Submit manuscript...
eISSN: 2378-315X

Biometrics & Biostatistics International Journal

Research Article Volume 7 Issue 2

Size-biased discrete-Lindley distribution and its applications to model distribution of freely-forming small group size

Simon Sium, Rama Shanker

Department of Statistics, College of Science, Eritrea Institute of Technology, Asmara, Eritrea

Correspondence: Rama Shanker, Department of Statistics, College of Science, Eritrea Institute of Technology, Asmara, Eritrea

Received: March 03, 2018 | Published: April 3, 2018

Citation: Sium S, Shanker R. Size-biased discrete-lindley distribution and its applications to model distribution of freely-forming small group size. Biom Biostat Int J. 2018;7(2):131–136. DOI: 10.15406/bbij.2018.07.00200

Download PDF

Abstract

A size-biased discrete-Lindley distribution (SBDLD) has been proposed by size-biasing the discrete Lindley distribution (DLD).The moments about origin and moments about mean have been obtained and hence expressions for coefficient of variation (C.V.), skewness, kurtosis and index of dispersion have been given. The estimate of the parameter of SBDLD by both the method of moment and the method of maximum likelihood are the same. Applications of SBDLD have been discussed with four examples of observed real datasets relating to freely-forming small group size at public places. The goodness of fit of SBDLD shows quite satisfactory fit over size biased Poisson and size-biased Poisson-Lindley Distributions.

Keywords: Size-biased distribution, Discrete-Lindley distribution, Moments and moments based measures, Estimation of parameter, Goodness of fit

Introduction

Let a random variable X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGyb aaaa@3762@ has probability distribution P 0 ( x;θ );x=0,1,2,...,θ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGqb qcfa4aaSbaaKqaGeaajugWaiaaicdaaSqabaqcfa4aaeWaaOqaaKqz GeGaamiEaiaacUdacqaH4oqCaOGaayjkaiaawMcaaKqzGeGaaGPaVl aaykW7caGG7aGaamiEaiabg2da9iaaicdacaGGSaGaaGymaiaacYca caaIYaGaaiilaiaac6cacaGGUaGaaiOlaiaacYcacaaMc8UaeqiUde NaeyOpa4JaaGimaaaa@52C3@ . If sample units are weighted or selected with probability proportional to x α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG4b WcdaahaaqcbasabeaajugWaiabeg7aHbaaaaa@3AA6@ , then the corresponding size-biased distribution of order α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHXo qyaaa@3824@ is given by its probability mass function (pmf)

P 1 ( x;θ )= x α P 0 ( x;θ ) μ α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGqb WcdaWgaaqcbasaaKqzadGaaGymaaqcbasabaqcfa4aaeWaaOqaaKqz GeGaamiEaiaacUdacqaH4oqCaOGaayjkaiaawMcaaKqzGeGaeyypa0 tcfa4aaSaaaOqaaKqzGeGaamiEaKqbaoaaCaaaleqajeaibaqcLbma cqaHXoqyaaqcLbsacqGHflY1caWGqbqcfa4aaSbaaKqaGeaajugWai aaicdaaSqabaqcfa4aaeWaaOqaaKqzGeGaamiEaiaacUdacqaH4oqC aOGaayjkaiaawMcaaaqaaKqzGeGafqiVd0MbauaajuaGdaWgaaqcba saaKqzadGaeqySdegaleqaaaaaaaa@5A12@ (1.1)

Where μ α =E( X α )= x=0 x α P 0 ( x;θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacuaH8o qBgaqbaSWaaSbaaKqaGeaajugWaiabeg7aHbqcbasabaqcLbsacqGH 9aqpcaWGfbqcfa4aaeWaaOqaaKqzGeGaamiwaKqbaoaaCaaaleqaje aibaqcLbmacqaHXoqyaaaakiaawIcacaGLPaaajugibiabg2da9Kqb aoaaqahakeaajugibiaadIhalmaaCaaajeaibeqaaKqzadGaeqySde gaaKqzGeGaamiuaSWaaSbaaKqaGeaajugWaiaaicdaaKqaGeqaaKqb aoaabmaakeaajugibiaadIhacaGG7aGaeqiUdehakiaawIcacaGLPa aaaKqaGeaajugWaiaadIhacqGH9aqpcaaIWaaajeaibaqcLbmacqGH EisPaKqzGeGaeyyeIuoaaaa@5FA8@ . When α=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHXo qycqGH9aqpcaaIXaaaaa@39E5@ , the distribution is known as simple size-biased distribution and is applicable for size-biased sampling and for α=2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHXo qycqGH9aqpcaaIYaaaaa@39E6@ , the distribution is known as area-biased distribution and is applicable for area-biased sampling. In many statistical sampling situations care must be taken so that one does not inadvertently sample from size-biased distribution in place of the one intended of Berhane & Shanker.1 Size-biased distributions are a particular case of weighted distributions which arise naturally in practice when observations from a sample are recorded with probability proportional to some measure of unit size. In field applications, size-biased distributions can arise either because individuals are sampled with unequal probability by design or because of unequal detection probability. Size-biased distributions come into play when organisms occur in groups, and group size influences the probability of detection. Fisher2 firstly introduced these distributions to model ascertainment biases which were later formalized by Rao3 in a unifying theory for problems where the observations fall in non-experimental, non-replicated and non-random categories. Size-biased distributions have applications in environmental science, econometrics, social science, biomedical science, human demography, ecology, geology, forestry etc. Further, size-biasing occurs in many unexpected context such as statistical estimation, renewal theory, infinite divisibility of distributions and number theory. Many researchers have done work on size-biased distributions including Patil & ord,4 Patil & Rao,5,6 Patil,7 are some among others.

