaey4kaSIaaGinaiabeI7aXnaaCaaaleqabaGaaG
  ynaaaakiabgUcaRiaaikdacqaH4oqCdaahaaWcbeqaaiaaisdaaaGc
  cqGHRaWkcaaI4aGaaGinaiabeI7aXnaaCaaaleqabaGaaG4maaaaki
  abgUcaRiaaiAdacaaIWaGaeqiUde3aaWbaaSqabeaacaaIYaaaaOGa
  ey4kaSIaaGymaiaaisdacaaI0aaabaGaeqiUde3aaWbaaSqabeaaca
  aIYaaaaOWaaeWaaeaacqaH4oqCdaahaaWcbeqaaiaaiodaaaGccqGH
  RaWkcqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaI2aaaca
  GLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaaaaaa@6147@
  
 
 
  
   
    μ
    3
   
   =
    
     2(
      
       
        θ
        9
       
       +6
        θ
        8
       
       +6
        θ
        7
       
       +200
        θ
        6
       
       +270
        θ
        5
       
       +108
        θ
        4
       
       +324
        θ
        3
       
       +432
        θ
        2
       
       +864
     )
    
     
      θ
      3
     
     
      
       (
        
         
          θ
          3
         
         +
          θ
          2
         
         +6
       )
      3
     
     
   
   
  MathType@MTEF@5@5@+=
  feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
  hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
  4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
  a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
  0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa
  aaleaacaaIZaaabeaakiabg2da9maalaaabaGaaGOmamaabmaabaGa
  eqiUde3aaWbaaSqabeaacaaI5aaaaOGaey4kaSIaaGOnaiabeI7aXn
  aaCaaaleqabaGaaGioaaaakiabgUcaRiaaiAdacqaH4oqCdaahaaWc
  beqaaiaaiEdaaaGccqGHRaWkcaaIYaGaaGimaiaaicdacqaH4oqCda
  ahaaWcbeqaaiaaiAdaaaGccqGHRaWkcaaIYaGaaG4naiaaicdacqaH
  4oqCdaahaaWcbeqaaiaaiwdaaaGccqGHRaWkcaaIXaGaaGimaiaaiI
  dacqaH4oqCdaahaaWcbeqaaiaaisdaaaGccqGHRaWkcaaIZaGaaGOm
  aiaaisdacqaH4oqCdaahaaWcbeqaaiaaiodaaaGccqGHRaWkcaaI0a
  GaaG4maiaaikdacqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWk
  caaI4aGaaGOnaiaaisdaaiaawIcacaGLPaaaaeaacqaH4oqCdaahaa
  WcbeqaaiaaiodaaaGcdaqadaqaaiabeI7aXnaaCaaaleqabaGaaG4m
  aaaakiabgUcaRiabeI7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRi
  aaiAdaaiaawIcacaGLPaaadaahaaWcbeqaaiaaiodaaaaaaaaa@7663@
  
 
 
  
   
    μ
    4
   
   =
    
     3(
      
       
        
         
          3
           θ
           
            12
          
          +24
           θ
           
            11
          
          +44
           θ
           
            10
          
          +968
           θ
           9
          
          +2336
           θ
           8
          
          +2016
           θ
           7
          
          +7488
           θ
           6
          
          +13248
           θ
           5
          
          
        
       
       
        
         
          +5760
           θ
           4
          
          +31104
           θ
           3
          
          +24192
           θ
           2
          
          +31104
        
       
      
      
     )
    
     
      θ
      4
     
     
      
       (
        
         
          θ
          3
         
         +
          θ
          2
         
         +6
       )
      4
     
     
   
   
  MathType@MTEF@5@5@+=
  feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
  hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
  4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
  a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
  0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaSGaeqiVd02aaS
  baaWqaaiaaisdaaeqaaSGaeyypa0ZaaSaaaeaacaaIZaWaaeWaaqaa
  beqaaiaaiodacqaH4oqCdaahaaadbeqaaiaaigdacaaIYaaaaSGaey
  4kaSIaaGOmaiaaisdacqaH4oqCdaahaaadbeqaaiaaigdacaaIXaaa
  aSGaey4kaSIaaGinaiaaisdacqaH4oqCdaahaaadbeqaaiaaigdaca
  aIWaaaaSGaey4kaSIaaGyoaiaaiAdacaaI4aGaeqiUde3aaWbaaWqa
  beaacaaI5aaaaSGaey4kaSIaaGOmaiaaiodacaaIZaGaaGOnaiabeI
  7aXnaaCaaameqabaGaaGioaaaaliabgUcaRiaaikdacaaIWaGaaGym
  aiaaiAdacqaH4oqCdaahaaadbeqaaiaaiEdaaaWccqGHRaWkcaaI3a
  GaaGinaiaaiIdacaaI4aGaeqiUde3aaWbaaWqabeaacaaI2aaaaSGa
  ey4kaSIaaGymaiaaiodacaaIYaGaaGinaiaaiIdacqaH4oqCdaahaa
  adbeqaaiaaiwdaaaaaleaacqGHRaWkcaaI1aGaaG4naiaaiAdacaaI
  WaGaeqiUde3aaWbaaWqabeaacaaI0aaaaSGaey4kaSIaaG4maiaaig
  dacaaIXaGaaGimaiaaisdacqaH4oqCdaahaaadbeqaaiaaiodaaaWc
  cqGHRaWkcaaIYaGaaGinaiaaigdacaaI5aGaaGOmaiabeI7aXnaaCa
  aameqabaGaaGOmaaaaliabgUcaRiaaiodacaaIXaGaaGymaiaaicda
  caaI0aaaaiaawIcacaGLPaaaaeaacqaH4oqCdaahaaadbeqaaiaais
  daaaWcdaqadaqaaiabeI7aXnaaCaaameqabaGaaG4maaaaliabgUca
  RiabeI7aXnaaCaaameqabaGaaGOmaaaaliabgUcaRiaaiAdaaiaawI
  cacaGLPaaadaahaaadbeqaaiaaisdaaaaaaaaa@9535@
  
