Submit manuscript...
eISSN: 2378-315X

Biometrics & Biostatistics International Journal

Research Article Volume 6 Issue 3

Size-biased poisson-garima distribution with applications

Rama Shanker, Kamlesh Kumar Shukla

Department of Statistics, Eritrea Institute of Technology, Eritrea

Correspondence: Rama Shanker, Department of Statistics, Eritrea Institute of Technology, Asmara, Eritrea

Received: August 23, 2017 | Published: August 28, 2017

Citation: Shanker R, Shukla KK. Size-biased poisson-garima distribution with applications. Biom Biostat Int J. 2017;6(3):335-340. DOI: 10.15406/bbij.2017.06.00167

Download PDF

Abstract

In this paper, a size-biased Poisson-Garima distribution (SBPGD) has been obtained by size-biasing the Poisson-Garima distribution (PGD) introduced by Shanker (2017). The moments about origin and moments about mean have been obtained and hence expressions for coefficient of variation (C.V.), skewness and Kurtosis have been obtained. The estimation of its parameter using the method of moment and the method of maximum likelihood estimation has been discussed. The goodness of fit of SBPGD has been discussed for two real data sets using maximum likelihood estimate and the fit shows quite satisfactory over size-biased Poisson distribution (SBPD) and size-biased Poisson-Lindley distribution (SBPLD).

Keywords: garima distribution, poisson-garima distribution, size-biasing, moments, estimation of parameter, goodness of fit

Introduction

Shanker1 has obtained Poisson-Garima distribution (PGD) for modeling count data having probability mass function (p.m.f.)

P 0 ( x;θ )= θ θ+2 θx+( θ 2 +3θ+1 ) ( θ+1 ) x+2  ; x=0,1,2,...,θ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGqbWaaSbaaKqbGeaacaaIWaaajuaGbeaadaqadaqaaiaadIhacaGG 7aGaeqiUdehacaGLOaGaayzkaaGaeyypa0ZaaSaaaeaacqaH4oqCae aacqaH4oqCcqGHRaWkcaaIYaaaamaalaaabaGaeqiUdeNaamiEaiab gUcaRmaabmaabaGaeqiUde3aaWbaaeqajuaibaGaaGOmaaaajuaGcq GHRaWkcaaIZaGaeqiUdeNaey4kaSIaaGymaaGaayjkaiaawMcaaaqa amaabmaabaGaeqiUdeNaey4kaSIaaGymaaGaayjkaiaawMcaamaaCa aabeqcfasaaiaadIhacqGHRaWkcaaIYaaaaaaajuaGcaqGGaGaae4o aiaabccacaWG4bGaeyypa0JaaGimaiaacYcacaaIXaGaaiilaiaaik dacaGGSaGaaiOlaiaac6cacaGGUaGaaiilaiaaykW7caaMc8UaeqiU deNaeyOpa4JaaGimaaaa@6D21@  (1.1)

The first four moments about origin and the variance of PGD obtained by Shanker1 are as follows:

μ 1 = θ+3 θ( θ+2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcu aH8oqBgaqbamaaBaaajuaibaGaaGymaaqcfayabaGaeyypa0ZaaSaa aeaacqaH4oqCcqGHRaWkcaaIZaaabaGaeqiUde3aaeWaaeaacqaH4o qCcqGHRaWkcaaIYaaacaGLOaGaayzkaaaaaaaa@4691@  , μ 2 = θ 2 +5θ+8 θ 2 ( θ+2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcu aH8oqBgaqbamaaBaaajuaibaGaaGOmaaqcfayabaGaeyypa0ZaaSaa aeaacqaH4oqCdaahaaqabKqbGeaacaaIYaaaaKqbakabgUcaRiaaiw dacqaH4oqCcqGHRaWkcaaI4aaabaGaeqiUde3aaWbaaeqajuaibaGa aGOmaaaajuaGdaqadaqaaiabeI7aXjabgUcaRiaaikdaaiaawIcaca GLPaaaaaaaaa@4D22@  , μ 3 = θ 3 +9 θ 2 +30θ+30 θ 3 ( θ+2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcu aH8oqBgaqbamaaBaaajuaibaGaaG4maaqcfayabaGaeyypa0ZaaSaa aeaacqaH4oqCdaahaaqabKqbGeaacaaIZaaaaKqbakabgUcaRiaaiM dacqaH4oqCdaahaaqabKqbGeaacaaIYaaaaKqbakabgUcaRiaaioda caaIWaGaeqiUdeNaey4kaSIaaG4maiaaicdaaeaacqaH4oqCdaahaa qabKqbGeaacaaIZaaaaKqbaoaabmaabaGaeqiUdeNaey4kaSIaaGOm aaGaayjkaiaawMcaaaaaaaa@5387@

μ 4 = θ 4 +17 θ 3 +92 θ 2 +204θ+144 θ 4 ( θ+2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcu aH8oqBgaqbamaaBaaajuaibaGaaGinaaqcfayabaGaeyypa0ZaaSaa aeaacqaH4oqCdaahaaqabKqbGeaacaaI0aaaaKqbakabgUcaRiaaig dacaaI3aGaeqiUde3aaWbaaeqajuaibaGaaG4maaaajuaGcqGHRaWk caaI5aGaaGOmaiabeI7aXnaaCaaabeqcfasaaiaaikdaaaqcfaOaey 4kaSIaaGOmaiaaicdacaaI0aGaeqiUdeNaey4kaSIaaGymaiaaisda caaI0aaabaGaeqiUde3aaWbaaeqajuaibaGaaGinaaaajuaGdaqada qaaiabeI7aXjabgUcaRiaaikdaaiaawIcacaGLPaaaaaaaaa@5B72@  , and μ 2 = θ 3 +6 θ 2 +12θ+7 θ 2 ( θ+2 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aH8oqBdaWgaaqcfasaaiaaikdaaKqbagqaaiabg2da9maalaaabaGa eqiUde3aaWbaaeqajuaibaGaaG4maaaajuaGcqGHRaWkcaaI2aGaeq iUde3aaWbaaeqajuaibaGaaGOmaaaajuaGcqGHRaWkcaaIXaGaaGOm aiabeI7aXjabgUcaRiaaiEdaaeaacqaH4oqCdaahaaqabKqbGeaaca aIYaaaaKqbaoaabmaabaGaeqiUdeNaey4kaSIaaGOmaaGaayjkaiaa wMcaamaaCaaabeqcfasaaiaaikdaaaaaaaaa@53CC@

The detailed discussion about its properties, estimation of parameter, and applications has been discussed by Shanker1 and it has been shown that it is better than Poisson and Poisson-Lindley distributions for modeling count data in various fields of knowledge. The PGD arises from the Poisson distribution when its parameter λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aH7oaBaaa@39ED@ follows Garima distribution introduced by Shanker2 having probability density function (p.d.f.)

f 0 ( λ;θ )= θ θ+2 ( 1+θ+θλ ) e θλ ;λ>0,θ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGMbWaaSbaaKqbGeaacaaIWaaajuaGbeaadaqadaqaaiabeU7aSjaa cUdacqaH4oqCaiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiabeI7aXb qaaiabeI7aXjabgUcaRiaaikdaaaWaaeWaaeaacaaIXaGaey4kaSIa eqiUdeNaey4kaSIaeqiUdeNaaGPaVlabeU7aSbGaayjkaiaawMcaai aadwgadaahaaqabKqbGeaacqGHsislcqaH4oqCcaaMc8Uaeq4UdWga aKqbakaaykW7caaMc8UaaGPaVlaacUdacqaH7oaBcqGH+aGpcaaIWa GaaiilaiaaykW7caaMc8UaeqiUdeNaeyOpa4JaaGimaaaa@68FE@  (1.2)

Size-biased distributions arise in practice when observations from a sample having probability proportional to some measure of unit size. Fisher3 firstly introduced these distributions to model ascertainment biases which were later formalized by Rao4 in a unifying theory. Size-biased observations occur in many research areas and its fields of applications includes medical science, sociology, psychology, ecology, geological sciences etc. The applications of size-biased distribution theory in fitting distributions of diameter at breast height (DBH) data arising from horizontal point sampling (HPS) has been discussed by Van Deusen.5 Further, Lappi and Bailey6 have applied size-biased distributions to analyze HPS diameter increment data. The statistical applications of size-biased distributions to the analysis of data relating to human population and ecology can be found in Patil and Rao.7,8 Some of the recent results on size-biased distributions pertaining to parameter estimation in forestry with special emphasis on Weibull family have been discussed by Gove.9 Ducey and Gove10 discussed size-biased distributions in the generalized beta distribution family, with applications to forestry.

Let a random variable X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGybaaaa@3916@ has the original probability distribution P 0 ( x;θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGqbWaaSbaaKqbGeaacaaIWaaajuaGbeaadaqadaqaaiaadIhacaGG 7aGaeqiUdehacaGLOaGaayzkaaaaaa@3FA0@ , then a simple size-biased distribution is given by its probability function

P 1 ( x;θ )= x P 0 ( x;θ ) μ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGqbWaaSbaaKqbGeaacaaIXaaajuaGbeaadaqadaqaaiaadIhacaGG 7aGaeqiUdehacaGLOaGaayzkaaGaeyypa0ZaaSaaaeaacaWG4bGaey yXICTaamiuamaaBaaajuaibaGaaGimaaqcfayabaWaaeWaaeaacaWG 4bGaai4oaiabeI7aXbGaayjkaiaawMcaaaqaaiqbeY7aTzaafaWaaS baaKqbGeaacaaIXaaajuaGbeaaaaaaaa@4EBF@  (1.3)

Where μ 1 =E( X ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcu aH8oqBgaqbamaaBaaajuaibaGaaGymaaqcfayabaGaeyypa0Jaamyr amaabmaabaGaamiwaaGaayjkaiaawMcaaaaa@3FC9@ is the mean of the original probability distribution.