Lindley8 introduced one parameter Lindley distribution having probability density function (pdf) and cumulative distribution function (cdf).

f( x;θ )= θ 2 θ+1 ( 1+x ) e θx ;x>0,θ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGMb qcfa4aaeWaaOqaaKqzGeGaamiEaiaacUdacqaH4oqCaOGaayjkaiaa wMcaaKqzGeGaeyypa0tcfa4aaSaaaOqaaKqzGeGaeqiUde3cdaahaa qcbasabeaajugWaiaaikdaaaaakeaajugibiabeI7aXjabgUcaRiaa igdaaaqcfa4aaeWaaOqaaKqzGeGaaGymaiabgUcaRiaadIhaaOGaay jkaiaawMcaaKqzGeGaamyzaSWaaWbaaKqaGeqabaqcLbmacqGHsisl cqaH4oqCcaaMc8UaamiEaaaajugibiaaykW7caaMc8UaaGPaVlaayk W7caGG7aGaamiEaiabg6da+iaaicdacaGGSaGaaGPaVlaaykW7cqaH 4oqCcqGH+aGpcaaIWaaaaa@673F@ (1.2)

F(x;θ)=1[ 1+ θx θ+1 ] e θx ,x>0,θ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGgb GaaiikaiaadIhacaGG7aGaeqiUdeNaaiykaiabg2da9iaaigdacqGH sisljuaGdaWadaGcbaqcLbsacaaIXaGaey4kaSscfa4aaSaaaOqaaK qzGeGaeqiUdeNaamiEaaGcbaqcLbsacqaH4oqCcqGHRaWkcaaIXaaa aaGccaGLBbGaayzxaaqcLbsacaWGLbqcfa4aaWbaaSqabKqaGeaaju gWaiabgkHiTiabeI7aXjaadIhaaaqcLbsacaaMc8UaaGPaVlaaykW7 caGGSaGaamiEaiabg6da+iaaicdacaaMc8UaaiilaiaaykW7cqaH4o qCcqGH+aGpcaaIWaaaaa@6268@ (1.3)

Ghitany et al.9 have detailed study on various statistical and mathematical properties, estimation of parameter and application of Lindley distribution and it has benn showed that Lindley distribution gives better fit over exponential distribution to model waiting time data in a bank. Shanker et al.10 have detailed comparative study on modeling of lifetimes data from engineering and medical science using both Lindley and exponential distributions and showed that both are competing and in majority of datasets exponential distribution gives better fit over Lindley distribution.

Recently Berhane & Shanker1 introduced discrete-Lindley distribution (DLD), a discrete version of Lindley distribution using infinite series approach, having pmf.

P 0 ( x;θ )= ( e θ 1 ) 2 e 2θ ( 1+x ) e θx ;x=0,1,2,3,....,θ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGqb WcdaWgaaqcbasaaKqzadGaaGimaaqcbasabaqcfa4aaeWaaOqaaKqz GeGaamiEaiaacUdacqaH4oqCaOGaayjkaiaawMcaaKqzGeGaeyypa0 tcfa4aaSaaaOqaaKqbaoaabmaakeaajugibiaadwgalmaaCaaajeai beqaaKqzadGaeqiUdehaaKqzGeGaeyOeI0IaaGymaaGccaGLOaGaay zkaaWcdaahaaqcbasabeaajugWaiaaikdaaaaakeaajugibiaadwga lmaaCaaajeaibeqaaKqzadGaaGOmaiabeI7aXbaaaaqcfa4aaeWaaO qaaKqzGeGaaGymaiabgUcaRiaadIhaaOGaayjkaiaawMcaaKqzGeGa aGPaVlaadwgalmaaCaaajeaibeqaaKqzadGaeyOeI0IaeqiUdeNaaG PaVlaadIhaaaqcLbsacaGG7aGaaGPaVlaaykW7caWG4bGaeyypa0Ja aGimaiaacYcacaaIXaGaaiilaiaaikdacaGGSaGaaG4maiaacYcaca GGUaGaaiOlaiaac6cacaGGUaGaaiilaiabeI7aXjabg6da+iaaicda aaa@7509@ (1.4)