 
The descriptive constants including coefficient of variation (CV), coefficient of skewness (CS), coefficient of kurtosis (CK) and the index of dispersion (ID) of Uma distribution are thus obtained as
 
  
   CV=
    
     
      
       
        μ
        2
       
       
     
     
    
     
      μ
      1
     
     
      
      ′
     
     
   
   =
    
     
      
       
        θ
        6
       
       +4
        θ
        5
       
       +2
        θ
        4
       
       +84
        θ
        3
       
       +60
        θ
        2
       
       +144
     
     
    
     
      θ
      3
     
     +2
      θ
      2
     
     +24
   
   
  MathType@MTEF@5@5@+=
  feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
  hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
  4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
  a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
  0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadoeacaWGwb
  Gaeyypa0ZaaSaaaeaadaGcaaqaaiabeY7aTnaaBaaaleaacaaIYaaa
  beaaaeqaaaGcbaGaeqiVd02aaSbaaSqaaiaaigdaaeqaaOWaaWbaaS
  qabeaakiadacUHYaIOaaaaaiabg2da9maalaaabaWaaOaaaeaacqaH
  4oqCdaahaaWcbeqaaiaaiAdaaaGccqGHRaWkcaaI0aGaeqiUde3aaW
  baaSqabeaacaaI1aaaaOGaey4kaSIaaGOmaiabeI7aXnaaCaaaleqa
  baGaaGinaaaakiabgUcaRiaaiIdacaaI0aGaeqiUde3aaWbaaSqabe
  aacaaIZaaaaOGaey4kaSIaaGOnaiaaicdacqaH4oqCdaahaaWcbeqa
  aiaaikdaaaGccqGHRaWkcaaIXaGaaGinaiaaisdaaSqabaaakeaacq
  aH4oqCdaahaaWcbeqaaiaaiodaaaGccqGHRaWkcaaIYaGaeqiUde3a
  aWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGOmaiaaisdaaaaaaa@6656@
  
 
 
  
   CS=
    
     
      μ
      3
     
     
      
      2
     
     
    
     
      μ
      2
     
     
      
      3
     
     
   
   =
    
     4
      
       (
        
         
          θ
          9
         
         +6
          θ
          8
         
         +6
          θ
          7
         
         +200
          θ
          6
         
         +270
          θ
          5
         
         +108
          θ
          4
         
         +324
          θ
          3
         
         +432
          θ
          2
         
         +864
       )
      2
     
     
    
     
      
       (
        
         
          θ
          6
         
         +4
          θ
          5
         
         +2
          θ
          4
         
         +84
          θ
          3
         
         +60
          θ
          2
         
         +144
       )
      3
     
     
   
   
  MathType@MTEF@5@5@+=
  feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
  hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
  4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
  a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
  0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadoeacaWGtb
  Gaeyypa0ZaaSaaaeaacqaH8oqBdaWgaaWcbaGaaG4maaqabaGcdaah
  aaWcbeqaaiaaikdaaaaakeaacqaH8oqBdaWgaaWcbaGaaGOmaaqaba
  GcdaahaaWcbeqaaiaaiodaaaaaaOGaeyypa0ZaaSaaaeaacaaI0aWa
  aeWaaeaacqaH4oqCdaahaaWcbeqaaiaaiMdaaaGccqGHRaWkcaaI2a
  GaeqiUde3aaWbaaSqabeaacaaI4aaaaOGaey4kaSIaaGOnaiabeI7a
  XnaaCaaaleqabaGaaG4naaaakiabgUcaRiaaikdacaaIWaGaaGimai
  abeI7aXnaaCaaaleqabaGaaGOnaaaakiabgUcaRiaaikdacaaI3aGa
  aGimaiabeI7aXnaaCaaaleqabaGaaGynaaaakiabgUcaRiaaigdaca
  aIWaGaaGioaiabeI7aXnaaCaaaleqabaGaaGinaaaakiabgUcaRiaa
  iodacaaIYaGaaGinaiabeI7aXnaaCaaaleqabaGaaG4maaaakiabgU
  caRiaaisdacaaIZaGaaGOmaiabeI7aXnaaCaaaleqabaGaaGOmaaaa
  kiabgUcaRiaaiIdacaaI2aGaaGinaaGaayjkaiaawMcaamaaCaaale
  qabaGaaGOmaaaaaOqaamaabmaabaGaeqiUde3aaWbaaSqabeaacaaI
  2aaaaOGaey4kaSIaaGinaiabeI7aXnaaCaaaleqabaGaaGynaaaaki
  abgUcaRiaaikdacqaH4oqCdaahaaWcbeqaaiaaisdaaaGccqGHRaWk
  caaI4aGaaGinaiabeI7aXnaaCaaaleqabaGaaG4maaaakiabgUcaRi
  aaiAdacaaIWaGaeqiUde3aaWbaaSqabeaacaaIYaaaaOGaey4kaSIa
  aGymaiaaisdacaaI0aaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIZa
  aaaaaaaaa@8C88@
  
 
 
  
   CK=
    
     
      μ
      4
     
     
    
     
      μ
      2
     
     
      
      2
     
     
   
   =
    
     3(
      
       
        
         3
          θ
          
           12
         
         +24
          θ
          
           11
         
         +44
          θ
          
           10
         
         +968
          θ
          9
         
         +2336
          θ
          8
         
         +2016
          θ
          7
         
         +7488
          θ
          6
         
         +13248
          θ
          5
         
         
        
       
       
        
         +5760
          θ
          4
         
         +31104
          θ
          3
         
         +24192
          θ
          2
         
         +31104
        
       
      
      
     )
    
     
      
       (
        
         
          θ
          6
         
         +4
          θ
          5
         
         +2
          θ
          4
         
         +84
          θ
          3
         
         +60
          θ
          2
         
         +144
       )
      2
     
     
   