In the present paper, a size-biased Poisson-Garima distribution (SBPGD) has been proposed. It s raw and central moments and central moments based properties including coefficient of variation, skewness, kurtosis and index of dispersion have been obtained and discussed. Some of its statistical properties have been discussed. The method of moment and the method of maximum likelihood estimation have been discussed for estimating the parameter of SBPGD. The goodness of fit of SBPGD has also been presented.

Size-biased poisson-garima distribution

Using (1.1) and (1.3), the p.m.f. of the size-biased Poisson-Garima distribution (SBPGD) with parameter θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aH4oqCaaa@39EF@ can be obtained as

P 1 ( x;θ )= x P 0 ( x;θ ) μ 1 = θ 2 θ+3 x 2 θ+x( θ 2 +3θ+1 ) ( θ+1 ) x+2 ;x=1,2,3,..,θ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGqbWaaSbaaKqbGeaacaaIXaaajuaGbeaadaqadaqaaiaadIhacaGG 7aGaeqiUdehacaGLOaGaayzkaaGaeyypa0ZaaSaaaeaacaWG4bGaey yXICTaamiuamaaBaaajuaibaGaaGimaaqcfayabaWaaeWaaeaacaWG 4bGaai4oaiabeI7aXbGaayjkaiaawMcaaaqaaiqbeY7aTzaafaWaaS baaKqbGeaacaaIXaaajuaGbeaaaaGaeyypa0ZaaSaaaeaacqaH4oqC daahaaqabKqbGeaacaaIYaaaaaqcfayaaiabeI7aXjabgUcaRiaaio daaaWaaSaaaeaacaWG4bWaaWbaaeqajuaibaGaaGOmaaaajuaGcqaH 4oqCcqGHRaWkcaWG4bWaaeWaaeaacqaH4oqCdaahaaqabKqbGeaaca aIYaaaaKqbakabgUcaRiaaiodacqaH4oqCcqGHRaWkcaaIXaaacaGL OaGaayzkaaaabaWaaeWaaeaacqaH4oqCcqGHRaWkcaaIXaaacaGLOa GaayzkaaWaaWbaaeqajuaibaGaamiEaiabgUcaRiaaikdaaaaaaKqb akaaykW7caGG7aGaamiEaiabg2da9iaaigdacaGGSaGaaGOmaiaacY cacaaIZaGaaiilaiaac6cacaGGUaGaaiilaiabeI7aXjabg6da+iaa icdaaaa@7CF3@  (2.1)

where μ 1 = θ+3 θ( θ+2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcu aH8oqBgaqbamaaBaaajuaibaGaaGymaaqcfayabaGaeyypa0ZaaSaa aeaacqaH4oqCcqGHRaWkcaaIZaaabaGaeqiUde3aaeWaaeaacqaH4o qCcqGHRaWkcaaIYaaacaGLOaGaayzkaaaaaaaa@4691@  is the mean of the PGD (1.1).

The SBPGD can also be obtained from the size-biased Poisson distribution (SPBD) with p.m.f.

g( x|λ )= e λ λ x1 ( x1 )! ;x=1,2,3,...,λ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGNbWaaeWaaeaacaWG4bGaaiiFaiabeU7aSbGaayjkaiaawMcaaiab g2da9maalaaabaGaamyzamaaCaaabeqcfasaaiabgkHiTiabeU7aSb aajuaGcqaH7oaBdaahaaqabKqbGeaacaWG4bGaeyOeI0IaaGymaaaa aKqbagaadaqadaqaaiaadIhacqGHsislcaaIXaaacaGLOaGaayzkaa GaaiyiaaaacaaMc8UaaGPaVlaaykW7caGG7aGaamiEaiabg2da9iaa igdacaGGSaGaaGOmaiaacYcacaaIZaGaaiilaiaac6cacaGGUaGaai OlaiaacYcacqaH7oaBcqGH+aGpcaaIWaaaaa@5FCB@  (2.2)

when its parameter λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aH7oaBaaa@39ED@ follows size-biased Garima distribution (SBGD) with p.d.f.

h( λ;θ )= θ 2 θ+3 λ( 1+θ+θλ ) e θλ ;x>0,θ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGObWaaeWaaeaacqaH7oaBcaGG7aGaeqiUdehacaGLOaGaayzkaaGa eyypa0ZaaSaaaeaacqaH4oqCdaahaaqabKqbGeaacaaIYaaaaaqcfa yaaiabeI7aXjabgUcaRiaaiodaaaGaeq4UdW2aaeWaaeaacaaIXaGa ey4kaSIaeqiUdeNaey4kaSIaeqiUdeNaeq4UdWgacaGLOaGaayzkaa GaamyzamaaCaaabeqcfasaaiabgkHiTiabeI7aXjaaykW7cqaH7oaB aaqcfaOaaGPaVlaacUdacaaMc8UaaGPaVlaadIhacqGH+aGpcaaIWa GaaiilaiaaykW7caaMc8UaeqiUdeNaeyOpa4JaaGimaaaa@6876@  (2.3)

Thus the p.m.f of SBPGD can be obtained as

P( X=x )= 0 g( x|λ ) h( λ;θ )dλ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGqbWaaeWaaeaacaWGybGaeyypa0JaamiEaaGaayjkaiaawMcaaiab g2da9maapehabaGaam4zamaabmaabaGaamiEaiaacYhacqaH7oaBai aawIcacaGLPaaaaKqbGeaacaaIWaaabaGaeyOhIukajuaGcqGHRiI8 aiabgwSixlaadIgadaqadaqaaiabeU7aSjaacUdacqaH4oqCaiaawI cacaGLPaaacaWGKbGaeq4UdWgaaa@5561@

= 0 e λ λ x1 ( x1 )! θ 2 θ+3 λ( 1+θ+θλ ) e θλ dλ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq GH9aqpdaWdXbqaamaalaaabaGaamyzamaaCaaabeqcfasaaiabgkHi TiabeU7aSbaajuaGcqaH7oaBdaahaaqabKqbGeaacaWG4bGaeyOeI0 IaaGymaaaaaKqbagaadaqadaqaaiaadIhacqGHsislcaaIXaaacaGL OaGaayzkaaGaaiyiaaaaaKqbGeaacaaIWaaabaGaeyOhIukajuaGcq GHRiI8amaalaaabaGaeqiUde3aaWbaaeqajuaibaGaaGOmaaaaaKqb agaacqaH4oqCcqGHRaWkcaaIZaaaaiabeU7aSnaabmaabaGaaGymai abgUcaRiabeI7aXjabgUcaRiabeI7aXjabeU7aSbGaayjkaiaawMca aiaadwgadaahaaqabKqbGeaacqGHsislcqaH4oqCcaaMc8Uaeq4UdW gaaKqbakaadsgacqaH7oaBaaa@68D2@  (2.4)

= θ 2 ( θ+3 )( x1 )! 0 e ( θ+1 )λ [ ( 1+θ ) λ x +θ λ x+1 ]dλ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq GH9aqpdaWcaaqaaiabeI7aXnaaCaaabeqcfasaaiaaikdaaaaajuaG baWaaeWaaeaacqaH4oqCcqGHRaWkcaaIZaaacaGLOaGaayzkaaWaae WaaeaacaWG4bGaeyOeI0IaaGymaaGaayjkaiaawMcaaiaacgcaaaWa a8qCaeaacaWGLbWaaWbaaeqajuaibaGaeyOeI0scfa4aaeWaaKqbGe aacqaH4oqCcqGHRaWkcaaIXaaacaGLOaGaayzkaaGaaGPaVlabeU7a SbaaaeaacaaIWaaabaGaeyOhIukajuaGcqGHRiI8amaadmaabaWaae WaaeaacaaIXaGaey4kaSIaeqiUdehacaGLOaGaayzkaaGaeq4UdW2a aWbaaeqajuaibaGaamiEaaaajuaGcqGHRaWkcqaH4oqCcqaH7oaBda ahaaqabKqbGeaacaWG4bGaey4kaSIaaGymaaaaaKqbakaawUfacaGL DbaacaWGKbGaeq4UdWgaaa@6B16@

= θ 2 θ+3 x 2 θ+x( θ 2 +3θ+1 ) ( θ+1 ) x+2 ;x=1,2,3,..,θ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq GH9aqpdaWcaaqaaiabeI7aXnaaCaaabeqcfasaaiaaikdaaaaajuaG baGaeqiUdeNaey4kaSIaaG4maaaadaWcaaqaaiaadIhadaahaaqabK qbGeaacaaIYaaaaKqbakabeI7aXjabgUcaRiaadIhadaqadaqaaiab eI7aXnaaCaaabeqcfasaaiaaikdaaaqcfaOaey4kaSIaaG4maiabeI 7aXjabgUcaRiaaigdaaiaawIcacaGLPaaaaeaadaqadaqaaiabeI7a XjabgUcaRiaaigdaaiaawIcacaGLPaaadaahaaqabKqbGeaacaWG4b Gaey4kaSIaaGOmaaaaaaqcfaOaaGPaVlaaykW7caaMc8Uaai4oaiaa dIhacqGH9aqpcaaIXaGaaiilaiaaikdacaGGSaGaaG4maiaacYcaca GGUaGaaiOlaiaacYcacqaH4oqCcqGH+aGpcaaIWaaaaa@6983@

which is the p.m.f of SBPGD with parameter θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aH4oqCaaa@39EF@ .