Various statistical properties of DLD, estimation of parameter and applications to model count data have been studied by Berhane & Shanker1 and it has been observed that it gives better fit than both Poisson distribution and Poisson-Lindley distribution, a Poisson mixture of Lindley8 distribution and introduced by Sankaran.11 The first four moments about origin and the variance of DLD obtained by Berhane & Shanker1 are given by

μ 1 = 2 ( e θ 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH8o qBlmaaBaaajeaibaqcLbmacaaIXaaajeaibeaalmaaCaaajeaibeqa aKqzadGamai4gkdiIcaajugibiabg2da9Kqbaoaalaaakeaajugibi aaikdaaOqaaKqbaoaabmaakeaajugibiaadwgalmaaCaaajeaibeqa aKqzadGaeqiUdehaaKqzGeGaeyOeI0IaaGymaaGccaGLOaGaayzkaa aaaaaa@4BB9@ ,

μ 2 = 2( e θ +2 ) ( e θ 1 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH8o qBlmaaBaaajeaibaqcLbmacaaIYaaajeaibeaalmaaCaaajeaibeqa aKqzadGamai4gkdiIcaajugibiabg2da9Kqbaoaalaaakeaajugibi aaikdajuaGdaqadaGcbaqcLbsacaWGLbWcdaahaaqcbasabeaajugW aiabeI7aXbaajugibiabgUcaRiaaikdaaOGaayjkaiaawMcaaaqaaK qbaoaabmaakeaajugibiaadwgalmaaCaaajeaibeqaaKqzadGaeqiU dehaaKqzGeGaeyOeI0IaaGymaaGccaGLOaGaayzkaaWcdaahaaqcba sabeaajugWaiaaikdaaaaaaaaa@56FD@ ,

μ 3 = 2( e 2θ +7 e θ +4 ) ( e θ 1 ) 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH8o qBlmaaBaaajeaibaqcLbmacaaIZaaajeaibeaalmaaCaaajeaibeqa aKqzadGamai4gkdiIcaajugibiabg2da9Kqbaoaalaaakeaajugibi aaikdajuaGdaqadaGcbaqcLbsacaWGLbqcfa4aaWbaaSqabKqaGeaa jugWaiaaikdacqaH4oqCaaqcLbsacqGHRaWkcaaI3aGaamyzaKqbao aaCaaaleqajeaibaqcLbmacqaH4oqCaaqcLbsacqGHRaWkcaaI0aaa kiaawIcacaGLPaaaaeaajuaGdaqadaGcbaqcLbsacaWGLbWcdaahaa qcbasabeaajugWaiabeI7aXbaajugibiabgkHiTiaaigdaaOGaayjk aiaawMcaaSWaaWbaaKqaGeqabaqcLbmacaaIZaaaaaaaaaa@5F30@ ,

μ 4 = 2( e 3θ +18 e 2θ +33 e θ +8 ) ( e θ 1 ) 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH8o qBlmaaBaaajeaibaqcLbmacaaI0aaajeaibeaalmaaCaaajeaibeqa aKqzadGamai4gkdiIcaajugibiabg2da9Kqbaoaalaaakeaajugibi aaikdajuaGdaqadaGcbaqcLbsacaWGLbWcdaahaaqcbasabeaajugW aiaaiodacqaH4oqCaaqcLbsacqGHRaWkcaaIXaGaaGioaiaadwgaju aGdaahaaWcbeqcbasaaKqzadGaaGOmaiabeI7aXbaajugibiabgUca RiaaiodacaaIZaGaamyzaKqbaoaaCaaaleqajeaibaqcLbmacqaH4o qCaaqcLbsacqGHRaWkcaaI4aaakiaawIcacaGLPaaaaeaajuaGdaqa daGcbaqcLbsacaWGLbWcdaahaaqcbasabeaajugWaiabeI7aXbaaju gibiabgkHiTiaaigdaaOGaayjkaiaawMcaaSWaaWbaaKqaGeqabaqc LbmacaaI0aaaaaaaaaa@67BF@ ,

μ 2 = σ 2 = 2 e θ ( e θ 1 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH8o qBlmaaBaaajeaibaqcLbmacaaIYaaajeaibeaajugibiabg2da9iab eo8aZLqbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaKqzGeGaeyypa0 tcfa4aaSaaaOqaaKqzGeGaaGOmaiaadwgalmaaCaaajeaibeqaaKqz adGaeqiUdehaaaGcbaqcfa4aaeWaaOqaaKqzGeGaamyzaKqbaoaaCa aaleqajeaibaqcLbmacqaH4oqCaaqcLbsacqGHsislcaaIXaaakiaa wIcacaGLPaaajuaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaaaaaaaa@54F6@ ,