   
  MathType@MTEF@5@5@+=
  feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
  hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
  4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
  a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
  0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadoeacaWGlb
  Gaeyypa0ZaaSaaaeaacqaH8oqBdaWgaaWcbaGaaGinaaqabaaakeaa
  cqaH8oqBdaWgaaWcbaGaaGOmaaqabaGcdaahaaWcbeqaaiaaikdaaa
  aaaOGaeyypa0ZaaSaaaeaacaaIZaWaaeWaaqaabeqaaiaaiodacqaH
  4oqCdaahaaWcbeqaaiaaigdacaaIYaaaaOGaey4kaSIaaGOmaiaais
  dacqaH4oqCdaahaaWcbeqaaiaaigdacaaIXaaaaOGaey4kaSIaaGin
  aiaaisdacqaH4oqCdaahaaWcbeqaaiaaigdacaaIWaaaaOGaey4kaS
  IaaGyoaiaaiAdacaaI4aGaeqiUde3aaWbaaSqabeaacaaI5aaaaOGa
  ey4kaSIaaGOmaiaaiodacaaIZaGaaGOnaiabeI7aXnaaCaaaleqaba
  GaaGioaaaakiabgUcaRiaaikdacaaIWaGaaGymaiaaiAdacqaH4oqC
  daahaaWcbeqaaiaaiEdaaaGccqGHRaWkcaaI3aGaaGinaiaaiIdaca
  aI4aGaeqiUde3aaWbaaSqabeaacaaI2aaaaOGaey4kaSIaaGymaiaa
  iodacaaIYaGaaGinaiaaiIdacqaH4oqCdaahaaWcbeqaaiaaiwdaaa
  aakeaacqGHRaWkcaaI1aGaaG4naiaaiAdacaaIWaGaeqiUde3aaWba
  aSqabeaacaaI0aaaaOGaey4kaSIaaG4maiaaigdacaaIXaGaaGimai
  aaisdacqaH4oqCdaahaaWcbeqaaiaaiodaaaGccqGHRaWkcaaIYaGa
  aGinaiaaigdacaaI5aGaaGOmaiabeI7aXnaaCaaaleqabaGaaGOmaa
  aakiabgUcaRiaaiodacaaIXaGaaGymaiaaicdacaaI0aaaaiaawIca
  caGLPaaaaeaadaqadaqaaiabeI7aXnaaCaaaleqabaGaaGOnaaaaki
  abgUcaRiaaisdacqaH4oqCdaahaaWcbeqaaiaaiwdaaaGccqGHRaWk
  caaIYaGaeqiUde3aaWbaaSqabeaacaaI0aaaaOGaey4kaSIaaGioai
  aaisdacqaH4oqCdaahaaWcbeqaaiaaiodaaaGccqGHRaWkcaaI2aGa
  aGimaiabeI7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaigdaca
  aI0aGaaGinaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaaaa
  aa@A93C@
  
 
 
  
   ID=
    
     
      μ
      2
     
     
    
     
      μ
      1
     
     
      
      ′
     
     
   
   =
    
     
      θ
      6
     
     +4
      θ
      5
     
     +2
      θ
      4
     
     +84
      θ
      3
     
     +60
      θ
      2
     
     +144
    
     θ(
      
       
        θ
        3
       
       +
        θ
        2
       
       +6
     )(
      
       
        θ
        3
       
       +2
        θ
        2
       
       +24
     )
   
   
  MathType@MTEF@5@5@+=
  feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
  hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
  4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
  a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
  0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMeacaWGeb
  Gaeyypa0ZaaSaaaeaacqaH8oqBdaWgaaWcbaGaaGOmaaqabaaakeaa
  cqaH8oqBdaWgaaWcbaGaaGymaaqabaGcdaahaaWcbeqaaOGamai4gk
  diIcaaaaGaeyypa0ZaaSaaaeaacqaH4oqCdaahaaWcbeqaaiaaiAda
  aaGccqGHRaWkcaaI0aGaeqiUde3aaWbaaSqabeaacaaI1aaaaOGaey
  4kaSIaaGOmaiabeI7aXnaaCaaaleqabaGaaGinaaaakiabgUcaRiaa
  iIdacaaI0aGaeqiUde3aaWbaaSqabeaacaaIZaaaaOGaey4kaSIaaG
  OnaiaaicdacqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaI
  XaGaaGinaiaaisdaaeaacqaH4oqCdaqadaqaaiabeI7aXnaaCaaale
  qabaGaaG4maaaakiabgUcaRiabeI7aXnaaCaaaleqabaGaaGOmaaaa
  kiabgUcaRiaaiAdaaiaawIcacaGLPaaadaqadaqaaiabeI7aXnaaCa
  aaleqabaGaaG4maaaakiabgUcaRiaaikdacqaH4oqCdaahaaWcbeqa
  aiaaikdaaaGccqGHRaWkcaaIYaGaaGinaaGaayjkaiaawMcaaaaaaa
  a@72B4@
  
 
Behaviour of coefficient of variation, coefficient of skewness, coefficient of kurtosis and index of dispersion for changing values of parameter are shown in the Figure 5.
         
Figure 5 Graph of CV, CS, CK and ID of Uma distribution for different values of the parameter.
 