Graphs of SBPGD for varying values of parameter θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aH4oqCaaa@39EF@  are shown in figure 1. It is obvious from the graphs of SBPGD that as the value of parameter θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aH4oqCaaa@39EF@  increases, the initially the graphs shift upward and decreases fast for increasing values of x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WG4baaaa@3936@ . Also the graphs become convex for values of θ2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aH4oqCcqGHLjYScaaIYaaaaa@3C71@ .

Figure 1 Graphs of SBPGD for varying values of parameter θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aH4oqCaaa@39EF@ .

It would be recalled that the p.m.f of size-biased Poisson-Lindley distribution (SBPLD) given by

P 2 ( X=x )= θ 3 θ+2 x( x+θ+2 ) ( θ+1 ) x+2 ;x=1,2,3,...,;θ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGqbWaaSbaaKqbGeaacaaIYaaajuaGbeaadaqadaqaaiaadIfacqGH 9aqpcaWG4baacaGLOaGaayzkaaGaeyypa0ZaaSaaaeaacqaH4oqCda ahaaqabKqbGeaacaaIZaaaaaqcfayaaiabeI7aXjabgUcaRiaaikda aaWaaSaaaeaacaWG4bWaaeWaaeaacaWG4bGaey4kaSIaeqiUdeNaey 4kaSIaaGOmaaGaayjkaiaawMcaaaqaamaabmaabaGaeqiUdeNaey4k aSIaaGymaaGaayjkaiaawMcaamaaCaaabeqcfasaaiaadIhacqGHRa WkcaaIYaaaaaaajuaGcaaMc8UaaGPaVlaaykW7caGG7aGaamiEaiab g2da9iaaigdacaGGSaGaaGOmaiaacYcacaaIZaGaaiilaiaac6caca GGUaGaaiOlaiaacYcacaGG7aGaeqiUdeNaeyOpa4JaaGimaaaa@698D@  (1.7)

has been introduced by Ghitany and Mutairi,11 which is a size-biased version of Poisson-Lindley distribution (PLD) introduced by Sankaran.12 Ghitany and Mutairi11 have discussed its various mathematical and statistical properties, estimation of the parameter using maximum likelihood estimation and the method of moments, and goodness of fit. Shanker et al.,13 has detailed study on the applications of size-biased Poisson-Lindley distribution (SBPLD) for modeling data on thunderstorms and observed that in most data sets, SBPLD gives better fit than size-biased Poisson distribution (SBPD).

Moments and moments based measures

Using (2.4), the r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGYbaaaa@3930@ th factorial moment about origin of the SBPGD (2.1) can be obtained as

μ ( r ) =E[ E( X ( r ) |λ ) ]= 0 [ x=1 x ( r ) e λ λ x1 ( x1 )! ] θ 2 θ+3 λ( 1+θ+θλ ) e θλ dλ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aH8oqBdaWgaaqcfasaaKqbaoaabmaajuaibaGaamOCaaGaayjkaiaa wMcaaaqcfayabaWaaWbaaeqabaGamai4gkdiIcaacqGH9aqpcaWGfb WaamWaaeaacaWGfbWaaeWaaeaacaWGybWaaWbaaeqajuaibaqcfa4a aeWaaKqbGeaacaWGYbaacaGLOaGaayzkaaaaaKqbakaacYhacqaH7o aBaiaawIcacaGLPaaaaiaawUfacaGLDbaacqGH9aqpdaWdXbqaamaa dmaabaWaaabCaeaacaWG4bWaaWbaaeqajuaibaqcfa4aaeWaaKqbGe aacaWGYbaacaGLOaGaayzkaaaaaKqbaoaalaaabaGaamyzamaaCaaa beqcfasaaiabgkHiTiabeU7aSbaajuaGcqaH7oaBdaahaaqabKqbGe aacaWG4bGaeyOeI0IaaGymaaaaaKqbagaadaqadaqaaiaadIhacqGH sislcaaIXaaacaGLOaGaayzkaaGaaiyiaaaaaKqbGeaacaWG4bGaey ypa0JaaGymaaqaaiabg6HiLcqcfaOaeyyeIuoaaiaawUfacaGLDbaa aKqbGeaacaaIWaaabaGaeyOhIukajuaGcqGHRiI8aiaaykW7daWcaa qaaiabeI7aXnaaCaaabeqcfasaaiaaikdaaaaajuaGbaGaeqiUdeNa ey4kaSIaaG4maaaacqaH7oaBdaqadaqaaiaaigdacqGHRaWkcqaH4o qCcqGHRaWkcqaH4oqCcqaH7oaBaiaawIcacaGLPaaacaWGLbWaaWba aeqajuaibaGaeyOeI0IaeqiUdeNaaGPaVlabeU7aSbaajuaGcaWGKb Gaeq4UdWgaaa@8F14@

= θ 2 θ+3 0 [ λ r1 x=r x e λ λ xr ( xr )! ] λ( 1+θ+θλ ) e θλ dλ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq GH9aqpdaWcaaqaaiabeI7aXnaaCaaabeqcfasaaiaaikdaaaaajuaG baGaeqiUdeNaey4kaSIaaG4maaaadaWdXbqaamaadmaabaGaeq4UdW 2aaWbaaeqajuaibaGaamOCaiabgkHiTiaaigdaaaqcfa4aaabCaeaa caWG4bWaaSaaaeaacaWGLbWaaWbaaeqajuaibaGaeyOeI0Iaeq4UdW gaaKqbakabeU7aSnaaCaaabeqcfasaaiaadIhacqGHsislcaWGYbaa aaqcfayaamaabmaabaGaamiEaiabgkHiTiaadkhaaiaawIcacaGLPa aacaGGHaaaaaqcfasaaiaadIhacqGH9aqpcaaMc8UaamOCaaqaaiab g6HiLcqcfaOaeyyeIuoaaiaawUfacaGLDbaaaKqbGeaacaaIWaaaba GaeyOhIukajuaGcqGHRiI8aiaaykW7cqaH7oaBdaqadaqaaiaaigda cqGHRaWkcqaH4oqCcqGHRaWkcqaH4oqCcqaH7oaBaiaawIcacaGLPa aacaWGLbWaaWbaaeqajuaibaGaeyOeI0IaeqiUdeNaaGPaVlabeU7a SbaajuaGcaWGKbGaeq4UdWgaaa@7BD1@

Taking y=xr MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WG5bGaeyypa0JaamiEaiabgkHiTiaadkhaaaa@3D1E@ , we get

μ ( r ) = θ 2 θ+3 0 [ λ r1 y=0 ( y+r ) e λ λ y y! ] λ( 1+θ+θλ ) e θλ dλ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aH8oqBdaWgaaqcfasaaKqbaoaabmaajuaibaGaamOCaaGaayjkaiaa wMcaaaqcfayabaWaaWbaaeqabaGamai4gkdiIcaacqGH9aqpdaWcaa qaaiabeI7aXnaaCaaabeqcfasaaiaaikdaaaaajuaGbaGaeqiUdeNa ey4kaSIaaG4maaaadaWdXbqaamaadmaabaGaeq4UdW2aaWbaaeqaju aibaGaamOCaiabgkHiTiaaigdaaaqcfa4aaabCaeaadaqadaqaaiaa dMhacqGHRaWkcaWGYbaacaGLOaGaayzkaaWaaSaaaeaacaWGLbWaaW baaeqajuaibaGaeyOeI0Iaeq4UdWgaaKqbakabeU7aSnaaCaaabeqc fasaaiaadMhaaaaajuaGbaGaamyEaiaacgcaaaaajuaibaGaamyEai abg2da9iaaicdaaeaacqGHEisPaKqbakabggHiLdaacaGLBbGaayzx aaaajuaibaGaaGimaaqaaiabg6HiLcqcfaOaey4kIipacaaMc8Uaeq 4UdW2aaeWaaeaacaaIXaGaey4kaSIaeqiUdeNaey4kaSIaeqiUdeNa eq4UdWgacaGLOaGaayzkaaGaamyzamaaCaaabeqcfasaaiabgkHiTi abeI7aXjaaykW7cqaH7oaBaaqcfaOaamizaiabeU7aSbaa@80F7@

= θ 2 θ+3 0 λ r1 ( λ+r ) λ( 1+θ+θλ ) e θλ dλ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq GH9aqpdaWcaaqaaiabeI7aXnaaCaaabeqcfasaaiaaikdaaaaajuaG baGaeqiUdeNaey4kaSIaaG4maaaadaWdXbqaaiabeU7aSnaaCaaabe qcfasaaiaadkhacqGHsislcaaIXaaaaKqbaoaabmaabaGaeq4UdWMa ey4kaSIaamOCaaGaayjkaiaawMcaaaqcfasaaiaaicdaaeaacqGHEi sPaKqbakabgUIiYdGaaGPaVlabeU7aSnaabmaabaGaaGymaiabgUca RiabeI7aXjabgUcaRiabeI7aXjabeU7aSbGaayjkaiaawMcaaiaadw gadaahaaqabKqbGeaacqGHsislcqaH4oqCcaaMc8Uaeq4UdWgaaKqb akaadsgacqaH7oaBaaa@6621@

