Submit manuscript...
eISSN: 2378-315X

Biometrics & Biostatistics International Journal

Research Article Volume 8 Issue 6

The Weibull-Inverse Lomax (WIL) distribution with Application on Bladder Cancer

Falgore Jamilu Yunusa,1 Doguwa Sani Ibrahim,2 Isah Audu2

1Department of Statistics, Ahmadu Bello University, Nigeria
2Department of Statistics, Federal University of Technology, Nigeria

Correspondence: Falgore Jamilu Yunusa, Department ofStatistics, Ahmadu Bello University, Zaria-Nigeria

Received: November 14, 2019 | Published: December 5, 2019

Citation: Falgore JY, Doguwa SI, Isah A. The Weibull-Inverse Lomax (WIL) distribution with Application on Bladder Cancer. Biom Biostat Int J. 2019;8(5):195-202. DOI: 10.15406/bbij.2019.08.00289

Download PDF

Abstract

In this paper, we introduced a four-parameter probability model called Weibull-Inverse Lomax distribution with decreasing, increasing and bathtub hazard rate function. The WIL distribution density function is J-shaped, positively skewed, and J-shaped in reverse. Some of the mentioned distribution’s statistical characteristics are provided including moments, order statistics, entropy, mean, variance, moment generating function, and quantile function. The method of maximum likelihood estimation was used to estimate the parameters of the model.  The distribution’s importance is proved by its implementation to the bladder cancer data set. Goodness-of-fit of this distribution by various techniques demonstrates that the WIL distribution is empirically better for lifetime application.

Keywords: entropy, moments, moment generating functions, Weibull-Inverse lomax distribution

Introduction

Real life datasets can be fitted by utilizing a lot of existing statistical distributions. However, most of these real-world datasets does not follow these existing statistical distributions. Hence, the need to propose/develop new distributions that could describes some of these situations better and can also provide a better flexibility in the modelling of real-world data sets compared with the baseline distributions. As a result of this fact, researchers have developed many statistical families of distributions and study most of their properties. These include: The Transmuted Weibull lomax distribution by Afify et al.,1 kumaraswamy Marshal-olkin family by Afify et al.,2 Lomax generator by Cordeiro et al.,3 the weibull exponential by Oguntunde et al.,4 kumaraswamy-pareto by Bourguignon et al.,5 weibull-G family by Bourguignon et al.,6 the weibull-dagum distribution by Tahir et al.,7 the generalized transmuted-G family of distributions by Nofal et al.,8 among others. Recently, a lot of extensions of distributions have been proposed and studied based on the Weibull-G family of distributions by Bourguignon et al.,6 Among them is the Tahir, Merovci, Afify, Yousof, and  Oguntunde et al.9-12,4 to mention but few.

Inverse Lomax distribution is a member of Beta-type distribution. Other members of the family include Dagum, lomax, Fisk or log-Logistics, Singh maddala, generalized beta distributions of the second kind among others, as in Kleiber et al.13 If a random variable say Z has a Lomax distribution, then has an Inverse Lomax distribution (ILD). It has been utilized to get the Lorenz ordering relationship among ordered statistics;.14 Apart from this, it has also many applications in economics, actuarial sciences, and stochastic modeling Kleiber C, Kotz S & Kleiber C13,14  have applied this model on geophysical data, specifically on the sizes of land fires in California state of US. Rahman et al.15  have discussed the estimation and prediction challenges for the inverse Lomax distribution via Bayesian approach. Yadav et al.16 have used this distribution for reliability estimation based on Type II censored observations. Some details about the Inverse Lomax distribution including its applications are available in Reyad and Othman, Falgore et al., Maxwell et al., and Hassan and Mohamed.17-23

The main aim of this paper is to provide an extension of the Inverse-Lomax distribution using the Weibull-G generator by Bourguignon et al.6 Therefore, we propose the Weibull-Inverse lomax (WIL) distribution by adding two extra shape parameters to the Inverse Lomax distribution.

The Inverse-Lomax distribution and Weibull G family

The probability density function (pdf) and cumulative distribution function (cdf) of ILD are given by the following equations as define by Yadav et al.16 as:

g(x;γ,λ)=γλx2(1+γx)(1+λ) (1)

G(x;γ,λ)= ( 1+ γ x ) λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4rai aaiIcacaWG4bGaaG4oaiabeo7aNjaaiYcacqaH7oaBcaaIPaGaaGyp amaabmaabaGaaGymaiabgUcaRmaalaaabaGaeq4SdCgabaGaamiEaa aaaiaawIcacaGLPaaadaahaaWcbeqaaiabgkHiTiabeU7aSbaaaaa@4A36@ (2)

where x > 0, γ, λ > 0 are scale and shape parameters respectively.