 
 
 
 Deviations from mean and median
Mean deviation about the mean and the mean deviation about median of a random variable 
 
  X
  MathType@MTEF@5@5@+=
  feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
  hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
  4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
  a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
  0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfaaaa@3908@
  
 
having pdf 
 
  
   f(
    x
   )
  MathType@MTEF@5@5@+=
  feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
  hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
  4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
  a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
  0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaqada
  qaaiaadIhaaiaawIcacaGLPaaaaaa@3B9C@
  
 
and cdf 
 
  
   F(
    x
   )
  MathType@MTEF@5@5@+=
  feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
  hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
  4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
  a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
  0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaqada
  qaaiaadIhaaiaawIcacaGLPaaaaaa@3B7C@
  
 
are defined by
 
  
   
    δ
    1
   
   (x)=
    
     ∫
     0
     ∞
    
    
     |x−μ|f(x)dx
   
   
  =2μF(μ)−2
   
    ∫
    0
    μ
   
   
    x f(x)dx
  
  
 
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKnaaBa
aaleaacaaIXaaabeaakiaacIcacaWG4bGaaiykaiabg2da9maapeha
baGaaiiFaiaadIhacqGHsislcqaH8oqBcaGG8bGaamOzaiaacIcaca
WG4bGaaiykaiaadsgacaWG4baaleaacaaIWaaabaGaeyOhIukaniab
gUIiYdGccqGH9aqpcaaIYaGaeqiVd0MaamOraiaacIcacqaH8oqBca
GGPaGaeyOeI0IaaGOmamaapehabaGaamiEaiaaykW7caWGMbGaaiik
aiaadIhacaGGPaGaamizaiaadIhaaSqaaiaaicdaaeaacqaH8oqBa0
Gaey4kIipaaaa@6305@
 and 
 
  
   
    δ
    2
   
   (x)=
    
     ∫
     0
     ∞
    
    
     |x−M|f(x)dx
   
   
  =−μ+2
   
    ∫
    M
    ∞
   
   
    x f(x)dx
  
  
 
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKnaaBa
aaleaacaaIYaaabeaakiaacIcacaWG4bGaaiykaiabg2da9maapeha
baGaaiiFaiaadIhacqGHsislcaWGnbGaaiiFaiaadAgacaGGOaGaam
iEaiaacMcacaWGKbGaamiEaaWcbaGaaGimaaqaaiabg6HiLcqdcqGH
RiI8aOGaeyypa0JaeyOeI0IaeqiVd0Maey4kaSIaaGOmamaapehaba
GaamiEaiaaykW7caWGMbGaaiikaiaadIhacaGGPaGaamizaiaadIha
aSqaaiaad2eaaeaacqGHEisPa0Gaey4kIipaaaa@5E41@
respectively, where 
 
  
   μ=E(X)
  MathType@MTEF@5@5@+=
  feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
  hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
  4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
  a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
  0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTjabg2
  da9iaadweacaGGOaGaamiwaiaacMcaaaa@3DE7@
  
 
and
 
  
   M=Median(X)
  MathType@MTEF@5@5@+=
  feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
  hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
  4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
  a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
  0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eacqGH9a
  qpcaWGnbGaamyzaiaadsgacaWGPbGaamyyaiaad6gacaGGOaGaamiw
  aiaacMcaaaa@41A5@
  
 
.
Using pdf and expressions for the mean of Uma distribution, we get
 
  
   
    
     ∫
     0
     μ
    
    
     x f(
      
       x;θ
     )
   
   
   dx=μ−
   
    [ 
     
      θ
      4
     
     (
      
       
        μ
        4
       
       +
        μ
        2
       
       +μ
     )+
      θ
      3
     
     (
      
       4
        μ
        3
       
       +2μ+1
     )+2
      θ
      2
     
     (
      
       6
        μ
        2
       
       +1
     )+24(
      
       θμ+1
     ) ]
     e
     
      −θμ
    
    
   
    θ(
     
      
       θ
       3
      
      +
       θ
       2
      
      +6
    )
  
  
 MathType@MTEF@5@5@+=
 feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
 hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf
 ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaapehabaGaam
 iEaiaaykW7caWGMbWaaeWaaeaacaWG4bGaai4oaiabeI7aXbGaayjk
 aiaawMcaaaWcbaGaaGimaaqaaiabeY7aTbqdcqGHRiI8aOGaaGPaVl
 aadsgacaWG4bGaeyypa0JaeqiVd0MaeyOeI0YaaSaaaeaadaWadaqa
 aiabeI7aXnaaCaaaleqabaGaaGinaaaakmaabmaabaGaeqiVd02aaW
 baaSqabeaacaaI0aaaaOGaey4kaSIaeqiVd02aaWbaaSqabeaacaaI
 YaaaaOGaey4kaSIaeqiVd0gacaGLOaGaayzkaaGaey4kaSIaeqiUde
 3aaWbaaSqabeaacaaIZaaaaOWaaeWaaeaacaaI0aGaeqiVd02aaWba
 aSqabeaacaaIZaaaaOGaey4kaSIaaGOmaiabeY7aTjabgUcaRiaaig
 daaiaawIcacaGLPaaacqGHRaWkcaaIYaGaeqiUde3aaWbaaSqabeaa
 caaIYaaaaOWaaeWaaeaacaaI2aGaeqiVd02aaWbaaSqabeaacaaIYa
 aaaOGaey4kaSIaaGymaaGaayjkaiaawMcaaiabgUcaRiaaikdacaaI
 0aWaaeWaaeaacqaH4oqCcqaH8oqBcqGHRaWkcaaIXaaacaGLOaGaay
 zkaaaacaGLBbGaayzxaaGaamyzamaaCaaaleqabaGaeyOeI0IaeqiU
 deNaeqiVd0gaaaGcbaGaeqiUde3aaeWaaeaacqaH4oqCdaahaaWcbe
 qaaiaaiodaaaGccqGHRaWkcqaH4oqCdaahaaWcbeqaaiaaikdaaaGc
 cqGHRaWkcaaI2aaacaGLOaGaayzkaaaaaaaa@8C3F@
 
 
  
   
    
     ∫
     0
     M
    
    
     x f(
      
       x;θ
     )
   
   
   dx=μ−
   
    [ 
     
      θ
      4
     
     (
      
       
        M
        4
       
       +
        M
        2
       
       +M
     )+
      θ
      3
     
     (
      
       4
        M
        3
       
       +2M+1
     )+2
      θ
      2
     
     (
      
       6
        M
        2
       
       +1
     )+24(
      
       θM+1
     ) ]
     e
     
      −θM
    
    
   
    θ(
     
      
       θ
       3
      
      +
       θ
       2
      
      +6
    )
  