= r!{ ( θ+1 )( rθ+r+1 )+( r+1 )( rθ+r+2 ) } θ r ( θ+3 ) ;r=1,2,3,... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq GH9aqpdaWcaaqaaiaadkhacaGGHaWaaiWaaeaadaqadaqaaiabeI7a XjabgUcaRiaaigdaaiaawIcacaGLPaaadaqadaqaaiaadkhacaaMc8 UaeqiUdeNaey4kaSIaamOCaiabgUcaRiaaigdaaiaawIcacaGLPaaa cqGHRaWkdaqadaqaaiaadkhacqGHRaWkcaaIXaaacaGLOaGaayzkaa WaaeWaaeaacaWGYbGaaGPaVlabeI7aXjabgUcaRiaadkhacqGHRaWk caaIYaaacaGLOaGaayzkaaaacaGL7bGaayzFaaaabaGaeqiUde3aaW baaeqabaGaamOCaaaadaqadaqaaiabeI7aXjabgUcaRiaaiodaaiaa wIcacaGLPaaaaaGaai4oaiaadkhacqGH9aqpcaaIXaGaaiilaiaaik dacaGGSaGaaG4maiaacYcacaGGUaGaaiOlaiaac6caaaa@6A29@  (3.1)

Substituting r=1,2,3,and4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGYbGaeyypa0JaaGymaiaacYcacaaIYaGaaiilaiaaiodacaGGSaGa aGPaVlaaykW7caaMc8Uaaeyyaiaab6gacaqGKbGaaGPaVlaaykW7ca aMc8UaaGinaaaa@4B36@ , the first four factorial moments about origin can be obtained and using the relationship between factorial moments about origin and moments about origin, the first four moments about origin of SBPGD can be obtained as

μ 1 = θ 2 +5θ+8 θ( θ+3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aH8oqBdaWgaaqcfasaaiaaigdaaKqbagqaamaaCaaabeqaaiadacUH YaIOaaGaeyypa0ZaaSaaaeaacqaH4oqCdaahaaqabKqbGeaacaaIYa aaaKqbakabgUcaRiaaiwdacqaH4oqCcqGHRaWkcaaI4aaabaGaeqiU de3aaeWaaeaacqaH4oqCcqGHRaWkcaaIZaaacaGLOaGaayzkaaaaaa aa@4E86@

μ 2 = θ 3 +9 θ 2 +30θ+30 θ 2 ( θ+3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aH8oqBdaWgaaqcfasaaiaaikdaaKqbagqaamaaCaaabeqaaiadacUH YaIOaaGaeyypa0ZaaSaaaeaacqaH4oqCdaahaaqabKqbGeaacaaIZa aaaKqbakabgUcaRiaaiMdacqaH4oqCdaahaaqabKqbGeaacaaIYaaa aKqbakabgUcaRiaaiodacaaIWaGaeqiUdeNaey4kaSIaaG4maiaaic daaeaacqaH4oqCdaahaaqabKqbGeaacaaIYaaaaKqbaoaabmaabaGa eqiUdeNaey4kaSIaaG4maaGaayjkaiaawMcaaaaaaaa@5684@  

μ 3 = θ 4 +17 θ 3 +92 θ 2 +204θ+144 θ 3 ( θ+3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aH8oqBdaWgaaqcfasaaiaaiodaaKqbagqaamaaCaaabeqaaiadacUH YaIOaaGaeyypa0ZaaSaaaeaacqaH4oqCdaahaaqabKqbGeaacaaI0a aaaKqbakabgUcaRiaaigdacaaI3aGaeqiUde3aaWbaaeqajuaibaGa aG4maaaajuaGcqGHRaWkcaaI5aGaaGOmaiabeI7aXnaaCaaabeqcfa saaiaaikdaaaqcfaOaey4kaSIaaGOmaiaaicdacaaI0aGaeqiUdeNa ey4kaSIaaGymaiaaisdacaaI0aaabaGaeqiUde3aaWbaaeqajuaiba GaaG4maaaajuaGdaqadaqaaiabeI7aXjabgUcaRiaaiodaaiaawIca caGLPaaaaaaaaa@5E6F@  

μ 4 = θ 5 +33 θ 4 +270 θ 3 +990 θ 2 +1560θ+840 θ 4 ( θ+3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aH8oqBdaWgaaqcfasaaiaaisdaaKqbagqaamaaCaaabeqaaiadacUH YaIOaaGaeyypa0ZaaSaaaeaacqaH4oqCdaahaaqabKqbGeaacaaI1a aaaKqbakabgUcaRiaaiodacaaIZaGaeqiUde3aaWbaaeqajuaibaGa aGinaaaajuaGcqGHRaWkcaaIYaGaaG4naiaaicdacqaH4oqCdaahaa qabKqbGeaacaaIZaaaaKqbakabgUcaRiaaiMdacaaI5aGaaGimaiab eI7aXnaaCaaabeqcfasaaiaaikdaaaqcfaOaey4kaSIaaGymaiaaiw dacaaI2aGaaGimaiabeI7aXjabgUcaRiaaiIdacaaI0aGaaGimaaqa aiabeI7aXnaaCaaabeqcfasaaiaaisdaaaqcfa4aaeWaaeaacqaH4o qCcqGHRaWkcaaIZaaacaGLOaGaayzkaaaaaaaa@665F@  

Using the relationship between moments about mean and the moments about origin, the moments about mean of the SBPGD are thus obtained as

μ 2 = 2( θ 3 +8 θ 2 +20θ+13 ) θ 2 ( θ+3 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aH8oqBdaWgaaqcfasaaiaaikdaaKqbagqaaiabg2da9maalaaabaGa aGOmamaabmaabaGaeqiUde3aaWbaaeqajuaibaGaaG4maaaajuaGcq GHRaWkcaaI4aGaeqiUde3aaWbaaeqajuaibaGaaGOmaaaajuaGcqGH RaWkcaaIYaGaaGimaiabeI7aXjabgUcaRiaaigdacaaIZaaacaGLOa GaayzkaaaabaGaeqiUde3aaWbaaeqajuaibaGaaGOmaaaajuaGdaqa daqaaiabeI7aXjabgUcaRiaaiodaaiaawIcacaGLPaaadaahaaqabK qbGeaacaaIYaaaaaaaaaa@56CA@                        μ 3 = 2( θ 5 +13 θ 4 +68 θ 3 +171 θ 2 +195θ+80 ) θ 3 ( θ+3 ) 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aH8oqBdaWgaaqcfasaaiaaiodaaKqbagqaaiabg2da9maalaaabaGa aGOmamaabmaabaGaeqiUde3aaWbaaeqajuaibaGaaGynaaaajuaGcq GHRaWkcaaIXaGaaG4maiabeI7aXnaaCaaabeqcfasaaiaaisdaaaqc faOaey4kaSIaaGOnaiaaiIdacqaH4oqCdaahaaqabKqbGeaacaaIZa aaaKqbakabgUcaRiaaigdacaaI3aGaaGymaiabeI7aXnaaCaaabeqc fasaaiaaikdaaaqcfaOaey4kaSIaaGymaiaaiMdacaaI1aGaeqiUde Naey4kaSIaaGioaiaaicdaaiaawIcacaGLPaaaaeaacqaH4oqCdaah aaqabKqbGeaacaaIZaaaaKqbaoaabmaabaGaeqiUdeNaey4kaSIaaG 4maaGaayjkaiaawMcaamaaCaaabeqcfasaaiaaiodaaaaaaaaa@6470@                                            

μ 4 = 2( θ 7 +26 θ 6 +269 θ 5 +1435 θ 4 +4230 θ 3 +6819 θ 2 +5520θ+1740 ) θ 4 ( θ+3 ) 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aH8oqBdaWgaaqcfasaaiaaisdaaKqbagqaaiabg2da9maalaaabaGa aGOmamaabmaabaGaeqiUde3aaWbaaeqajuaibaGaaG4naaaajuaGcq GHRaWkcaaIYaGaaGOnaiabeI7aXnaaCaaabeqcfasaaiaaiAdaaaqc faOaey4kaSIaaGOmaiaaiAdacaaI5aGaeqiUde3aaWbaaeqajuaiba GaaGynaaaajuaGcqGHRaWkcaaIXaGaaGinaiaaiodacaaI1aGaeqiU de3aaWbaaeqajuaibaGaaGinaaaajuaGcqGHRaWkcaaI0aGaaGOmai aaiodacaaIWaGaeqiUde3aaWbaaeqajuaibaGaaG4maaaajuaGcqGH RaWkcaaI2aGaaGioaiaaigdacaaI5aGaeqiUde3aaWbaaeqajuaiba GaaGOmaaaajuaGcqGHRaWkcaaI1aGaaGynaiaaikdacaaIWaGaeqiU deNaey4kaSIaaGymaiaaiEdacaaI0aGaaGimaaGaayjkaiaawMcaaa qaaiabeI7aXnaaCaaabeqcfasaaiaaisdaaaqcfa4aaeWaaeaacqaH 4oqCcqGHRaWkcaaIZaaacaGLOaGaayzkaaWaaWbaaeqajuaibaGaaG inaaaaaaaaaa@767F@  