Letg( x;η ) andG( x;η ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaa aaa8qacaWGmbGaamyzaiaadshacaaMc8Uaam4za8aadaqadaqaa8qa caWG4bGaai4oaiabeE7aObWdaiaawIcacaGLPaaapeGaaeiiaiaadg gacaWGUbGaamizaiaaykW7caWGhbWdamaabmaabaWdbiaadIhacaGG 7aGaeq4TdGgapaGaayjkaiaawMcaaaaa@4E18@ denote the probability density function (pdf) and cumulative distribution function (cdf) of a baseline with parameter vector η and also consider the Weibull Cumulative Density Function (cdf) F( x ) = 1  exp( d x p ) ( for x>0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaa aaa8qacaWGgbWdamaabmaabaWdbiaadIhaa8aacaGLOaGaayzkaaWd biaabccacqGH9aqpcaqGGaGaaGymaiaabccacqGHsislcaqGGaGaam yzaiaadIhacaWGWbWdamaabmaabaWdbiabgkHiTiaadsgacaWG4bWd amaaCaaaleqabaWdbiaadchaaaaak8aacaGLOaGaayzkaaWdbiaabc capaWaaeWaaeaapeGaamOzaiaad+gacaWGYbGaaiiOaiaadIhacqGH +aGpcaaIWaaapaGaayjkaiaawMcaaaaa@5380@ with positive parameters d and p. Based on this cdf, Bourguignon et al.6  replaced the argument x by G( x;η )/1G( x;η ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaa aaa8qacaWGhbWdamaabmaabaWdbiaadIhacaGG7aGaeq4TdGgapaGa ayjkaiaawMcaa8qacaGGVaGaaGymaiabgkHiTiaadEeadaqadaWdae aapeGaamiEaiaacUdacqaH3oaAaiaawIcacaGLPaaaaaa@4715@ , and defined the cdf and the pdf of the Weibull-G family by:

F(x;α,β,η)=1exp{α[G(x;η)G(¯x;η)]β},x;α,β>0, (3)

where G(x;η) is any baseline cdf which depends on a parameter vector η.

f(x;α,β,η)=αβg(x;η) G (x;η) β1 G ¯ (x;η) β+1 exp{ α [ G(x;η) G ¯ (x;η) ] β } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzai aaiIcacaWG4bGaaG4oaiabeg7aHjaaiYcacqaHYoGycaaISaGaeq4T dGMaaGykaiaai2dacqaHXoqycqaHYoGycaWGNbGaaGikaiaadIhaca aI7aGaeq4TdGMaaGykamaalaaabaGaam4raiaaiIcacaWG4bGaaG4o aiabeE7aOjaaiMcadaahaaWcbeqaaiabek7aIjabgkHiTiaaigdaaa aakeaaceWGhbGbaebacaaIOaGaamiEaiaaiUdacqaH3oaAcaaIPaWa aWbaaSqabeaacqaHYoGycqGHRaWkcaaIXaaaaaaakiGacwgacaGG4b GaaiiCamaacmaabaGaeyOeI0IaeqySde2aamWaaeaadaWcaaqaaiaa dEeacaaIOaGaamiEaiaaiUdacqaH3oaAcaaIPaaabaGabm4rayaara GaaGikaiaadIhacaaI7aGaeq4TdGMaaGykaaaaaiaawUfacaGLDbaa daahaaWcbeqaaiabek7aIbaaaOGaay5Eaiaaw2haaaaa@7616@ (4)

The interpretation of the family of distribution above as in Cooray21 is as follows. Let L be a lifetime random variable having a continuous cdf G(x;η), then the odds ratio that an individual (component) following the lifetime L will fail(die) at time x is G( x;η )/1G( x;η ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaa aaa8qacaWGhbWdamaabmaabaWdbiaadIhacaGG7aGaeq4TdGgapaGa ayjkaiaawMcaa8qacaGGVaGaaGymaiabgkHiTiaadEeadaqadaWdae aapeGaamiEaiaacUdacqaH3oaAaiaawIcacaGLPaaaaaa@4715@ . Let’s consider that the variability of this odds is represented by the random variable X and assume that it follows Weibull model with β as shape and α as scale, then

Pr(Lx)=Pr(XG(x;η)G(¯x;η))=F(x;α,β,η),

as given in equation 1 b.

A random variable X with density function in 1a is denoted by X∼Weib G(α,β,η). The extra parameters induced by the Weibull generator are sought just to increase the flexibity of the distribution. If β = 1, it corresponds to the Exponential-Generator by Gupta and Kundu.22

In this context, we proposed and study the WIL distribution based on equations 1a and 1 b.

The Weibull Inverse Lomax (WIL) Distribution

By inserting equation 1 in equation 1b yields the WIL cdf below:

F(x;β,α,λ,γ)=1exp{α[1(1+γx)λ]β} (5)

The pdf corresponding to 5 is given by

f(x;α,β,γ,λ)=αβγλx2(1+γx)(1+λ)(1+γx)λ(1β)[1(1+γx)λ]β+1exp{α[1(1+γx)λ]β}

where α > 0, β > 0 and λ are the shape parameters while γ is the scale parameter. Henceforth, we denote a random variable X having pdf 6 by X∼WIL(α, β, γ, λ).The hazard function h(x), cumulative hazard function H(x), survival function s(x),and reversed hazard rate r(x) of X are given by

h(x;α,β,γ,λ)=αβγλx2(1+γx)(1+λ)(1+γx)λβ[1(1+γx)λ]β+1 (7)