  
 MathType@MTEF@5@5@+=
 feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
 hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
 a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaapehabaGaam
 iEaiaaykW7caWGMbWaaeWaaeaacaWG4bGaai4oaiabeI7aXbGaayjk
 aiaawMcaaaWcbaGaaGimaaqaaiaad2eaa0Gaey4kIipakiaaykW7ca
 WGKbGaamiEaiabg2da9iabeY7aTjabgkHiTmaalaaabaWaamWaaeaa
 cqaH4oqCdaahaaWcbeqaaiaaisdaaaGcdaqadaqaaiaad2eadaahaa
 WcbeqaaiaaisdaaaGccqGHRaWkcaWGnbWaaWbaaSqabeaacaaIYaaa
 aOGaey4kaSIaamytaaGaayjkaiaawMcaaiabgUcaRiabeI7aXnaaCa
 aaleqabaGaaG4maaaakmaabmaabaGaaGinaiaad2eadaahaaWcbeqa
 aiaaiodaaaGccqGHRaWkcaaIYaGaamytaiabgUcaRiaaigdaaiaawI
 cacaGLPaaacqGHRaWkcaaIYaGaeqiUde3aaWbaaSqabeaacaaIYaaa
 aOWaaeWaaeaacaaI2aGaamytamaaCaaaleqabaGaaGOmaaaakiabgU
 caRiaaigdaaiaawIcacaGLPaaacqGHRaWkcaaIYaGaaGinamaabmaa
 baGaeqiUdeNaamytaiabgUcaRiaaigdaaiaawIcacaGLPaaaaiaawU
 facaGLDbaacaWGLbWaaWbaaSqabeaacqGHsislcqaH4oqCcaWGnbaa
 aaGcbaGaeqiUde3aaeWaaeaacqaH4oqCdaahaaWcbeqaaiaaiodaaa
 GccqGHRaWkcqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaI
 2aaacaGLOaGaayzkaaaaaaaa@8558@
 
Using above expressions some algebraic simplifications, the mean
 
  
   
    δ
    1
   
   (x)
  MathType@MTEF@5@5@+=
  feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
  hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
  4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
  a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
  0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKnaaBa
  aaleaacaaIXaaabeaakiaacIcacaWG4bGaaiykaaaa@3D17@
  
 
 deviation about the mean, and the mean deviation about the median 
 
  
   
    δ
    2
   
   (x)
  MathType@MTEF@5@5@+=
  feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
  hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
  4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
  a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
  0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKnaaBa
  aaleaacaaIYaaabeaakiaacIcacaWG4bGaaiykaaaa@3D18@
  
 
 of Uma distribution are obtained as
 
  
   
    δ
    1
   
   (x)=
    
     
      
       2[ 
        
         θ
         3
        
        
         μ
         3
        
        +6
         θ
         2
        
        
         μ
         2
        
        +
         θ
         3
        
        μ+18θμ+(
         
          
           θ
           3
          
          +2
           θ
           2
          
          +24
        ) ]e
      
       θ(
        
         
          θ
          3
         
         +
          θ
          2
         
         +6
       )
     
     
    
     −θμ
   
   
  MathType@MTEF@5@5@+=
  feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
  hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
  4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
  a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
  0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKnaaBa
  aaleaacaaIXaaabeaakiaacIcacaWG4bGaaiykaiabg2da9maalaaa
  baGaaGOmamaadmaabaGaeqiUde3aaWbaaSqabeaacaaIZaaaaOGaeq
  iVd02aaWbaaSqabeaacaaIZaaaaOGaey4kaSIaaGOnaiabeI7aXnaa
  CaaaleqabaGaaGOmaaaakiabeY7aTnaaCaaaleqabaGaaGOmaaaaki
  abgUcaRiabeI7aXnaaCaaaleqabaGaaG4maaaakiabeY7aTjabgUca
  RiaaigdacaaI4aGaeqiUdeNaeqiVd0Maey4kaSYaaeWaaeaacqaH4o
  qCdaahaaWcbeqaaiaaiodaaaGccqGHRaWkcaaIYaGaeqiUde3aaWba
  aSqabeaacaaIYaaaaOGaey4kaSIaaGOmaiaaisdaaiaawIcacaGLPa
  aaaiaawUfacaGLDbaacaWGLbaabaGaeqiUde3aaeWaaeaacqaH4oqC
  daahaaWcbeqaaiaaiodaaaGccqGHRaWkcqaH4oqCdaahaaWcbeqaai
  aaikdaaaGccqGHRaWkcaaI2aaacaGLOaGaayzkaaaaamaaCaaaleqa
  baGaeyOeI0IaeqiUdeNaeqiVd0gaaaaa@746E@
  
 
 
  
   
    δ
    2
   
   (
    x
   )=
    
     
      
       2[ 
        
         θ
         4
        
        (
         
          
           M
           4
          
          +
           M
           2
          
          +M
        )+
         θ
         3
        
        (
         
          4
           M
           3
          
          +2M+1
        )+2
         θ
         2
        
        (
         
          6
           M
           2
          
          +1
        )+24(
         
          θM+1
        ) ]e
      
       θ(
        
         
          θ
          3
         
         +
          θ
          2
         
         +6
       )
     
     
    
     −θM
   
   −μ
  MathType@MTEF@5@5@+=
  feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
  hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
  4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
  a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
  0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKnaaBa
  aaleaacaaIYaaabeaakmaabmaabaGaamiEaaGaayjkaiaawMcaaiab
  g2da9maalaaabaGaaGOmamaadmaabaGaeqiUde3aaWbaaSqabeaaca
  aI0aaaaOWaaeWaaeaacaWGnbWaaWbaaSqabeaacaaI0aaaaOGaey4k
  aSIaamytamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaad2eaaiaawI
  cacaGLPaaacqGHRaWkcqaH4oqCdaahaaWcbeqaaiaaiodaaaGcdaqa
  daqaaiaaisdacaWGnbWaaWbaaSqabeaacaaIZaaaaOGaey4kaSIaaG
  Omaiaad2eacqGHRaWkcaaIXaaacaGLOaGaayzkaaGaey4kaSIaaGOm
  aiabeI7aXnaaCaaaleqabaGaaGOmaaaakmaabmaabaGaaGOnaiaad2
  eadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIXaaacaGLOaGaayzk
  aaGaey4kaSIaaGOmaiaaisdadaqadaqaaiabeI7aXjaad2eacqGHRa
  WkcaaIXaaacaGLOaGaayzkaaaacaGLBbGaayzxaaGaamyzaaqaaiab
  eI7aXnaabmaabaGaeqiUde3aaWbaaSqabeaacaaIZaaaaOGaey4kaS
  IaeqiUde3aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGOnaaGaayjk
  aiaawMcaaaaadaahaaWcbeqaaiabgkHiTiabeI7aXjaad2eaaaGccq
  GHsislcqaH8oqBaaa@7B53@
  