The coefficient of variation ( C.V ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGda qadaqaaiaadoeacaGGUaGaamOvaaGaayjkaiaawMcaaaaa@3C17@ , coefficient of Skewness ( β 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGda qadaqaamaakaaabaGaeqOSdi2aaSbaaKqbGeaacaaIXaaajuaGbeaa aeqaaaGaayjkaiaawMcaaaaa@3D0B@ , coefficient of Kurtosis ( β 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGda qadaqaaiabek7aInaaBaaajuaibaGaaGOmaaqcfayabaaacaGLOaGa ayzkaaaaaa@3CFC@  and the index of dispersion ( γ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGda qadaqaaiabeo7aNbGaayjkaiaawMcaaaaa@3B69@ of the SBPGD are thus obtained as

C.V= σ μ 1 = 2( θ 3 +8 θ 2 +20θ+13 ) θ 2 +5θ+8 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGdbGaaiOlaiaadAfacqGH9aqpdaWcaaqaaiabeo8aZbqaaiqbeY7a TzaafaWaaSbaaKqbGeaacaaIXaaajuaGbeaaaaGaeyypa0ZaaSaaae aadaGcaaqaaiaaikdadaqadaqaaiabeI7aXnaaCaaabeqcfasaaiaa iodaaaqcfaOaey4kaSIaaGioaiabeI7aXnaaCaaabeqcfasaaiaaik daaaqcfaOaey4kaSIaaGOmaiaaicdacqaH4oqCcqGHRaWkcaaIXaGa aG4maaGaayjkaiaawMcaaaqabaaabaGaeqiUde3aaWbaaeqajuaiba GaaGOmaaaajuaGcqGHRaWkcaaI1aGaeqiUdeNaey4kaSIaaGioaaaa aaa@5B24@  

β 1 = μ 3 μ 2 3/2 = θ 5 +13 θ 4 +68 θ 3 +171 θ 2 +195θ+80 2 ( θ 3 +8 θ 2 +20θ+13 ) 3/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGda Gcaaqaaiabek7aInaaBaaajuaibaGaaGymaaqcfayabaaabeaacqGH 9aqpdaWcaaqaaiabeY7aTnaaBaaajuaibaGaaG4maaqcfayabaaaba GaeqiVd02aaSbaaKqbGeaacaaIYaaajuaGbeaadaahaaqabKqbGeaa juaGdaWcgaqcfasaaiaaiodaaeaacaaIYaaaaaaaaaqcfaOaeyypa0 ZaaSaaaeaacqaH4oqCdaahaaqabKqbGeaacaaI1aaaaKqbakabgUca RiaaigdacaaIZaGaeqiUde3aaWbaaeqajuaibaGaaGinaaaajuaGcq GHRaWkcaaI2aGaaGioaiabeI7aXnaaCaaabeqcfasaaiaaiodaaaqc faOaey4kaSIaaGymaiaaiEdacaaIXaGaeqiUde3aaWbaaeqajuaiba GaaGOmaaaajuaGcqGHRaWkcaaIXaGaaGyoaiaaiwdacqaH4oqCcqGH RaWkcaaI4aGaaGimaaqaamaakaaabaGaaGOmaaqabaWaaeWaaeaacq aH4oqCdaahaaqabKqbGeaacaaIZaaaaKqbakabgUcaRiaaiIdacqaH 4oqCdaahaaqabKqbGeaacaaIYaaaaKqbakabgUcaRiaaikdacaaIWa GaeqiUdeNaey4kaSIaaGymaiaaiodaaiaawIcacaGLPaaadaahaaqa bKqbGeaajuaGdaWcgaqcfasaaiaaiodaaeaacaaIYaaaaaaaaaaaaa@7763@  

β 2 = μ 4 μ 2 2 = ( θ 7 +26 θ 6 +269 θ 5 +1435 θ 4 +4230 θ 3 +6819 θ 2 +5520θ+1740 ) 2 ( θ 3 +8 θ 2 +20θ+13 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aHYoGydaWgaaqcfasaaiaaikdaaKqbagqaaiabg2da9maalaaabaGa eqiVd02aaSbaaKqbGeaacaaI0aaajuaGbeaaaeaacqaH8oqBdaWgaa qcfasaaiaaikdaaKqbagqaamaaCaaabeqcfasaaiaaikdaaaaaaKqb akabg2da9maalaaabaWaaeWaaeaacqaH4oqCdaahaaqabKqbGeaaca aI3aaaaKqbakabgUcaRiaaikdacaaI2aGaeqiUde3aaWbaaeqajuai baGaaGOnaaaajuaGcqGHRaWkcaaIYaGaaGOnaiaaiMdacqaH4oqCda ahaaqabKqbGeaacaaI1aaaaKqbakabgUcaRiaaigdacaaI0aGaaG4m aiaaiwdacqaH4oqCdaahaaqabKqbGeaacaaI0aaaaKqbakabgUcaRi aaisdacaaIYaGaaG4maiaaicdacqaH4oqCdaahaaqabKqbGeaacaaI ZaaaaKqbakabgUcaRiaaiAdacaaI4aGaaGymaiaaiMdacqaH4oqCda ahaaqabKqbGeaacaaIYaaaaKqbakabgUcaRiaaiwdacaaI1aGaaGOm aiaaicdacqaH4oqCcqGHRaWkcaaIXaGaaG4naiaaisdacaaIWaaaca GLOaGaayzkaaaabaGaaGOmamaabmaabaGaeqiUde3aaWbaaeqajuai baGaaG4maaaajuaGcqGHRaWkcaaI4aGaeqiUde3aaWbaaeqajuaiba GaaGOmaaaajuaGcqGHRaWkcaaIYaGaaGimaiabeI7aXjabgUcaRiaa igdacaaIZaaacaGLOaGaayzkaaWaaWbaaeqajuaibaGaaGOmaaaaaa aaaa@87BC@  

γ= σ 2 μ 1 = 2( θ 3 +8 θ 2 +20θ+13 ) θ( θ+3 )( θ 2 +5θ+8 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aHZoWzcqGH9aqpdaWcaaqaaiabeo8aZnaaCaaabeqcfasaaiaaikda aaaajuaGbaGaeqiVd02aaSbaaKqbGeaacaaIXaaajuaGbeaadaahaa qabeaacWaGGBOmGikaaaaacqGH9aqpdaWcaaqaaiaaikdadaqadaqa aiabeI7aXnaaCaaabeqcfasaaiaaiodaaaqcfaOaey4kaSIaaGioai abeI7aXnaaCaaabeqcfasaaiaaikdaaaqcfaOaey4kaSIaaGOmaiaa icdacqaH4oqCcqGHRaWkcaaIXaGaaG4maaGaayjkaiaawMcaaaqaai abeI7aXnaabmaabaGaeqiUdeNaey4kaSIaaG4maaGaayjkaiaawMca amaabmaabaGaeqiUde3aaWbaaeqajuaibaGaaGOmaaaajuaGcqGHRa WkcaaI1aGaeqiUdeNaey4kaSIaaGioaaGaayjkaiaawMcaaaaaaaa@671B@  

Graphs of coefficient of variation, coefficient of skewness, coefficient of kurtosis and index of dispersion of SBPGD for varying values of parameter θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aH4oqCaaa@39EF@  are shown in figure 2. It is obvious from the graphs that C.V and the index of dispersion are monotonically decreasing while the coefficient of skewness and coefficient of kurtosis are decreasing for increasing value of the parameter θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aH4oqCaaa@39EF@ .

Figure 2 Graphs of coefficient of variation, coefficient of skewness, coefficient of kurtosis and index of dispersion of SBPGD for varying values of parameter θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aH4oqCaaa@39EF@ .

The condition under which SBPGD and SBPLD are over-dispersed, equi-dispersed or under-dispersed are presented in table 1.

Distributions

Over-dispersion
( μ< σ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGda qadaqaaiabeY7aTjabgYda8iabeo8aZTWaaWbaaKqbagqabaqcLbma caaIYaaaaaqcfaOaayjkaiaawMcaaaaa@4172@

Equi-dispersion
( μ= σ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGda qadaqaaiabeY7aTjabg2da9iabeo8aZnaaCaaabeqaaKqzadGaaGOm aaaaaKqbakaawIcacaGLPaaaaaa@40DB@

Under-dispersion
( μ> σ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGda qadaqaaiabeY7aTjabg6da+iabeo8aZTWaaWbaaKqbagqabaqcLbma caaIYaaaaaqcfaOaayjkaiaawMcaaaaa@4176@

SBPGD

θ<1.671162 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aH4oqCcqGH8aapcaaIXaGaaiOlaiaaiAdacaaI3aGaaGymaiaaigda caaI2aGaaGOmaaaa@40D3@

θ=1.671162 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aH4oqCcqGH9aqpcaaIXaGaaiOlaiaaiAdacaaI3aGaaGymaiaaigda caaI2aGaaGOmaaaa@40D5@

θ>1.671162 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aH4oqCcqGH+aGpcaaIXaGaaiOlaiaaiAdacaaI3aGaaGymaiaaigda caaI2aGaaGOmaaaa@40D7@

SBPLD

θ<1.636061 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aH4oqCcqGH8aapcaaIXaGaaiOlaiaaiAdacaaIZaGaaGOnaiaaicda caaI2aGaaGymaaaa@40D2@