μ 3 = 2 e θ ( e θ +1 ) ( e θ 1 ) 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH8o qBlmaaBaaajeaibaqcLbmacaaIZaaajeaibeaajugibiabg2da9Kqb aoaalaaakeaajugibiaaikdacaWGLbWcdaahaaqcbasabeaajugWai abeI7aXbaajuaGdaqadaGcbaqcLbsacaWGLbWcdaahaaqcbasabeaa jugWaiabeI7aXbaajugibiabgUcaRiaaigdaaOGaayjkaiaawMcaaa qaaKqbaoaabmaakeaajugibiaadwgajuaGdaahaaWcbeqcbasaaKqz adGaeqiUdehaaKqzGeGaeyOeI0IaaGymaaGccaGLOaGaayzkaaWcda ahaaqcbasabeaajugWaiaaiodaaaaaaaaa@5744@ ,

μ 4 = 2 e θ ( e 2θ +10 e θ +1 ) ( e θ 1 ) 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH8o qBlmaaBaaajeaibaqcLbmacaaI0aaajeaibeaajugibiabg2da9Kqb aoaalaaakeaajugibiaaikdacaWGLbWcdaahaaqcbasabeaajugWai abeI7aXbaajuaGdaqadaGcbaqcLbsacaWGLbWcdaahaaqcbasabeaa jugWaiaaikdacqaH4oqCaaqcLbsacqGHRaWkcaaIXaGaaGimaiaadw gajuaGdaahaaWcbeqcbasaaKqzadGaeqiUdehaaKqzGeGaey4kaSIa aGymaaGccaGLOaGaayzkaaaabaqcfa4aaeWaaOqaaKqzGeGaamyzaS WaaWbaaKqaGeqabaqcLbmacqaH4oqCaaqcLbsacqGHsislcaaIXaaa kiaawIcacaGLPaaalmaaCaaajeaibeqaaKqzadGaaGinaaaaaaaaaa@5F0D@

In this paper size biased discrete Lindley distribution has been proposed and its moments about origin and moments about mean have been obtained. Behaviors of coefficient of variation, Skewness, kurtosis, and index of dispersion have been discussed graphically for varying values of parameter. The method of moment and the method of maximum likelihood give the same estimate of the parameter. Finally applications of SBDLD have been discussed with four examples of observed real datasets relating to distribution of freely-forming small group size at various public places and the fit by SBDLD has been observed to be quite satisfactory.

Size-biased discrete-Lindley distribution

Using (1.1) and (1.4) and the expression for the mean of DLD, a size-biased discrete-Lindley distribution (SBDLD) with parameter θ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH4o qCcqGH+aGpcaaIWaaaaa@39FD@ can be defined by its pmf.

P 2 ( x;θ )= x P 0 ( x;θ ) μ 1 = ( e θ 1) 3 2 e 2θ (x+ x 2 ) e θx ;x=1,2,3,.., MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGqb WcdaWgaaqcbasaaKqzadGaaGOmaaqcbasabaqcfa4aaeWaaOqaaKqz GeGaamiEaiaacUdacqaH4oqCaOGaayjkaiaawMcaaKqzGeGaeyypa0 tcfa4aaSaaaOqaaKqzGeGaamiEaiabgwSixlaadcfajuaGdaWgaaqc basaaKqzadGaaGimaaWcbeaajuaGdaqadaGcbaqcLbsacaWG4bGaai 4oaiabeI7aXbGccaGLOaGaayzkaaaabaqcLbsacuaH8oqBgaqbaSWa aSbaaKqaGeaajugWaiaaigdaaKqaGeqaaaaajugibiabg2da9Kqbao aalaaakeaajugibiaacIcacaWGLbqcfa4aaWbaaSqabKqaGeaajugW aiabeI7aXbaajugibiabgkHiTiaaigdacaGGPaWcdaahaaqcbasabe aajugWaiaaiodaaaaakeaajugibiaaikdacaWGLbWcdaahaaqcbasa beaajugWaiaaikdacqaH4oqCaaaaaKqzGeGaaiikaiaadIhacqGHRa WkcaWG4bWcdaahaaqcbasabeaajugWaiaaikdaaaqcLbsacaGGPaGa aGPaVlaadwgalmaaCaaajeaibeqaaKqzadGaeyOeI0IaeqiUdeNaam iEaaaajugibiaaykW7caaMc8UaaGPaVlaaykW7caGG7aGaamiEaiab g2da9iaaigdacaGGSaGaaGOmaiaacYcacaaIZaGaaiilaiaac6caca GGUaGaaiilaaaa@8714@ (2.1)

It can be easily verified that SBDLD is unimodal and have increasing failure rate. Since