H(x;α,β,γ,λ)=α [ 1 ( 1+ γ x ) λ ] β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisai aaiIcacaWG4bGaaG4oaiabeg7aHjaaiYcacqaHYoGycaaISaGaeq4S dCMaaGilaiabeU7aSjaaiMcacaaI9aGaeqySde2aamWaaeaacaaIXa GaeyOeI0YaaeWaaeaacaaIXaGaey4kaSYaaSaaaeaacqaHZoWzaeaa caWG4baaaaGaayjkaiaawMcaamaaCaaaleqabaGaeq4UdWgaaaGcca GLBbGaayzxaaWaaWbaaSqabeaacqGHsislcqaHYoGyaaaaaa@55F4@ (8)

s(x;α,β,γ,λ)=exp{ α [ 1 ( 1+ γ x ) λ ] β } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Cai aaiIcacaWG4bGaaG4oaiabeg7aHjaaiYcacqaHYoGycaaISaGaeq4S dCMaaGilaiabeU7aSjaaiMcacaaI9aGaciyzaiaacIhacaGGWbWaai WaaeaacqaHXoqydaWadaqaaiaaigdacqGHsisldaqadaqaaiaaigda cqGHRaWkdaWcaaqaaiabeo7aNbqaaiaadIhaaaaacaGLOaGaayzkaa WaaWbaaSqabeaacqaH7oaBaaaakiaawUfacaGLDbaadaahaaWcbeqa aiabgkHiTiabek7aIbaaaOGaay5Eaiaaw2haaaaa@5B35@ (9)

r(x;α,β,γ,λ)=αβγλx2(1+γx)(1+λ)(1+γx)λ(1β)[1(1+γx)λ]β+1exp{α[1(1+γx)λ]β}1exp{α[1(1+γx)λ]β} (10) 

Shapes of the Weibull-Inverse Lomax PDF, CDF, hazard and survival functions

The graphs below shows the shapes of the WIL density at various selected parameter values (Figure 1).

Figure 1 1a: Is the pdf of WIL which is unimodal and right skewed, 1b:Is the cdf of WIL which is J-shape which approaches each of the orthogonal axes asymptotically, 1c: Is the hazard function (bathtub curve) of WIL which is a decreasing failure rate function and lastly,1d: Is the survival function which shows that the probability that a subject will survive beyond time t, and its also a decreasing function.

Mixture representation

By inserting equations 2 and 1 in 1a we have

f(x;α,β,γ,λ)=αβγλx2(1+γx)(1+λ)((1+γx)λ)β1(1(1+γx)λ)β+1exp{α[(1+γx)λ1(1+γx)λ]β} (11)

Let E be the last term of equation 11, by expanding E using power series

E=i=0(1)iαii![(1+γx)λ]iβ[1(1+γx)λ]iβ

By inserting this expansion in equation 11 and after some algebra, we have

f(x;α,β,γ,λ)=i=0(1)iαi+1i!βγλ(1+γx)λ[β(i+1)]1[1(1+γx)λ][β(i+1)+1]

let

After simplifications and some algebra, we have

f(x;α,β,γ,λ)=γλ[β(i+1)+j]i,j=0Ui,j(1+γx)λ[β(i+1)+j]1x2 (12)

Where Ui,j=(1)iαi+1βi!j!Γ(β(i+1)+j+1)Γ(β(i+1)+1)β(i+1)+j

Equation 12 reduces to

f(x;α,β,γ,λ)=i,j=0Ui,jhβ(i+1)+j(x) (13)

Where hβ(i+1)+j(x)=γλ[β(i+1)+j]x2(1+γx)λ[β(i+1)+j]1 is the Inverse

Lomax density. By integrating Equation 13, the cdf of X can be given in the mixture form

F(x;α,β,γ,λ)=i,j=0Ui,jHβ(i+1)+j(x) (14)

Equation 13 above is the major result of this section.

Statistical Properties

Quantile function and median

Quantile function is used in drawing a sample from a particular distribution function. The quantile function of the WIL distribution is the inverse of 5 and is given by

Qu=γ[1(log(1u)α)1β]1λ1 (15)

where u∼ uniform(0,1) and random numbers can easily be generated from the WIL distribution using x=γ[1(log(1u)α)1β]1λ1

The median of the WIL distribution can be derived by setting u = 0.5 in 16 to be

Median=γ[1(log(0.5)α)1β]1λ1 (16) 

Moments

Must of the basic features and characteristics of a distribution can be studied through moments (for example kurtosis, tendency, skewness and dispersion). Theorem 4.1 If X∼WIL (α, β, γ, λ) then the rth moments of X is given as

μr'=i,j=0Ui,jλ[β(i+1)+j]γrB(1r,λ(β(i+1)+j)+r),r=1,2,3,4 (17)

Proof.