 
 
 Parameter estimation of Uma distribution
Suppose 
 
  
   (
    
     
      x
      1
     
     , 
      x
      2
     
     , 
      x
      3
     
     ,  ...  ,
      x
      n
     
     
   )
  MathType@MTEF@5@5@+=
  feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
  hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
  4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
  a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
  0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaam
  iEamaaBaaaleaacaaIXaaabeaakiaacYcacaaMc8UaamiEamaaBaaa
  leaacaaIYaaabeaakiaacYcacaaMc8UaamiEamaaBaaaleaacaaIZa
  aabeaakiaacYcacaaMc8UaaGPaVlaac6cacaGGUaGaaiOlaiaaykW7
  caaMc8UaaiilaiaadIhadaWgaaWcbaGaamOBaaqabaaakiaawIcaca
  GLPaaaaaa@4FBF@
  
 
be a random sample of size 
 
  n
  MathType@MTEF@5@5@+=
  feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
  hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
  4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
  a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
  0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6gaaaa@391E@
  
 
from Uma distribution. The log likelihood function, 
 
  L
  MathType@MTEF@5@5@+=
  feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
  hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
  4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
  a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
  0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeaaaa@38FC@
  
 
of Uma distribution is given by
 
  
   logL=
    
     ∑
     
      i=1
     n
    
    
     logf(
      
       
        x
        i
       
       ;θ
     )
   =n{ 
    4logθ−log(
     
      
       θ
       3
      
      +
       θ
       2
      
      +6
    ) }+
    
     ∑
     
      i=1
     n
    
    
     log(
      
       1+
        x
        i
       
       +
        x
        i
       
       
        
        3
       
       
     )−n θ 
      x
      ¯
     
     
   
  MathType@MTEF@5@5@+=
  feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
  hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
  4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
  a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
  0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiGacYgacaGGVb
  Gaai4zaiaadYeacqGH9aqpdaaeWbqaaiGacYgacaGGVbGaai4zaiaa
  dAgadaqadaqaaiaadIhadaWgaaWcbaGaamyAaaqabaGccaGG7aGaeq
  iUdehacaGLOaGaayzkaaaaleaacaWGPbGaeyypa0JaaGymaaqaaiaa
  d6gaa0GaeyyeIuoakiabg2da9iaad6gadaGadaqaaiaaisdaciGGSb
  Gaai4BaiaacEgacqaH4oqCcqGHsislciGGSbGaai4BaiaacEgadaqa
  daqaaiabeI7aXnaaCaaaleqabaGaaG4maaaakiabgUcaRiabeI7aXn
  aaCaaaleqabaGaaGOmaaaakiabgUcaRiaaiAdaaiaawIcacaGLPaaa
  aiaawUhacaGL9baacqGHRaWkdaaeWbqaaiGacYgacaGGVbGaai4zam
  aabmaabaGaaGymaiabgUcaRiaadIhadaWgaaWcbaGaamyAaaqabaGc
  cqGHRaWkcaWG4bWaaSbaaSqaaiaadMgaaeqaaOWaaWbaaSqabeaaca
  aIZaaaaaGccaGLOaGaayzkaaGaeyOeI0IaamOBaiaaykW7cqaH4oqC
  caaMc8UabmiEayaaraaaleaacaWGPbGaeyypa0JaaGymaaqaaiaad6
  gaa0GaeyyeIuoaaaa@7DBA@
  
 
The maximum likelihood estimate (MLE) 
 
  
   (
    
     θ
     ^
    
    
   )
  MathType@MTEF@5@5@+=
  feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
  hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
  4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
  a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
  0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGafq
  iUdeNbaKaaaiaawIcacaGLPaaaaaa@3B7A@
  
 
of the parameters 
 
  
   (
    
     θ 
   )
  MathType@MTEF@5@5@+=
  feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
  hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
  4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
  a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
  0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq
  iUdeNaaGPaVdGaayjkaiaawMcaaaaa@3CF5@
  
 
of Uma distribution is the solution of the following log likelihood equation
 
  
   
    
     dlogL
    
     dθ
   
   =
    
     4n
    θ
   
   −
    
     (
      
       3
        θ
        2
       
       +2θ
     )n
    
     
      θ
      3
     
     +
      θ
      2
     
     +6
   
   −n  
    x
    ¯
   
   =0
  MathType@MTEF@5@5@+=
  feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
  hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
  4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
  a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
  0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam
  izaiGacYgacaGGVbGaai4zaiaadYeaaeaacaWGKbGaeqiUdehaaiab
  g2da9maalaaabaGaaGinaiaad6gaaeaacqaH4oqCaaGaeyOeI0YaaS
  aaaeaadaqadaqaaiaaiodacqaH4oqCdaahaaWcbeqaaiaaikdaaaGc
  cqGHRaWkcaaIYaGaeqiUdehacaGLOaGaayzkaaGaamOBaaqaaiabeI
  7aXnaaCaaaleqabaGaaG4maaaakiabgUcaRiabeI7aXnaaCaaaleqa
  baGaaGOmaaaakiabgUcaRiaaiAdaaaGaeyOeI0IaamOBaiaaykW7ca
  aMc8UabmiEayaaraGaeyypa0JaaGimaaaa@5DB6@
  