P 2 ( x+1;θ ) P 2 ( x;θ ) =( 1 e θ )( 1+ 2 x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaamiuaKqbaoaaBaaajeaibaqcLbmacaaIYaaaleqaaKqb aoaabmaakeaajugibiaadIhacqGHRaWkcaaIXaGaai4oaiabeI7aXb GccaGLOaGaayzkaaaabaqcLbsacaWGqbWcdaWgaaqcbasaaKqzadGa aGOmaaqcbasabaqcfa4aaeWaaOqaaKqzGeGaamiEaiaacUdacqaH4o qCaOGaayjkaiaawMcaaaaajugibiabg2da9KqbaoaabmaakeaajuaG daWcaaGcbaqcLbsacaaIXaaakeaajugibiaadwgajuaGdaahaaWcbe qcbasaaKqzadGaeqiUdehaaaaaaOGaayjkaiaawMcaaKqbaoaabmaa keaajugibiaaigdacqGHRaWkjuaGdaWcaaGcbaqcLbsacaaIYaaake aajugibiaadIhaaaaakiaawIcacaGLPaaaaaa@5F71@

Is a deceasing function of x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG4b aaaa@3782@ , P 1 ( x;θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGqb qcfa4aaSbaaKqaGeaajugWaiaaigdaaSqabaqcfa4aaeWaaOqaaKqz GeGaamiEaiaacUdacqaH4oqCaOGaayjkaiaawMcaaaaa@4053@ is log-concave. Therefore, SBDLD is unimodal, has an increasing failure rate (IFR), and hence increasing failure rate average (IFRA). It is new better than used in expectation (NBUE) and has decreasing mean residual life (DMRL). The definitions, concepts and interrelationship between these aging concepts have been discussed in Barlow & Proschan.12

Behavior of the pmf of SBDLD (2.1) for varying values of the parameter  has been drawn in Figure 1. It would be recalled that the pmf of size-biased Poisson-Lindley distribution (SBPLD) having parameter θ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH4o qCcqGH+aGpcaaIWaaaaa@39FD@ given by

P 3 ( x;θ )= θ 3 θ+2 x( x+θ+2 ) ( θ+1 ) x+2 ;x=1,2,3,...,;θ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGqb WcdaWgaaqcbasaaKqzadGaaG4maaqcbasabaqcfa4aaeWaaOqaaKqz GeGaamiEaiaacUdacqaH4oqCaOGaayjkaiaawMcaaKqzGeGaeyypa0 tcfa4aaSaaaOqaaKqzGeGaeqiUdexcfa4aaWbaaSqabKqaGeaajugW aiaaiodaaaaakeaajugibiabeI7aXjabgUcaRiaaikdaaaqcfa4aaS aaaOqaaKqzGeGaamiEaKqbaoaabmaakeaajugibiaadIhacqGHRaWk cqaH4oqCcqGHRaWkcaaIYaaakiaawIcacaGLPaaaaeaajuaGdaqada GcbaqcLbsacqaH4oqCcqGHRaWkcaaIXaaakiaawIcacaGLPaaalmaa CaaajeaibeqaaKqzadGaamiEaiabgUcaRiaaikdaaaaaaKqzGeGaaG PaVlaaykW7caaMc8Uaai4oaiaadIhacqGH9aqpcaaIXaGaaiilaiaa ikdacaGGSaGaaG4maiaacYcacaGGUaGaaiOlaiaac6cacaGGSaGaai 4oaiabeI7aXjabg6da+iaaicdaaaa@72B1@ (2.5)

Has been introduced by Ghitany & Mutairi13 which is a size-biased version of Poisson-Lindley distribution (PLD) introduced by Sankaran,11 Ghitany & Mutairi13 have discussed its various mathematical and statistical properties, estimation of the parameter using maximum likelihood estimation and the method of moments, and goodness of fit Shanker et al.14 has critical study on the applications of SBPLD for modeling data on thunderstorms and found that SBPLD is a better model for thunderstorms than size-biased Poisson distribution (SBPD).

Figure 1 Behavior of pmf of SBDLD for varying values of the parameter θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH4o qCaaa@383B@ .

Moments

The probability generating function (G(t)) and the moment generating function (M(t)) of SBDLD can be obtained as

G( t )= t ( e θ 1) 3 ( e θ t ) 3 fort e θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGhb qcfa4aaeWaaOqaaKqzGeGaamiDaaGccaGLOaGaayzkaaqcLbsacqGH 9aqpjuaGdaWcaaGcbaqcLbsacaaMc8UaamiDaiaaykW7caGGOaGaam yzaKqbaoaaCaaaleqajeaibaqcLbmacqaH4oqCaaqcLbsacqGHsisl caaIXaGaaiykaSWaaWbaaKqaGeqabaqcLbmacaaIZaaaaaGcbaqcfa 4aaeWaaOqaaKqzGeGaamyzaKqbaoaaCaaaleqajeaibaqcLbmacqaH 4oqCaaqcLbsacqGHsislcaWG0baakiaawIcacaGLPaaalmaaCaaaje aibeqaaKqzadGaaG4maaaaaaqcLbsacaaMc8UaaGPaVlaaykW7caaM c8UaaeOzaiaab+gacaqGYbGaaGPaVlaaykW7caWG0bGaeyiyIKRaam yzaSWaaWbaaKqaGeqabaqcLbmacqaH4oqCaaaaaa@6C18@ , (3.1)