Let start the prove with the well known definition of the rth moment of the random variable X with probability density function f(x;α,β,γ,λ) given by

μ r ' = 0 X r f(x)dx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0 2aa0baaSqaaiaadkhaaeaacaWGNaaaaOGaaGypamaapedabeWcbaGa aGimaaqaaiabg6HiLcqdcqGHRiI8aOGaamiwamaaCaaaleqabaGaam OCaaaakiaadAgacaaIOaGaamiEaiaaiMcacaWGKbGaamiEaaaa@48B7@

By substituting 13 in the above, we get

μr'=i,j=0Ui,jγλ[β(i+1)+j]0Xr2(1+γx)λ[β(i+1)+j]1dx

By letting y=( 1+ γ x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibi aadMhacaaI9aqcfa4aaeWaaOqaaKqzGeGaaGymaiabgUcaRKqbaoaa laaakeaajugibiabeo7aNbGcbaqcLbsacaWG4baaaaGccaGLOaGaay zkaaaaaa@42CA@ and using the relation B(p,q)=0xm1(1+x)m+ndx as in

(4) and some simplifications, we have equation 17.

The mean and the variance of the WIL distribution are:

E(X)=μ1'=i,j=0Ui,jλ[β(i+1)+j]γB(0,λ(β(i+1)+j)+1) (18)

Var(X)=E( X 2 ) [E(X)] 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvai aadggacaWGYbGaaGikaiaadIfacaaIPaGaaGypaiaadweacaaIOaGa amiwamaaCaaaleqabaGaaGOmaaaakiaaiMcacqGHsislcaaIBbGaam yraiaaiIcacaWGybGaaGykaiaai2fadaahaaWcbeqaaiaaikdaaaaa aa@4931@

=i,j=0Ui,jλ[β(i+1)+j]γ2B(1,λ(β(i+1)+j)+2) [i,j=0Ui,jλ[β(i+1)+j]γB(0,λ(β(i+1)+j)+1)]2

Moment generating function

Theorem4.2 If X∼WIL (α,β,γ,λ) then the moment generating function (mgf) of X is given as

M x (t)= r=0 t r r! μ r ' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytam aaBaaaleaacaWG4baabeaakiaaiIcacaWG0bGaaGykaiaai2dadaae WbqabSqaaiaadkhacaaI9aGaaGimaaqaaiabg6HiLcqdcqGHris5aO WaaSaaaeaacaWG0bWaaWbaaSqabeaacaWGYbaaaaGcbaGaamOCaiaa igcaaaGaeqiVd02aa0baaSqaaiaadkhaaeaacaWGNaaaaaaa@4B82@ (20)

Proof

By definition, the mgf of a random variable X with density f(x) is given

M x (t)= e tx f(x)dx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytam aaBaaaleaacaWG4baabeaakiaaiIcacaWG0bGaaGykaiaai2dadaWd XaqabSqaaiabgkHiTiabg6HiLcqaaiabg6HiLcqdcqGHRiI8aOGaam yzamaaCaaaleqabaGaamiDaiaadIhaaaGccaWGMbGaaGikaiaadIha caaIPaGaamizaiaadIhaaaa@4C3A@

By substituting etx=r=0t(x)rr! in the above definition, we have

Mx(t)=r=0trr!xrf(x)dx=r=0trr!xrf(x)dx=r=0trr!μr' .

Order statistics

Order statistics are used in many areas of statistical theories and practices, for instance, detection of outlier in statistical quality control processes. In this section, we derive the closed form expressions for the pdf of the ith order statistic of the Weibull Inverse Lomax distribution. Suppose is a random sample from a distribution with pdf f(x) and Let denotes the corresponding order statistics obtained from this sample. Then

fi:n(x)=fxB(i,ni+1)Fxi1[1F(x)]ni (21)

Where f(x) and F(x) are the pdf and cdf of Weibull Inverse Lomax distribution. Using the binomial expansion on

[ 1 F( x ) ] n 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=Be9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaae aaqaaaaaaaaaWdbiaaigdacaqGGaGaeyOeI0IaamOra8aadaqadaqa a8qacaWG4baapaGaayjkaiaawMcaaaGaay5waiaaw2faamaaCaaale qabaWdbiaad6gaaaGcpaWaaWbaaSqabeaapeGaeyOeI0IaaGymaaaa aaa@431B@ ,

We have [1F(x)]n1=k=0()(1)kF(x)k by substituting back in the above equation

fi:n(x)=f(x)B(i,ni+1)k=0(1)k(nik)F(x)kF(x)i1 =f(x)B(i,ni+1)k=0(1)k(nik)F(x)i+k1 (22)

By expanding the last term and further simplifications and algebra, we have

fi:n(x)=n,p=0Un,phβ(n+i+1)+j+p(x) (23)

Where

Un,p=i,j,k,m=0(1)i+k+m+n+pαi+n+1β[i+k+m1]nΓ(β(i+1)+j+1)i!j!n!B(i,ni+1)(β(n+i+1)+j+p)Γ(β(i+1)+1) ×( ni k )( nβ p )( i+k1 m ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=Be9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey41aq 7aaeWaaeaafaqabeGabaaabaGaamOBaiabgkHiTiaadMgaaeaacaWG RbaaaaGaayjkaiaawMcaamaabmaabaqbaeqabiqaaaqaaiaad6gacq aHYoGyaeaacaWGWbaaaaGaayjkaiaawMcaamaabmaabaqbaeqabiqa aaqaaiaadMgacqGHRaWkcaWGRbGaeyOeI0IaaGymaaqaaiaad2gaaa aacaGLOaGaayzkaaaaaa@4B8B@