θ<1.636061 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aH4oqCcqGH8aapcaaIXaGaaiOlaiaaiAdacaaIZaGaaGOnaiaaicda caaI2aGaaGymaaaa@40D2@

θ<1.636061 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aH4oqCcqGH8aapcaaIXaGaaiOlaiaaiAdacaaIZaGaaGOnaiaaicda caaI2aGaaGymaaaa@40D2@

Table 1 Over-dispersion, equi-dispersion and under-dispersion of SBPGD and SBPLD

Statistical properties of SBPGD

Unimodality and increasing failure rate

Since

P 1 ( x+1;θ ) P 1 ( x;θ ) =( 1 θ+1 )[ 1+ 2xθ+( θ 2 +4θ+1 ) x 2 θ+x( θ 2 +3θ+1 ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGda WcaaqaaiaadcfadaWgaaqcfasaaiaaigdaaKqbagqaamaabmaabaGa amiEaiabgUcaRiaaigdacaGG7aGaeqiUdehacaGLOaGaayzkaaaaba GaamiuamaaBaaajuaibaGaaGymaaqcfayabaWaaeWaaeaacaWG4bGa ai4oaiabeI7aXbGaayjkaiaawMcaaaaacqGH9aqpdaqadaqaamaala aabaGaaGymaaqaaiabeI7aXjabgUcaRiaaigdaaaaacaGLOaGaayzk aaWaamWaaeaacaaIXaGaey4kaSYaaSaaaeaacaaIYaGaamiEaiaayk W7cqaH4oqCcqGHRaWkdaqadaqaaiabeI7aXnaaCaaabeqcfasaaiaa ikdaaaqcfaOaey4kaSIaaGinaiabeI7aXjabgUcaRiaaigdaaiaawI cacaGLPaaaaeaacaWG4bWaaWbaaeqajuaibaGaaGOmaaaajuaGcqaH 4oqCcqGHRaWkcaWG4bWaaeWaaeaacqaH4oqCdaahaaqabKqbGeaaca aIYaaaaKqbakabgUcaRiaaiodacqaH4oqCcqGHRaWkcaaIXaaacaGL OaGaayzkaaaaaaGaay5waiaaw2faaaaa@72A1@  

is a deceasing function of x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG4b aaaa@38A8@ , P 1 ( x;θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGqbWaaSbaaKqbGeaacaaIXaaajuaGbeaadaqadaqaaiaadIhacaGG 7aGaeqiUdehacaGLOaGaayzkaaaaaa@3FA1@ is log-concave. Therefore, SBPGD is unimodal, has an increasing failure rate (IFR), and hence increasing failure rate average (IFRA). It is new better than used in expectation (NBUE) and has decreasing mean residual life (DMRL). Detailed discussion about definitions and interrelationships between these aging concepts are available in Barlow and Proschan.14

Generating functions

Probability Generating Function: The probability generating function of the SBPGD (2.1) can be obtained as

P X ( t )=E( t X )= θ 2 ( θ+3 ) ( θ+1 ) 2 [ θ x=1 x 2 ( t θ+1 ) x +( θ 2 +3θ+1 ) x=1 x ( t θ+1 ) x ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGqbWaaSbaaKqbGeaacaWGybaajuaGbeaadaqadaqaaiaadshaaiaa wIcacaGLPaaacqGH9aqpcaWGfbWaaeWaaeaacaWG0bWaaWbaaeqaju aibaGaamiwaaaaaKqbakaawIcacaGLPaaacqGH9aqpdaWcaaqaaiab eI7aXnaaCaaabeqcfasaaiaaikdaaaaajuaGbaWaaeWaaeaacqaH4o qCcqGHRaWkcaaIZaaacaGLOaGaayzkaaWaaeWaaeaacqaH4oqCcqGH RaWkcaaIXaaacaGLOaGaayzkaaWaaWbaaeqajuaibaGaaGOmaaaaaa qcfa4aamWaaeaacqaH4oqCdaaeWbqaaiaadIhadaahaaqabKqbGeaa caaIYaaaaKqbaoaabmaabaWaaSaaaeaacaWG0baabaGaeqiUdeNaey 4kaSIaaGymaaaaaiaawIcacaGLPaaadaahaaqabKqbGeaacaWG4baa aKqbakabgUcaRmaabmaabaGaeqiUde3aaWbaaeqajuaibaGaaGOmaa aajuaGcqGHRaWkcaaIZaGaeqiUdeNaey4kaSIaaGymaaGaayjkaiaa wMcaamaaqahabaGaamiEamaabmaabaWaaSaaaeaacaWG0baabaGaeq iUdeNaey4kaSIaaGymaaaaaiaawIcacaGLPaaadaahaaqabKqbGeaa caWG4baaaaqaaiaadIhacqGH9aqpcaaIXaaabaGaeyOhIukajuaGcq GHris5aaqcfasaaiaadIhacqGH9aqpcaaIXaaabaGaeyOhIukajuaG cqGHris5aaGaay5waiaaw2faaaaa@81E8@

= θ 2 ( θ+3 ) ( θ+1 ) 2 [ θt( θ+1+t )( θ+1 ) ( θ+1t ) 3 + t( θ 2 +3θ+1 )( θ+1 ) ( θ+1t ) 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq GH9aqpdaWcaaqaaiabeI7aXnaaCaaabeqcfasaaiaaikdaaaaajuaG baWaaeWaaeaacqaH4oqCcqGHRaWkcaaIZaaacaGLOaGaayzkaaWaae WaaeaacqaH4oqCcqGHRaWkcaaIXaaacaGLOaGaayzkaaWaaWbaaeqa juaibaGaaGOmaaaaaaqcfa4aamWaaeaadaWcaaqaaiabeI7aXjaads hadaqadaqaaiabeI7aXjabgUcaRiaaigdacqGHRaWkcaWG0baacaGL OaGaayzkaaWaaeWaaeaacqaH4oqCcqGHRaWkcaaIXaaacaGLOaGaay zkaaaabaWaaeWaaeaacqaH4oqCcqGHRaWkcaaIXaGaeyOeI0IaamiD aaGaayjkaiaawMcaamaaCaaabeqcfasaaiaaiodaaaaaaKqbakabgU caRmaalaaabaGaamiDamaabmaabaGaeqiUde3aaWbaaeqajuaibaGa aGOmaaaajuaGcqGHRaWkcaaIZaGaeqiUdeNaey4kaSIaaGymaaGaay jkaiaawMcaamaabmaabaGaeqiUdeNaey4kaSIaaGymaaGaayjkaiaa wMcaaaqaamaabmaabaGaeqiUdeNaey4kaSIaaGymaiabgkHiTiaads haaiaawIcacaGLPaaadaahaaqabKqbGeaacaaIYaaaaaaaaKqbakaa wUfacaGLDbaaaaa@7982@

= θ 2 t ( θ+3 )( θ+1 ) [ θ( θ+1+t ) ( θ+1t ) 3 + θ 2 +3θ+1 ( θ+1t ) 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq GH9aqpdaWcaaqaaiabeI7aXnaaCaaabeqcfasaaiaaikdaaaqcfaOa amiDaaqaamaabmaabaGaeqiUdeNaey4kaSIaaG4maaGaayjkaiaawM caamaabmaabaGaeqiUdeNaey4kaSIaaGymaaGaayjkaiaawMcaaaaa daWadaqaamaalaaabaGaeqiUde3aaeWaaeaacqaH4oqCcqGHRaWkca aIXaGaey4kaSIaamiDaaGaayjkaiaawMcaaaqaamaabmaabaGaeqiU deNaey4kaSIaaGymaiabgkHiTiaadshaaiaawIcacaGLPaaadaahaa qabKqbGeaacaaIZaaaaaaajuaGcqGHRaWkdaWcaaqaaiabeI7aXnaa CaaabeqcfasaaiaaikdaaaqcfaOaey4kaSIaaG4maiabeI7aXjabgU caRiaaigdaaeaadaqadaqaaiabeI7aXjabgUcaRiaaigdacqGHsisl caWG0baacaGLOaGaayzkaaWaaWbaaeqajuaibaGaaGOmaaaaaaaaju aGcaGLBbGaayzxaaaaaa@6BAE@

Moment generating function: The moment generating function of the SBPGD (2.1) can be given by

M X ( t )=E( e tX )= θ 2 e t ( θ+3 )( θ+1 ) [ θ( θ+1+ e t ) ( θ+1 e t ) 3 + θ 2 +3θ+1 ( θ+1 e t ) 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGnbWaaSbaaKqbGeaacaWGybaajuaGbeaadaqadaqaaiaadshaaiaa wIcacaGLPaaacqGH9aqpcaWGfbWaaeWaaeaacaWGLbWaaWbaaeqaju aibaGaamiDaiaadIfaaaaajuaGcaGLOaGaayzkaaGaeyypa0ZaaSaa aeaacqaH4oqCdaahaaqabKqbGeaacaaIYaaaaKqbakaadwgadaahaa qabKqbGeaacaWG0baaaaqcfayaamaabmaabaGaeqiUdeNaey4kaSIa aG4maaGaayjkaiaawMcaamaabmaabaGaeqiUdeNaey4kaSIaaGymaa GaayjkaiaawMcaaaaadaWadaqaamaalaaabaGaeqiUde3aaeWaaeaa cqaH4oqCcqGHRaWkcaaIXaGaey4kaSIaamyzamaaCaaabeqcfasaai aadshaaaaajuaGcaGLOaGaayzkaaaabaWaaeWaaeaacqaH4oqCcqGH RaWkcaaIXaGaeyOeI0IaamyzamaaCaaabeqcfasaaiaadshaaaaaju aGcaGLOaGaayzkaaWaaWbaaeqajuaibaGaaG4maaaaaaqcfaOaey4k aSYaaSaaaeaacqaH4oqCdaahaaqabKqbGeaacaaIYaaaaKqbakabgU caRiaaiodacqaH4oqCcqGHRaWkcaaIXaaabaWaaeWaaeaacqaH4oqC cqGHRaWkcaaIXaGaeyOeI0IaamyzamaaCaaabeqcfasaaiaadshaaa aajuaGcaGLOaGaayzkaaWaaWbaaeqajuaibaGaaGOmaaaaaaaajuaG caGLBbGaayzxaaaaaa@7ED3@