 and

M( t )= ( e θ 1) 3 e 2(θt) ( e θt 1 ) 3 fortθ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGnb qcfa4aaeWaaOqaaKqzGeGaamiDaaGccaGLOaGaayzkaaqcLbsacqGH 9aqpjuaGdaWcaaGcbaqcLbsacaGGOaGaamyzaKqbaoaaCaaaleqaje aibaqcLbmacqaH4oqCaaqcLbsacqGHsislcaaIXaGaaiykaSWaaWba aKqaGeqabaqcLbmacaaIZaaaaKqzGeGaaGPaVlaadwgajuaGdaahaa WcbeqcbasaaKqzadGaaGOmaiaacIcacqaH4oqCcqGHsislcaWG0bGa aiykaaaaaOqaaKqbaoaabmaakeaajugibiaadwgalmaaCaaajeaibe qaaKqzadGaeqiUdeNaeyOeI0IaamiDaaaajugibiabgkHiTiaaigda aOGaayjkaiaawMcaaSWaaWbaaKqaGeqabaqcLbmacaaIZaaaaaaaju gibiaaykW7caaMc8UaaGPaVlaaykW7caqGMbGaae4BaiaabkhacaaM c8UaaGPaVlaadshacqGHGjsUcqaH4oqCaaa@7182@ . (3.2)

It can be easily verified that the function in (3.2) is infinitely differentiable with respect to , since it involves exponential terms of its argument. This means that all moments about origin of SBDLD can be obtained. The rth moment about origin μ r ,r1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH8o qBlmaaBaaajeaibaqcLbmacaWGYbaajeaibeaajuaGdaahaaWcbeqa aKqzGeGamai4gkdiIcaacaaMc8UaaGPaVlaacYcacaWGYbGaeyyzIm RaaGymaaaa@4650@ of SBDLD (2.1) can be obtained as

μ r ' =E( X r )= ( e θ 1 ) 3 2 e 2θ x=1 x r (x+ x 2 ) e θx = ( e θ 1 ) 3 2 e 2θ [ x=1 ( x r+1 e θx + x=1 ( x r+2 e θx ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibi abeY7aTTWaa0baaKqaGeaajugWaiaadkhaaKqaGeaajugWaiaacEca aaqcLbsacqGH9aqpcaWGfbGaaiikaiaadIfajuaGdaahaaWcbeqcba saaKqzadGaamOCaaaajugibiaacMcacqGH9aqpjuaGdaWcaaGcbaqc fa4aaeWaaOqaaKqzGeGaamyzaKqbaoaaCaaaleqajeaibaqcLbmacq aH4oqCaaqcLbsacqGHsislcaaIXaaakiaawIcacaGLPaaalmaaCaaa jeaibeqaaKqzadGaaG4maaaaaOqaaKqzGeGaaGOmaiaadwgalmaaCa aajeaibeqaaKqzadGaaGOmaiabeI7aXbaaaaqcfa4aaabCaOqaaKqz GeGaamiEaKqbaoaaCaaaleqajeaibaqcLbmacaWGYbaaaKqzGeGaai ikaiaadIhacqGHRaWkcaWG4bWcdaahaaqcbasabeaajugWaiaaikda aaqcLbsacaGGPaGaaGPaVlaadwgammaaCaaajqwaa+FabeaajugOai abgkHiTiabeI7aXjaadIhaaaaajeaibaqcLbmacaWG4bGaeyypa0Ja aGymaaqcbasaaKqzadGaeyOhIukajugibiabggHiLdGaaGPaVlaayk W7aOqaaKqzGeGaeyypa0tcfa4aaSaaaOqaaKqbaoaabmaakeaajugi biaadwgalmaaCaaajeaibeqaaKqzadGaeqiUdehaaKqzGeGaeyOeI0 IaaGymaaGccaGLOaGaayzkaaqcfa4aaWbaaSqabKqaGeaajugWaiaa iodaaaaakeaajugibiaaikdacaWGLbWcdaahaaqcbasabeaajugWai aaikdacqaH4oqCaaaaaKqbaoaadmaakeaajuaGdaaeWbGcbaqcLbsa caGGOaGaamiEaKqbaoaaCaaaleqajeaibaqcLbmacaWGYbGaey4kaS IaaGymaaaajugibiaadwgalmaaCaaajeaibeqaaKqzadGaeyOeI0Ia eqiUdeNaamiEaaaaaKqaGeaajugWaiaadIhacqGH9aqpcaaIXaaaje aibaqcLbmacqGHEisPaKqzGeGaeyyeIuoacqGHRaWkjuaGdaaeWbGc baqcLbsacaGGOaGaamiEaKqbaoaaCaaaleqajeaibaqcLbmacaWGYb Gaey4kaSIaaGOmaaaajugibiaadwgajuaGdaahaaWcbeqcbasaaKqz adGaeyOeI0IaeqiUdeNaamiEaaaaaKqaGeaajugWaiaadIhacqGH9a qpcaaIXaaajeaibaqcLbmacqGHEisPaKqzGeGaeyyeIuoaaOGaay5w aiaaw2faaaaaaa@C329@