and

hβ(n+i+1)+j+p(x)=γλ[β(i+n+1)+j+p]x2(1+γx)λ[β(i+n+1)+j+p]

denotes the Inverse lomax density function with parameters γandλ[ β( i+n+ 1 ) +j+p ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=Be9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaa aaa8qacqaHZoWzcaWGHbGaamOBaiaadsgacqaH7oaBpaWaamWaaeaa peGaeqOSdi2damaabmaabaWdbiaadMgacqGHRaWkcaWGUbGaey4kaS Iaaeiiaiaaigdaa8aacaGLOaGaayzkaaWdbiaabccacqGHRaWkcaWG QbGaey4kaSIaamiCaaWdaiaawUfacaGLDbaaaaa@4D24@

Entropy

Rényi Entropy

The entropy of a random variable X is a measure of uncertain variation. we defined Rényi entropy by

I(ζ)1(1ζ)log[0fζ(x)dx,]ζ>0 and ζ1

By replacing f(x) with equation (13) we have

I(ζ)=1(1ζ)log[A0x2ζ(1+γx)λζ[ζβ(I+1)+j]1dx,] which can be reduced to

I(ζ)1(1ζ)log[A0yλζ[ζβ(I+1)+j]1dy,] (24)

Where

A=i,j=0(i)iζαi+1(λβ)ζζβ(I+1)+jΓ(ζβ(i+1)j+1)i!j!Γ(ζβ(i+1)+1)ζβ(i+1)+j

q-entropy

The q-entropy, say E q (f) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyram aaBaaaleaacaWGXbaabeaakiaaiIcacaWGMbGaaGykaaaa@3D09@ is defined by Eq(f)=1q1log[1Iq(f)] ,

Where Iq(f)=fq(x)dx,q>0 and q1 . From equation (24), we can obtain

Eq(f)=1q1log[1[C0yλq[qβ(I+1)+j]1dy,]] (25)

Where C=i,j=0(i)iqαi+1(λβ)qqβ(I+1)+jΓ(ζβ(i+1)j+1)i!j!Γ(qβ(i+1)+1)qβ(i+1)+j

Estimation

Many parameter estimation techniques have been advocated in the literature, but the maximum likelihood method is the most frequently used. Furthermore, the MLEs have desirable properties and can be used to establish confidence intervals. The estimate of normality for these estimators is readily treated either numerically or analytically in the theory of large sample distribution. In this section, we determine the maximum likelihood estimates (MLEs) of the parameters of the Weibull Inverse Lomax distribution from complete samples only. Let x 1 , x 2 , x 3 ,......, x n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEam aaBaaaleaacaaIXaaabeaakiaacYcacaWG4bWaaSbaaSqaaiaaikda aeqaaOGaaiilaiaadIhadaWgaaWcbaGaaG4maaqabaGccaGGSaGaai Olaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiilaiaadIhadaWg aaWcbaGaamOBaaqabaaaaa@4798@ be the observed values from the WIL distribution with parameter space θ=  ( α, β, γ, λ ) T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaa aaa8qacqaH4oqCcqGH9aqpcaqGGaWdamaabmaabaWdbiabeg7aHjaa cYcacaqGGaGaeqOSdiMaaiilaiaabccacqaHZoWzcaGGSaGaaeiiai abeU7aSbWdaiaawIcacaGLPaaadaahaaWcbeqaa8qacaWGubaaaaaa @49A3@ be the r×1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaa aaa8qacaWGYbGaey41aqRaaGymaaaa@3CAC@ parameter vector. The log-likelihood function for θ is given by

l(θ)=nlog(αβγλ)2i=1nlogxi(1+λ)i=1nlog(1+γxi)+(β1)i=1nlog(1+γxi)λ (β+1)i=1nlog(1(1+γxi))αi=1n[(1+γxi)1(1+γxi)]β (26)

Differentiating l( θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaa aaa8qacaWGSbWdamaabmaabaWdbiabeI7aXbWdaiaawIcacaGLPaaa aaa@3D41@ with respect to each parameter α,β,γ and λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaa aaa8qacqaHXoqycaGGSaGaeqOSdiMaaiilaiabeo7aNjaabccacaWG HbGaamOBaiaadsgacaqGGaGaeq4UdWgaaa@44E6@ and setting the result equals to zero, we obtain maximum likelihood estimates (MLEs). The partial derivatives of l( θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaa aaa8qacaWGSbWdamaabmaabaWdbiabeI7aXbWdaiaawIcacaGLPaaa aaa@3D41@ with respect to each parameter or the score function is given by:

W n (θ)=( l α , l β , l γ , l λ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vam aaBaaaleaacaWGUbaabeaakiaaiIcacqaH4oqCcaaIPaGaaGypamaa bmaabaWaaSaaaeaacqGHciITcaWGSbaabaGaeyOaIyRaeqySdegaai aaiYcadaWcaaqaaiabgkGi2kaadYgaaeaacqGHciITcqaHYoGyaaGa aGilamaalaaabaGaeyOaIyRaamiBaaqaaiabgkGi2kabeo7aNbaaca aISaWaaSaaaeaacqGHciITcaWGSbaabaGaeyOaIyRaeq4UdWgaaaGa ayjkaiaawMcaaaaa@5824@

where

lα=nα+i=1n[1(1+γx)λ]βαβ1 (27)

lβ=nβλi=1nlog(1+γxi)i=1nlog[1(1+γxi)λ]+αi=1n[1(1+γxi)λ]β ×log(αi=1n[1(1+γxi)λ]) (28)

lγ=nγ(λβ+1)(i=1nxi+γ)1(β+1)i=1nλ(xi+γ)((1+γxi)λ1) +αi=1nβλ(1+γxi)λ[1(1+γx)λ]β1(γ+xi)1 (29)

lλ=nλβi=1nlog(1+γxi)(β+1)i=1nlog(1+γxi)[(1+γxi)λ1]1 +αi=1nβ(1+γxi)λlog(1+γxi)[1(1+γxi)]β1 (30)

Application

In this section, we illustrate the applicability of the WIL distribution to the monthly remission of the 128 bladder cancer patients as reported by Maxwell et al.23 We estimated the parameters of each model by the method of Maximum Likelihood Estimation (MLE) using Simulated ANNealing (SANN) method. The goodness of fit statistics used in comparing the performances are Akaike Information Criterion AIC and Bayesian Information Criterion. Smaller values of the AIC and BIC statistics indicates better model fittings. Throughout the analysis, we used log-likelihood (- ll) value to derive the AIC and BIC by using the following relations: AIC = −2(−ll) + 2p and BIC = −2(−ll) + plog(n) where p is the number of parameters and n is the sample size. The data is given below:

0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.23, 3.52, 4.98, 6.97,

9.02, 13.29, 0.40, 2.26, 3.57, 5.06, 7.09, 9.22, 13.80, 25.74, 0.50, 2.46, 3.64,

5.09, 7.26, 9.47, 14.24, 25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 14.76, 26.31,

0.81, 2.62, 3.82, 5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32, 7.39, 10.34,

14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66, 15.96, 36.66, 1.05, 2.69, 4.23 , 5.41, 7.62, 10.75, 16.62, 43.01, 1.19, 2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26 ,

2.83, 4.33, 5.49, 7.66, 11.25, 17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 17.36,

1.40, 3.02, 4.34, 5.71, 7.93, 11.79, 18.10, 1.46, 4.40, 5.85, 8.26, 11.98, 19.13 , 1.76, 3.25, 4.50, 6.25, 8.37, 12.02, 2.02, 3.31, 4.51, 6.54, 8.53, 12.03, 20.28 ,

2.02, 3.36, 6.76, 12.07, 21.73, 2.07, 3.36, 6.93, 8.65, 12.63, 22.69. Firstly, it is usual to begin the analysis with plots of empirical distribution function and the histogram (density plot), as in figure 2a and Table 1. The left-hand plot is the histogram on a density scale and the right-hand plot is the empirical cumulative distribution function (CDF). While figure 2b is the skewness-kurtosis plot as proposed by Cullen & Aral et al.,24,25 in which the values for common distributions are displayed in order to guide the researcher for the choice of distributions to fit the data set. As in our case, Weibull distribution is suggested. For this data, we fit Weibull-Inverse Lomax (WIL) distribution defined in equation (6). Its fit is also compared with the Weibull-Lomax distribution by Tahir et al.,9 Weibull-Frechet by Atify et al.,11 Odd generalized exponential inverse lomax distribution by Falgore et al.,18 and Inverse lomax distribution as in Rahman et al.15 with the pdfs given below:

Figure 2 2a is the empirical and cdf plots of the data set and 2b is the Skewness-kurtosis plot for a bladder cancer patients data set.