Estimation of parameter

Method of moment estimate (MOME): Let x 1 , x 2 ,..., x n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WG4bWaaSbaaKqbGeaacaaIXaaajuaGbeaacaGGSaGaamiEamaaBaaa juaibaGaaGOmaaqcfayabaGaaiilaiaac6cacaGGUaGaaiOlaiaacY cacaWG4bWaaSbaaKqbGeaacaWGUbaajuaGbeaaaaa@4457@ be a random sample of size n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGUbaaaa@392C@ from the SBPGD (2.1). Equating the population to the corresponding sample mean, the MOME θ ˜ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcu aH4oqCgaacaaaa@39FE@ of θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aH4oqCaaa@39EF@  of SBPGD (2.1) can be obtained as

θ ˜ = ( 3 x ¯ 5 )+ 9 x ¯ 2 +2 x ¯ 7 2( x ¯ 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcu aH4oqCgaacaiabg2da9maalaaabaGaeyOeI0YaaeWaaeaacaaIZaGa bmiEayaaraGaeyOeI0IaaGynaaGaayjkaiaawMcaaiabgUcaRmaaka aabaGaaGyoaiqadIhagaqeamaaCaaabeqcfasaaiaaikdaaaqcfaOa ey4kaSIaaGOmaiqadIhagaqeaiabgkHiTiaaiEdaaeqaaaqaaiaaik dadaqadaqaaiqadIhagaqeaiabgkHiTiaaigdaaiaawIcacaGLPaaa aaaaaa@4ECF@

where x ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaceWG4b Gbaebaaaa@38C0@ is the sample mean.

Maximum likelihood estimate (MLE): Let x 1 , x 2 ,..., x n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WG4bWaaSbaaKqbGeaacaaIXaaajuaGbeaacaGGSaGaamiEamaaBaaa juaibaGaaGOmaaqcfayabaGaaiilaiaac6cacaGGUaGaaiOlaiaacY cacaWG4bWaaSbaaKqbGeaacaWGUbaajuaGbeaaaaa@4457@ be a random sample of size n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGUbaaaa@392C@ from the SBPGD (2.1) and let f x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGMbWaaSbaaKqbGeaacaWG4baajuaGbeaaaaa@3AFE@ be the observed frequency in the sample corresponding to X=x(x=1,2,3,...,k) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGybGaeyypa0JaamiEaiaaykW7caaMc8UaaiikaiaadIhacqGH9aqp caaIXaGaaiilaiaaikdacaGGSaGaaG4maiaacYcacaGGUaGaaiOlai aac6cacaGGSaGaam4AaiaacMcaaaa@4985@ such that x=1 k f x =n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGda aeWbqaaiaadAgadaWgaaqcfasaaiaadIhaaKqbagqaaaqcfasaaiaa dIhacqGH9aqpcaaIXaaabaGaam4AaaqcfaOaeyyeIuoacqGH9aqpca WGUbaaaa@438B@ , where k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGRbaaaa@3929@ is the largest observed value having non-zero frequency. The likelihood function L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGmbaaaa@390A@ of the SBPGD (2.1) is given by

L= ( θ 2 θ+3 ) n 1 ( θ+1 ) x=1 k f x ( x+2 ) x=1 k [ x 2 θ+x( θ 2 +3θ+1 ) ] f x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGmbGaeyypa0ZaaeWaaeaadaWcaaqaaiabeI7aXnaaCaaabeqcfasa aiaaikdaaaaajuaGbaGaeqiUdeNaey4kaSIaaG4maaaaaiaawIcaca GLPaaadaahaaqabKqbGeaacaWGUbaaaKqbaoaalaaabaGaaGymaaqa amaabmaabaGaeqiUdeNaey4kaSIaaGymaaGaayjkaiaawMcaamaaCa aabeqaamaaqahabaGaamOzamaaBaaajuaibaGaamiEaaqcfayabaWa aeWaaeaacaWG4bGaey4kaSIaaGOmaaGaayjkaiaawMcaaaqcfasaai aadIhacqGH9aqpcaaIXaaabaGaam4AaaqcfaOaeyyeIuoaaaaaamaa rahabaWaamWaaeaacaWG4bWaaWbaaeqajuaibaGaaGOmaaaajuaGcq aH4oqCcqGHRaWkcaWG4bWaaeWaaeaacqaH4oqCdaahaaqabKqbGeaa caaIYaaaaKqbakabgUcaRiaaiodacqaH4oqCcqGHRaWkcaaIXaaaca GLOaGaayzkaaaacaGLBbGaayzxaaWaaWbaaeqajuaibaGaamOzaKqb aoaaBaaajuaibaGaamiEaaqabaaaaaqaaiaadIhacqGH9aqpcaaIXa aabaGaam4AaaqcfaOaey4dIunaaaa@72B8@

The log likelihood function is obtained as

logL=nlog( θ 2 θ+3 ) x=1 k f x ( x+2 ) log( θ+1 )+ x=1 k f x log[ x 2 θ+x( θ 2 +3θ+1 ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGci GGSbGaai4BaiaacEgacaWGmbGaeyypa0JaamOBaiGacYgacaGGVbGa ai4zamaabmaabaWaaSaaaeaacqaH4oqCdaahaaqabKqbGeaacaaIYa aaaaqcfayaaiabeI7aXjabgUcaRiaaiodaaaaacaGLOaGaayzkaaGa eyOeI0YaaabCaeaacaWGMbWaaSbaaKqbGeaacaWG4baajuaGbeaada qadaqaaiaadIhacqGHRaWkcaaIYaaacaGLOaGaayzkaaaajuaibaGa amiEaiabg2da9iaaigdaaeaacaWGRbaajuaGcqGHris5aiGacYgaca GGVbGaai4zamaabmaabaGaeqiUdeNaey4kaSIaaGymaaGaayjkaiaa wMcaaiabgUcaRmaaqahabaGaamOzamaaBaaajuaibaGaamiEaaqcfa yabaGaciiBaiaac+gacaGGNbWaamWaaeaacaWG4bWaaWbaaeqajuai baGaaGOmaaaajuaGcqaH4oqCcqGHRaWkcaWG4bWaaeWaaeaacqaH4o qCdaahaaqabKqbGeaacaaIYaaaaKqbakabgUcaRiaaiodacqaH4oqC cqGHRaWkcaaIXaaacaGLOaGaayzkaaaacaGLBbGaayzxaaaajuaiba GaamiEaiabg2da9iaaigdaaeaacaWGRbaajuaGcqGHris5aaaa@7DEB@

The first derivative of the log likelihood function is given by

dlogL dθ = n( θ+6 ) θ( θ+3 ) n( x ¯ +2 ) θ+1 + x=1 k ( x+2θ+3 ) f x xθ+( θ 2 +3θ+1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGda WcaaqaaiaadsgaciGGSbGaai4BaiaacEgacaWGmbaabaGaamizaiab eI7aXbaacqGH9aqpdaWcaaqaaiaad6gadaqadaqaaiabeI7aXjabgU caRiaaiAdaaiaawIcacaGLPaaaaeaacqaH4oqCdaqadaqaaiabeI7a XjabgUcaRiaaiodaaiaawIcacaGLPaaaaaGaeyOeI0YaaSaaaeaaca WGUbWaaeWaaeaaceWG4bGbaebacqGHRaWkcaaIYaaacaGLOaGaayzk aaaabaGaeqiUdeNaey4kaSIaaGymaaaacqGHRaWkdaaeWbqaamaala aabaWaaeWaaeaacaWG4bGaey4kaSIaaGOmaiabeI7aXjabgUcaRiaa iodaaiaawIcacaGLPaaacaWGMbWaaSbaaKqbGeaacaWG4baajuaGbe aaaeaacaWG4bGaeqiUdeNaey4kaSYaaeWaaeaacqaH4oqCdaahaaqa bKqbGeaacaaIYaaaaKqbakabgUcaRiaaiodacqaH4oqCcqGHRaWkca aIXaaacaGLOaGaayzkaaaaaaqcfasaaiaadIhacqGH9aqpcaaIXaaa baGaam4AaaqcfaOaeyyeIuoaaaa@7593@

where x ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaceWG4b Gbaebaaaa@38C0@  is the sample mean.