Taking r=1,2,3and4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGYb Gaeyypa0JaaGymaiaacYcacaaIYaGaaiilaiaaiodacaaMc8UaaGPa VlaaykW7caqGHbGaaeOBaiaabsgacaaMc8UaaGPaVlaaykW7caaI0a aaaa@48D2@ and simplifying the complicated and tedious algebraic expression, the first four raw moments (moments about the origin) of the SBDLD (2.1) can be obtained as

μ 1 ' = e θ +2 ( e θ 1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH8o qBlmaaDaaajeaibaqcLbmacaaIXaaajeaibaqcLbmacaGGNaaaaKqz GeGaeyypa0tcfa4aaSaaaOqaaKqzGeGaamyzaKqbaoaaCaaaleqaje aibaqcLbmacqaH4oqCaaqcLbsacqGHRaWkcaaIYaaakeaajugibiaa cIcacaWGLbWcdaahaaqcbasabeaajugWaiabeI7aXbaajugibiabgk HiTiaaigdacaGGPaaaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8oa aa@562F@

μ 2 ' = e 2θ +7 e θ +4 ( e θ 1) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH8o qBlmaaDaaajeaibaqcLbmacaaIYaaajeaibaqcLbmacaGGNaaaaKqz GeGaeyypa0tcfa4aaSaaaOqaaKqzGeGaamyzaKqbaoaaCaaaleqaje aibaqcLbmacaaIYaGaeqiUdehaaKqzGeGaey4kaSIaaG4naiaadwga juaGdaahaaWcbeqcbasaaKqzadGaeqiUdehaaKqzGeGaey4kaSIaaG inaaGcbaqcLbsacaGGOaGaamyzaSWaaWbaaKqaGeqabaqcLbmacqaH 4oqCaaqcLbsacqGHsislcaaIXaGaaiykaKqbaoaaCaaaleqajeaiba qcLbmacaaIYaaaaaaaaaa@58EB@

μ 3 ' = e 3θ +18 e 2θ +33 e θ +8 ( e θ 1) 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH8o qBlmaaDaaajeaibaqcLbmacaaIZaaajeaibaqcLbmacaGGNaaaaKqz GeGaeyypa0tcfa4aaSaaaOqaaKqzGeGaamyzaKqbaoaaCaaaleqaje aibaqcLbmacaaIZaGaeqiUdehaaKqzGeGaey4kaSIaaGymaiaaiIda caWGLbWcdaahaaqcbasabeaajugWaiaaikdacqaH4oqCaaqcLbsacq GHRaWkcaaIZaGaaG4maiaadwgalmaaCaaajeaibeqaaKqzadGaeqiU dehaaKqzGeGaey4kaSIaaGioaaGcbaqcLbsacaGGOaGaamyzaKqbao aaCaaaleqajeaibaqcLbmacqaH4oqCaaqcLbsacqGHsislcaaIXaGa aiykaKqbaoaaCaaaleqajeaibaqcLbmacaaIZaaaaaaaaaa@617A@

μ 4 ' = e 4θ +41 e 3θ +171 e 2θ +131 e θ +16 ( e θ 1) 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH8o qBlmaaDaaajeaibaqcLbmacaaI0aaajeaibaqcLbmacaGGNaaaaKqz GeGaeyypa0tcfa4aaSaaaOqaaKqzGeGaamyzaSWaaWbaaKqaGeqaba qcLbmacaaI0aGaeqiUdehaaKqzGeGaey4kaSIaaGinaiaaigdacaWG LbWcdaahaaqcbasabeaajugWaiaaiodacqaH4oqCaaqcLbsacqGHRa WkcaaIXaGaaG4naiaaigdacaWGLbWcdaahaaqcbasabeaajugWaiaa ikdacqaH4oqCaaqcLbsacqGHRaWkcaaIXaGaaG4maiaaigdacaWGLb WcdaahaaqcbasabeaajugWaiabeI7aXbaajugibiabgUcaRiaaigda caaI2aaakeaajugibiaacIcacaWGLbWcdaahaaqcbasabeaajugWai abeI7aXbaajugibiabgkHiTiaaigdacaGGPaWcdaahaaqcbasabeaa jugWaiaaisdaaaaaaaaa@69CB@

Now, using the relationship between central moments (moments about mean) and the raw moments, the central moments of the SBDLD (2.1) can be obtained as