Minimum

Maximum

Median

Mean

Est. Sd

Est.Skewness

Est.Kurtosis

0.08

79.05

6.395

9.3656

10.5083

3.325

19.1537

Table 1 Summary Statistics of the Cancer patients’ data set

f(x;α,β,γ,λ)= γλα β [ 1+( x β ) ] λα1 { 1 [ 1+( x β ) ] α } λ1 exp{ α [ ( 1+ x β ) α 1 ] λ } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzai aaiIcacaWG4bGaaG4oaiabeg7aHjaaiYcacqaHYoGycaaISaGaeq4S dCMaaGilaiabeU7aSjaaiMcacaaI9aWaaSaaaeaacqaHZoWzcqaH7o aBcqaHXoqyaeaacqaHYoGyaaWaamWaaeaacaaIXaGaey4kaSYaaeWa aeaadaWcaaqaaiaadIhaaeaacqaHYoGyaaaacaGLOaGaayzkaaaaca GLBbGaayzxaaWaaWbaaSqabeaacqaH7oaBcqaHXoqycqGHsislcaaI XaaaaOWaaiWaaeaacaaIXaGaeyOeI0YaamWaaeaacaaIXaGaey4kaS YaaeWaaeaadaWcaaqaaiaadIhaaeaacqaHYoGyaaaacaGLOaGaayzk aaaacaGLBbGaayzxaaWaaWbaaSqabeaacqGHsislcqaHXoqyaaaaki aawUhacaGL9baadaahaaWcbeqaaiabeU7aSjabgkHiTiaaigdaaaGc ciGGLbGaaiiEaiaacchadaGadaqaaiabgkHiTiabeg7aHnaadmaaba WaaeWaaeaacaaIXaGaey4kaSYaaSaaaeaacaWG4baabaGaeqOSdiga aaGaayjkaiaawMcaamaaCaaaleqabaGaeqySdegaaOGaeyOeI0IaaG ymaaGaay5waiaaw2faamaaCaaaleqabaGaeq4UdWgaaaGccaGL7bGa ayzFaaaaaa@80B8@ ×exp{ γ ( exp{ ( α x ) β }1 ) λ } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey41aq RaamyzaiaadIhacaWGWbWaaiWaaeaacqGHsislcqaHZoWzdaqadaqa aiaadwgacaWG4bGaamiCamaacmaabaWaaeWaaeaadaWcaaqaaiabeg 7aHbqaaiaadIhaaaaacaGLOaGaayzkaaWaaWbaaSqabeaacqaHYoGy aaaakiaawUhacaGL9baacqGHsislcaaIXaaacaGLOaGaayzkaaWaaW baaSqabeaacqGHsislcqaH7oaBaaaakiaawUhacaGL9baaaaa@539E@

f(x;α,β,γ,λ)=αβγλ ( 1+( β x ) ) α1 exp{ λ 1 ( β x +1 ) α } { 1exp{ λ 1 ( β x +1 ) α } } α1 × [ x 2 [ ( β x +1 ) α 1 ] 2 ] 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzai aaiIcacaWG4bGaaG4oaiabeg7aHjaaiYcacqaHYoGycaaISaGaeq4S dCMaaGilaiabeU7aSjaaiMcacaaI9aGaeqySdeMaeqOSdiMaeq4SdC Maeq4UdW2aaeWaaeaacaaIXaGaey4kaSYaaeWaaeaadaWcaaqaaiab ek7aIbqaaiaadIhaaaaacaGLOaGaayzkaaaacaGLOaGaayzkaaWaaW baaSqabeaacqaHXoqycqGHsislcaaIXaaaaOGaamyzaiaadIhacaWG WbWaaiWaaeaadaWcaaqaaiabeU7aSbqaaiaaigdacqGHsisldaqada qaamaalaaabaGaeqOSdigabaGaamiEaaaacqGHRaWkcaaIXaaacaGL OaGaayzkaaWaaWbaaSqabeaacqaHXoqyaaaaaaGccaGL7bGaayzFaa WaaiWaaeaacaaIXaGaeyOeI0IaamyzaiaadIhacaWGWbWaaiWaaeaa daWcaaqaaiabeU7aSbqaaiaaigdacqGHsisldaqadaqaamaalaaaba GaeqOSdigabaGaamiEaaaacqGHRaWkcaaIXaaacaGLOaGaayzkaaWa aWbaaSqabeaacqaHXoqyaaaaaaGccaGL7bGaayzFaaaacaGL7bGaay zFaaWaaWbaaSqabeaacqaHXoqycqGHsislcaaIXaaaaOGaey41aq7a amWaaeaacaWG4bWaaWbaaSqabeaacaaIYaaaaOWaamWaaeaadaqada qaamaalaaabaGaeqOSdigabaGaamiEaaaacqGHRaWkcaaIXaaacaGL OaGaayzkaaWaaWbaaSqabeaacqaHXoqyaaGccqGHsislcaaIXaaaca GLBbGaayzxaaWaaWbaaSqabeaacaaIYaaaaaGccaGLBbGaayzxaaWa aWbaaSqabeaacqGHsislcaaIXaaaaaaa@9371@

f(x;γ,λ)=γλx2(1+γx)(1+λ)

for 0< x < andα,β,γand λ >0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaa aaa8qacaaIWaGaeyipaWJaaeiiaiaadIhacaqGGaGaeyipaWJaeyOh IuQaaeiiaiaadggacaWGUbGaamizaiaaykW7cqaHXoqycaGGSaGaeq OSdiMaaiilaiaaykW7cqaHZoWzcaaMc8Uaamyyaiaad6gacaWGKbGa aiiOaiabeU7aSjaabccacqGH+aGpcaaIWaGaaiOlaaaa@5657@

Concluding remarks

We have successfully proposed a flexible WIL distribution by extending the weibull-G family of Bourguignon et al.6 We have derived and studied some properties of this distribution including mean, variance, quantile, moments, moment generating function, entropies and order statistics. The parameters of the distribution were estimated by employing the method of maximum likelihood. Finally, an application of the WIL distribution to real data set is presented to show the importance and flexibility of the distribution. The AIC and BIC in Table 2 shows that the WIL distribution is the best model fitted.