 
This gives
 
  
    
    x
    ¯
   
   
    θ
    4
   
   +(
    
     
      x
      ¯
     
     −1
   )
    θ
    3
   
   −2
    θ
    2
   
   +6
    x
    ¯
   
   θ−24=0
  MathType@MTEF@5@5@+=
  feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
  hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
  4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
  a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
  0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaykW7ceWG4b
  GbaebacqaH4oqCdaahaaWcbeqaaiaaisdaaaGccqGHRaWkdaqadaqa
  aiqadIhagaqeaiabgkHiTiaaigdaaiaawIcacaGLPaaacqaH4oqCda
  ahaaWcbeqaaiaaiodaaaGccqGHsislcaaIYaGaeqiUde3aaWbaaSqa
  beaacaaIYaaaaOGaey4kaSIaaGOnaiqadIhagaqeaiabeI7aXjabgk
  HiTiaaikdacaaI0aGaeyypa0JaaGimaaaa@522E@
  
 
.
This is a fourth degree polynomial equation in 
 
  θ
  MathType@MTEF@5@5@+=
  feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
  hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
  4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
  a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
  0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXbaa@39E1@
  
 
. It should be noted that the method of moment estimate is also the same as that of the MLE. The above equation can easily be solved using Newton-Raphson method, taking the initial value of the parameter
 
  
   θ=0.5
  MathType@MTEF@5@5@+=
  feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
  hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
  4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
  a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
  0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXjabg2
  da9iaaicdacaGGUaGaaGynaaaa@3D12@
  
 
.
 
 Applications and goodness of fit
The applications and the goodness of fit of Uma distribution has been discussed with three datasets. Keeping in mind the flexibility and tractability of the distribution with the dataset following three datasets have been considered.
Data set 1: This data set represents the lifetime data relating to relief times (in minutes) of 20 patients receiving an analgesic and reported by Gross and Clark.9
1.1, 1.4, 1.3, 1.7, 1.9, 1.8, 1.6, 2.2, 1.7, 2.7, 4.1, 1.8, 1.5, 1.2, 1.4, 3, 1.7, 2.3, 1.6, 2.0
Data Set 2: This data set is the strength data of glass of the aircraft window reported by Fuller et al.10:
18.83, 20.80, 21.657, 23.03, 23.23, 24.05, 24.321, 25.5, 25.52, 25.80, 26.69, 26.77, 26.78, 27.05, 27.67, 29.90, 31.11, 33.2, 33.73, 33.76, 33.89, 34.76, 35.75, 35.91, 36.98, 37.08, 37.09, 39.58, 44.045, 45.29, 45.381
Data Set 3: The following data represent the tensile strength, measured in GPa, of 69 carbon fibers tested under tension at gauge lengths of 20 mm(Bader and Priest, 1982)11:  
1.312, 1.314, 1.479, 1.552, 1.700, 1.803, 1.861, 1.865, 1.944, 1.958, 1.966, 1.997, 2.006, 2.021, 2.027, 2.055, 2.063, 2.098, 2.140, 2.179, 2.224, 2.240, 2.253, 2.270, 2.272, 2.274, 2.301, 2.301, 2.359, 2.382, 2.382, 2.426, 2.434, 2.435, 2.478, 2.490, 2.511, 2.514, 2.535, 2.554, 2.566, 2.570, 2.586, 2.629, 2.633, 2.642, 2.648, 2.684, 2.697, 2.726, 2.770, 2.773, 2.800, 2.809, 2.818, 2.821, 2.848, 2.880, 2.954, 3.012, 3.067, 3.084, 3.090, 3.096, 3.128, 3.233, 3.433, 3.585, 3.585 .
The values ML estimates of parameter, , AIC (Akaike Information Criterion), AICC (Akaike Information Criterion corrected), BIC (Bayesian Information criterion), K-S (Kolmogorov-Smirnov) for the considered distributions for the given datasets have been computed and presented in Tables 1–3 respectively.
It is clear from the goodness of fit in the Tables 1 to 3 that Uma distribution gives much better fit over exponential, Lindley, Shanker, Akash and Sujatha distributions.
    
    Sl. No  | 
    Distributions                                                
 
  
   θ
   ^
  
  
  MathType@MTEF@5@5@+=
  feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
  hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
  4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf
  ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
  0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja
  aaaa@38D5@
  
 
   | 
      
 
  
   −2logL
  MathType@MTEF@5@5@+=
  feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
  hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
  4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf
  ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
  0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgkHiTiaaik
  daciGGSbGaai4BaiaacEgacaWGmbaaaa@3C59@
  
 
  
       | 
    AIC  | 
    AICC  | 
    BIC  | 
    K-S  | 
  
  
    1  | 
    Uma  | 
    1.6024  | 
            38.61  | 
    40.61  | 
    40.83  | 
    41.60  | 
    0.238  | 
  
  
    2  | 
    Sujatha  | 
    1.1367  | 
            57.50  | 
    59.50  | 
    59.72  | 
    60.49  | 
    0.309  | 
  
  
    3  | 
    Akash  | 
    1.1569  | 
            59.52  | 
    61.52  | 
    61.74  | 
    62.51  | 
    0.320  | 
  
  
    4  | 
    Shanker  | 
    0.8038  | 
            59.78  | 
    61.78  | 
    61.22  | 
    62.51  | 
    0.315  | 
  
  
    5  | 
    Lindley  | 
    0.8161  | 
            60.50  | 
    62.50  | 
    62.72  | 
    63.49  | 
    0.341  | 
  
  
    6  | 
    Exponential  | 
    0.5263  | 
            65.67  | 
    67.67  | 
    67.90  | 
    68.67  | 
    0.389  | 
  
  Table 1  ML estimates,  , AIC, AICC, BIC, K-S of the distribution for the dataset-1
  
 
 
 
    
    Sl. No  | 
    Distributions  | 
       
 
  