The maximum likelihood estimate (MLE), θ ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcu aH4oqCgaqcaaaa@39FF@  of θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aH4oqCaaa@39EF@  is the solution of the equation dlogL dθ =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGda WcaaqaaiaadsgaciGGSbGaai4BaiaacEgacaWGmbaabaGaamizaiab eI7aXbaacqGH9aqpcaaIWaaaaa@4132@  and is given by the solution of the non-linear equation

x=1 k ( x+2θ+3 ) f x xθ+( θ 2 +3θ+1 ) n( x ¯ +2 ) θ+1 + n( θ+6 ) θ( θ+3 ) =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGda aeWbqaamaalaaabaWaaeWaaeaacaWG4bGaey4kaSIaaGOmaiabeI7a XjabgUcaRiaaiodaaiaawIcacaGLPaaacaWGMbWaaSbaaKqbGeaaca WG4baajuaGbeaaaeaacaWG4bGaeqiUdeNaey4kaSYaaeWaaeaacqaH 4oqCdaahaaqabKqbGeaacaaIYaaaaKqbakabgUcaRiaaiodacqaH4o qCcqGHRaWkcaaIXaaacaGLOaGaayzkaaaaaaqcfasaaiaadIhacqGH 9aqpcaaIXaaabaGaam4AaaqcfaOaeyyeIuoacqGHsisldaWcaaqaai aad6gadaqadaqaaiqadIhagaqeaiabgUcaRiaaikdaaiaawIcacaGL PaaaaeaacqaH4oqCcqGHRaWkcaaIXaaaaiabgUcaRmaalaaabaGaam OBamaabmaabaGaeqiUdeNaey4kaSIaaGOnaaGaayjkaiaawMcaaaqa aiabeI7aXnaabmaabaGaeqiUdeNaey4kaSIaaG4maaGaayjkaiaawM caaaaacqGH9aqpcaaIWaaaaa@6F14@

This non-linear equation can be solved by any numerical iteration methods such as Newton- Raphson method, Bisection method, Regula –Falsi method etc. note that in this paper, we have solved above equation using Newton-Raphson method where the initial value of θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aH4oqCaaa@39EF@  is the value given by the method of moment estimate.

Data analysis

In this section, we fit SBPGD using maximum likelihood estimate to test its goodness of fit over SBPD and SBPLD. The first data-set is the immunogold assay data of Cullen et al.,15 regarding the distribution of number of counts of sites with particles from immunogold assay data, the second data-set is the number of European red mites on apple leaves, reported by Garman16 (Tables 2&3).

It is obvious from above tables that SBPGD gives better fit than both SBPD and SBPLD

No. of sites with particles

Observed frequency

Expected frequency

SBPD

SBPLD

SBPGD

1
2
3
4
5

122
50
18
4
4

111.3
64.1
18.5 3.5 0.6 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGda GacaabaeqabaGaaGymaiaaiIdacaGGUaGaaGynaaqaaiaaiodacaGG UaGaaGynaaqaaiaaicdacaGGUaGaaGOnaaaacaGL9baaaaa@40A6@

119.0
53.8
18.0
5.3 1.9 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGda GacaabaeqabaGaaGynaiaac6cacaaIZaaabaGaaGymaiaac6cacaaI 5aaaaiaaw2haaaaa@3DBB@

119.1
53.7
18.0
5.3 1.9 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGda GacaabaeqabaGaaGynaiaac6cacaaIZaaabaGaaGymaiaac6cacaaI 5aaaaiaaw2haaaaa@3DBB@

Total

198

198.0

198.0

198.0

ML estimate

 

θ ^ =0.576 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcu aH4oqCgaqcaiabg2da9iaaicdacaGGUaGaaGynaiaaiEdacaaI2aaa aa@3EB1@

θ ^ =4.051 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcu aH4oqCgaqcaiabg2da9iaaisdacaGGUaGaaGimaiaaiwdacaaIXaaa aa@3EA9@

θ ^ =2.0992 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcu aH4oqCgaqcaiabg2da9iaaikdacaGGUaGaaGimaiaaiMdacaaI5aGa aGOmaaaa@3F6F@

χ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aHhpWylmaaCaaajuaGbeqaaKqzadGaaGOmaaaaaaa@3C95@

 

4.642

0.51

0.40

d.f.

 

1

2

2

p-value

 

0.031

0.7749

0.8187

Table 2 Distribution of number of counts of sites with particles from immunogold data

Number of European red mites

Observed frequency

Expected frequency

SBPD

SBPLD

SBPGD

1

38

28.7

31.7

31.9

2

17

25.7

23.9

23.8

3

10

15.3

13.2

13.1

4
5
6
7
8

9
3
2
1
0

6.9 2.5 0.7 0.2 0.1 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aai GaaqaabeqaaiaaiAdacaGGUaGaaGyoaaqaaiaaikdacaGGUaGaaGyn aaqaaiaaicdacaGGUaGaaG4naaqaaiaaicdacaGGUaGaaGOmaaqaai aaicdacaGGUaGaaGymaaaacaGL9baaaaa@43D3@

6.3 2.8 1.2 0.5 0.4 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGda GacaabaeqabaGaaGOnaiaac6cacaaIZaaabaGaaGOmaiaac6cacaaI 4aaabaGaaGymaiaac6cacaaIYaaabaGaaGimaiaac6cacaaI1aaaba GaaGimaiaac6cacaaI0aaaaiaaw2haaaaa@443D@

6.3 2.8 1.2 0.5 0.4 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGda GacaabaeqabaGaaGOnaiaac6cacaaIZaaabaGaaGOmaiaac6cacaaI 4aaabaGaaGymaiaac6cacaaIYaaabaGaaGimaiaac6cacaaI1aaaba GaaGimaiaac6cacaaI0aaaaiaaw2haaaaa@443D@

Total

80

80.0

80.0

80.0

ML estimate

 

θ ^ =1.791615 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcu aH4oqCgaqcaiabg2da9abaaaaaaaaapeGaaGymaiaac6cacaaI3aGa aGyoaiaaigdacaaI2aGaaGymaiaaiwdaaaa@410B@

θ ^ =2.163462 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcu aH4oqCgaqcaiabg2da9iaaikdacaGGUaGaaGymaiaaiAdacaaIZaGa aGinaiaaiAdacaaIYaaaaa@40E5@

θ ^ =2.08381 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcu aH4oqCgaqcaiabg2da9iaaikdacaGGUaGaaGimaiaaiIdacaaIZaGa aGioaiaaigdaaaa@4029@

χ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aHhpWylmaaCaaajuaGbeqaaKqzadGaaGOmaaaaaaa@3C95@

 

9.827

5.30

5.11

d.f.

 

2

2

2

P-value

 

0.0073

0.0706

0.0777

Table 3 Number of European red mites on apple leaves, reported by Garman (1923)

Acknowledgements

None.

Conflicts of interest

None.

References

  1. Shanker R. The Discrete Poisson‒Garima Distribution. Biom Biostat Int J. 2017;5(2):00127.
  2. Shanker R. Garima Distribution and its Application to Model Behavioral Science Data. Biom Biostat Int J. 2016;4(7):00116.
  3. Fisher RA. The effects of methods of ascertainment upon the estimation of frequencies. Ann Eugenics. 1934;6(1):13‒25.
  4. Rao CR. On discrete distributions arising out of methods of ascertainment In: Patil GP (Ed.), Classical and Contagious Discrete Distributions. Statistical Publishing Society, Calcutta. 1965;pp. 320‒332.
  5. Van Deusen PC. Fitting assumed distributions to horizontal point sample diameters. For Sci. 1986;32(1):146‒148.
  6. Lappi J, Bailey RL. Estimation of diameter increment function or other tree relations using angle‒count samples. Forest science. 1987;33:725‒739.
  7. Patil GP, Rao CR. The Weighted distributions: A survey and their applications. In applications of Statistics (Ed P.R. Krishnaiah, North Holland Publications Co., Amsterdam. 1977;pp. 383‒405.
  8. Patil GP, Rao CR. Weighted distributions and size‒biased sampling with applications to wild‒life populations and human families. Biometrics. 1978;34(2):179‒189.
  9. Gove JH. Estimation and applications of size‒biased distributions in forestry. In Modeling Forest Systems. In: Amaro A, et al. (Eds), CABI Publishing, USA. 2003;pp. 201‒212.
  10. Ducey MJ, Gove JH. Size‒biased distributions in the generalized beta distribution family, with applications to forestry. Forestry‒ An International Journal of Forest Research. 2015;88:143‒151.
  11. Ghitany ME, Al‒Mutairi DK. Size‒biased Poisson‒Lindley distribution and Its Applications. Metron ‒ International Journal of Statistics LXVI. 2008;(3):299‒311.
  12. Sankaran M. The discrete Poisson‒Lindley distribution. Biometrics. 1970;26(1):145‒149.
  13. Shanker R, Hagos F, Abrehe Y. On Size –Biased Poisson‒Lindley Distribution and Its Applications to Model Thunderstorms. American Journal of Mathematics and Statistics. 2015;5(6):354‒360.
  14. Barlow RE, Proschan F. Statistical Theory of Reliability and Life Testing, Silver Spring, MD. 1981.
  15. Cullen MJ, Walsh J, Nicholson LV, et al. Ultrastructural localization of dystrophin in human muscle by using gold immunolabelling. Proc R Soc Lond B Biol Sci. 240(1297):197‒210.
  16. Garman P. The European red mites in Connecticut apple orchards. Connecticut Agri Exper Station Bull. 1923;252:103‒125.
  17. Lindley DV. Fiducial distributions and Bayes theorem. Journal of the Royal Statistical Society. 1958;20(1):102‒107.
Creative Commons Attribution License

©2017 Shanker, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.