Estimates

- ll

AIC

BIC

Model

α

β

γ

λ

WIL(α,β,γ,λ)

38.6899

0.0932

4.1773

15.7365

-353.4222

714.8443

726.252

WL(α,β,γ,λ)

13.2986

1.3366

0.2175

10.4948

-410.4509

828.901

840.309

WFr(α,β,γ,λ)

2.3452

0.3144

0.7016

26.8016

-621.6075

1251.215

1262.62

OGE-IL(α,β,γ,λ)

0.8749

2.5967

1.4153

15.8219

-412.9428

833.8856

845.293

IL(γ,λ)

-

-

2.0036

2.4603

-424.6757

853.3514

868.759

Table 1 Amplitude in mill volts of the Lead-1 of electrocardiography in sheep

*Significant (P≤0.05); NSNot significant (P>0.05)

Acknowledgments

No funding for this project and also no conflicts of interest among the authors.

References

  1. Afify AZ, Nofal ZM, Yousof HM, et al. The transmuted weibull lomax distribution: properties and application. Pakistan Journal of Statistics and Operation Research. 2015;11(1):135–152.
  2. Alizadeh M, Tahir M, Cordeiro GM, et al. The kumaraswamy marshal-olkin family of distributions. Journal of the Egyptian Mathematical Society. 2015;23(3):546–557.
  3. Cordeiro GM, Ortega EM, Popovic BV, et al. The lomax generator of distributions: Properties, minification process and regression model. Applied Mathematics and Computation, 2014;247:465–486.
  4. Oguntunde P, Balogun O, Okagbue H, et al. The weibull-exponential distribution: Its properties and applications. Journal of Applied Sciences, 2015;15(11):1305–1311.
  5. Bourguignon M, Silva RB, Zea LM, et al. The kumaraswamy pareto distribution. Journal of Statistical Theory and Applications. 2013;12(2):129–144.
  6. Bourguignon M, Silva RB, Cordeiro GM. The weibull-g family of probability distributions. Journal of Data Science. 2014;12(1):53–68.
  7. Tahir M, Cordeiro GM, Mansoor M, et al. The weibull–dagum distribution: Properties and applications. Communications in Statistics-Theory and Methods. 2016;45(24):7376–7398.
  8. Nofal ZM, Afify AZ, Yousof HM, et al. The generalized transmuted-g family of distributions. Communications in Statistics-Theory and Methods. 2017;46(8):4119–4136.
  9. Tahir M, Cordeiro GM, Mansoor M, et al. The weibull-lomax distribution: properties and applications. Hacettepe Journal of Mathematics and Statistics. 2015;44(2):461–480.
  10. Merovci F, Elbatal I. Weibull rayleigh distribution: Theory and applications. Applied Mathematics & Information Sciences. 2015;9(4):2127.
  11. Afify A, Yousof H, Cordeiro G, et al. The weibull fréchet distribution and its applications. Journal of Applied Statistics. 2016;43(14):2608–2626.
  12. Yousof HM, Rasekhi M, Afify A. et al. The beta weibull-g family of distributions: Theory, characterizations and applications. Pakistan Journal of Statistics. 2017;33(2).
  13. Kleiber C, Kotz S. Statistical size distributions in economics and actuarial sciences. John Wiley & Sons.2003;470.
  14. Kleiber C. Lorenz ordering of order statistics from log-logistic and related distributions. Journal of Statistical Planning and Inference. 2004;120(1-2):13–19.
  15. Rahman J, Aslam M, Ali S. Estimation and prediction of inverse lomax model via bayesian approach. Caspian Journal of Applied Sciences Research. 2013;2(3):43–56.
  16. Yadav AS, Singh SK, Singh U. On hybrid censored inverse lomax distribution: Application to the survival data. Statistica. 2016;76(2):185–203.
  17. Reyad HM, Othman SA. E-bayesian estimation of two component mixture of inverse lomax distribution based on type-i censoring scheme. Journal of Advances in Mathematics and Computer Science. 2018;26:1–22.
  18. Falgore JY, Aliyu Y, Umar AA, et al. Odd generalized exponential-inverse lomax distribution: Properties and application. Journal of the Nigerian association of Mathematical physics, volume 47:147-156.
  19. Maxwell O, Friday A, Chukwudike N, et al. A theoretical analysis of the odd generalized exponentiated inverse lomax distribution. Biom Biostat Int J. 2019b;8(1):17–22.
  20. Yakubu A, Doguwa SI. On the properties of the weibullburr iii distribution and its application to uncensored and censored survival data. CBN Journal of Applied Statistics, 2017;8(2):91–116.
  21. Cooray K. Generalization of the weibull distribution: the odd weibull family. Statistical Modelling. 2006;6(3):265–277.
  22. Gupta RD, Kundu D. Theory & methods: Generalized exponential distributions. Australian & New Zealand Journal of Statistics. 1999;41(2):173–188.
  23. Maxwell O, Chukwu AU, Oyamakin OS, et al. The marshall-olkin inverse lomax distribution (mo-ild) with application on cancer stem cell. Journal of Advances in Mathematics and Computer Science. 2019a;1–12.
  24. Cullen AC, Frey HC, Frey CH. Probabilistic techniques in exposure assessment: a handbook for dealing with variability and uncertainty in models and inputs. Springer Science & Business Media. 1999.
  25. Aral A, Gupta V. (p,q)-type beta functions of second kind. Advances in Operator Theory. 2016;1(1):134–146.
Creative Commons Attribution License

©2019 Falgore, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.