   θ
   ^
  
  
  MathType@MTEF@5@5@+=
  feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
  hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
  4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf
  ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
  0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja
  aaaa@38D5@
  
 
 
       | 
    
 
  
   −2logL
  MathType@MTEF@5@5@+=
  feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
  hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
  4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf
  ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
  0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgkHiTiaaik
  daciGGSbGaai4BaiaacEgacaWGmbaaaa@3C59@
  
 
 
       | 
    AIC  | 
    AICC  | 
    BIC  | 
    K-S  | 
  
  
    1  | 
    Uma  | 
    0.1299  | 
    232.54  | 
    234.54  | 
    234.67  | 
    235.97  | 
    0.233  | 
  
  
    2  | 
    Sujatha  | 
    0.0956  | 
    241.50  | 
    243.50  | 
    243.64  | 
    244.94  | 
    0.27  | 
  
  
    3  | 
    Akash  | 
    0.0971  | 
    240.68  | 
    242.68  | 
    242.82  | 
    244.11  | 
    0.266  | 
  
  
    4  | 
    Shanker  | 
    0.0647  | 
    252.35  | 
    254.35  | 
    254.49  | 
    255.78  | 
    0.326  | 
  
  
    5  | 
    Lindley  | 
    0.0629  | 
    253.99  | 
    255.99  | 
    256.13  | 
    257.42  | 
    0.333  | 
  
  
    6  | 
    Exponential  | 
    0.0325  | 
    274.53  | 
    276.53  | 
    276.67  | 
    277.96  | 
    0.426  | 
  
  Table 2  ML estimates,  , AIC, AICC, BIC, K-S of the distributions for the dataset-2
 
 
 
    
    Sl. No  | 
    Distributions  | 
       
 
  
   θ
   ^
  
  
  MathType@MTEF@5@5@+=
  feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
  hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
  4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf
  ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
  0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja
  aaaa@38D5@
  
 
 
       | 
    
 
  
   −2logL
  MathType@MTEF@5@5@+=
  feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
  hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
  4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf
  ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
  0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgkHiTiaaik
  daciGGSbGaai4BaiaacEgacaWGmbaaaa@3C59@
  
 
 
       | 
    AIC  | 
    AICC  | 
    BIC  | 
    K-S  | 
  
  
    1  | 
    Uma  | 
    1.3828  | 
    156.41  | 
    158.41  | 
    158.47  | 
    160.64  | 
    0.312  | 
  
  
    2  | 
    Sujatha  | 
    0.9361  | 
    221.61  | 
    223.61  | 
    223.67  | 
    225.84  | 
    0.348  | 
  
  
    3  | 
    Akash  | 
    0.9647  | 
    224.28  | 
    226.28  | 
    226.34  | 
    228.51  | 
    0.348  | 
  
  
    4  | 
    Shanker  | 
    0.6580  | 
    233.01  | 
    235.01  | 
    235.06  | 
    237.24  | 
    0.355  | 
  
  
    5  | 
    Lindley  | 
    0.6590  | 
    238.38  | 
    240.38  | 
    240.44  | 
    242.61  | 
    0.390  | 
  
  
    6  | 
    Exponential  | 
    0.4079  | 
    261.74  | 
    263.74  | 
    263.80  | 
    265.97  | 
    0.434  | 
  
  Table 3  ML estimates, , AIC, AICC, BIC, K-S of the distributions for the dataset-3
 
 
 
 
 Conclusion and future works
A new lifetime distribution named Uma distribution has been suggested. Statistical properties, estimation of parameter and applications of the distribution has been presented. As the distribution is new one, it is expected and hoped that it will be of great use to statisticians working in the field of modeling lifetime data from different fields of knowledge.
Being a new lifetime distribution with flexibility, tractability and practicability, a lot of future works can be done on Uma distribution.
 
 Acknowledgments
  Author  is really grateful to the Editor-In-Chief of the Journal and the anonymous  reviewer for quick and valuable comments on the paper. 
 
 
 Conflicts of interest 
  There  aren't any conflict of interests.
 
 Funding
 References
  
    - Lindley DV. Fiducial  distributions and Bayes’ theorem. Journal  of the Royal Statistical Society, Series B. 1958;20:102–107.
 
    - Shanker R. Shanker  distribution and its applications. International  Journal of Statistics and Applications. 2015a;5(6):338–348.
 
    - Shanker R. Akash  Distribution and its applications. International  Journal of Probability and Statistics. 2015b;4(3):65–75.
 
    - Shanker R. Sujatha  Distribution and its applications. Statistics  in Transition-New series. 2016a;17(3):391–410.
 
    - Shanker R, Hagos F, Sujatha S. On Modeling of  Lifetimes data using Exponential and Lindley distributions. Biom Biostat Int J. 2015;2(5):140–147.
 
    - Shanker R, Hagos F, Sujatha S. On modeling of lifetime  data using one parameter Akash, Lindley and exponential distributions. Biom Biostat Int J. 2016;3(2):54–62.
 
    - Shanker R, Hagos  F. On modeling of lifetime data using Akash, Shanker, Lindley and exponential distributions. Biom  & Biostat Int J. 2016;3(6):214–224.
 
    - Shaked M,  Shanthikumar JG. Stochastic Orders and  Their Applications. Academic Press, New York: 1994.
 
    - Gross AJ, Clark  VA. Survival Distributions: Reliability Applications in the Biometrical  Sciences. New York: John Wiley. 1975.
 
    - Fuller EJ,  Frieman S, Quinn J, et al. Fracture mechanics approach to the design of glass  aircraft windows: A case study, SPIE Proc 1994;2286:419–430.
 
    - Bader  MG, Priest AM. Statistical aspects of fiber and bundle strength in hybrid  composites. In: Hayashi T, Kawata K, Umekawa S, editors. Progress in Science  in Engineering Composites, ICCM-IV. Tokyo; 1982:1129–1136.
 
  
 
 
  
  ©2022 Shanker. This is an open access article distributed under the terms of the, 
 which 
permits unrestricted use, distribution, and build upon your work non-commercially.