The coefficient of variation ( C.V ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeGaam4qaiaac6cacaWGwbaakiaawIcacaGLPaaaaaa@3B05@ , coefficient of Skewness ( β 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqbaoaakaaakeaajugibiabek7aITWaaSbaaKqaGeaajugWaiaa igdaaKqaGeqaaaWcbeaaaOGaayjkaiaawMcaaaaa@3D6D@ , coefficient of Kurtosis ( β 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeGaeqOSdi2cdaWgaaqcbasaaKqzadGaaGOmaaqcbasabaaa kiaawIcacaGLPaaaaaa@3CBB@ and index of dispersion ( γ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeGaeq4SdCgakiaawIcacaGLPaaaaaa@3A57@ of the SBDLD (2.1) are thus given as

C.V= σ μ 1 = 3 e θ ( e θ +2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb GaaiOlaiaadAfacqGH9aqpjuaGdaWcaaGcbaqcLbsacqaHdpWCaOqa aKqzGeGafqiVd0MbauaalmaaBaaajeaibaqcLbmacaaIXaaajeaibe aaaaqcLbsacqGH9aqpjuaGdaWcaaGcbaqcfa4aaOaaaOqaaKqzGeGa aG4maiaadwgajuaGdaahaaWcbeqcbasaaKqzadGaeqiUdehaaaWcbe aaaOqaaKqbaoaabmaakeaajugibiaadwgalmaaCaaajeaibeqaaKqz adGaeqiUdehaaKqzGeGaey4kaSIaaGOmaaGccaGLOaGaayzkaaaaaa aa@53A3@

β 1 = μ 3 μ 2 3/2 = 3 e θ ( e θ +1) ( 3 e θ ) 3/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaOaaaO qaaKqzGeGaeqOSdi2cdaWgaaqcbasaaKqzadGaaGymaaqcbasabaaa leqaaKqzGeGaeyypa0tcfa4aaSaaaOqaaKqzGeGaeqiVd0wcfa4aaS baaKqaGeaajugWaiaaiodaaSqabaaakeaajugibiabeY7aTTWaaSba aKqaGeaajugWaiaaikdaaKqaGeqaaSWaaWbaaKqaGeqabaWcdaWcga qcbasaaKqzadGaaG4maaqcbasaaKqzadGaaGOmaaaaaaaaaKqzGeGa eyypa0tcfa4aaSaaaOqaaKqzGeGaaG4maiaadwgajuaGdaahaaWcbe qcbasaaKqzadGaeqiUdehaaKqzGeGaaiikaiaadwgajuaGdaahaaWc beqcbasaaKqzadGaeqiUdehaaKqzGeGaey4kaSIaaGymaiaacMcaaO qaaKqbaoaabmaakeaajugibiaaiodacaWGLbqcfa4aaWbaaSqabKqa GeaajugWaiabeI7aXbaaaOGaayjkaiaawMcaaKqbaoaaCaaaleqaba qcfa4aaSGbaSqaaKqzGeGaaG4maaWcbaqcLbsacaaIYaaaaaaaaaaa aa@6930@

β 2 = μ 4 μ 2 2 = ( e 2θ +13 e θ +1 ) 3 e θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHYo GylmaaBaaajeaibaqcLbmacaaIYaaajeaibeaajugibiabg2da9Kqb aoaalaaakeaajugibiabeY7aTLqbaoaaBaaajeaibaqcLbmacaaI0a aaleqaaaGcbaqcLbsacqaH8oqBlmaaBaaajeaibaqcLbmacaaIYaaa jeaibeaalmaaCaaajeaibeqaaKqzadGaaGOmaaaaaaqcLbsacqGH9a qpjuaGdaWcaaGcbaqcfa4aaeWaaOqaaKqzGeGaamyzaSWaaWbaaKqa GeqabaqcLbmacaaIYaGaeqiUdehaaKqzGeGaey4kaSIaaGymaiaaio dacaaMc8UaamyzaSWaaWbaaKqaGeqabaqcLbmacqaH4oqCaaqcLbsa cqGHRaWkcaaIXaaakiaawIcacaGLPaaaaeaajugibiaaiodacaaMc8 UaamyzaKqbaoaaCaaaleqajeaibaqcLbmacqaH4oqCaaaaaaaa@6503@

γ= σ 2 μ 1 = 3 e θ ( e θ 1 )( e θ +2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHZo WzcqGH9aqpjuaGdaWcaaGcbaqcLbsacqaHdpWCjuaGdaahaaWcbeqc basaaKqzadGaaGOmaaaaaOqaaKqzGeGaeqiVd02cdaWgaaqcbasaaK qzadGaaGymaaqcbasabaWcdaahaaqcbasabeaajugWaiadacUHYaIO aaaaaKqzGeGaeyypa0tcfa4aaSaaaOqaaKqzGeGaaG4maiaaykW7ca WGLbqcfa4aaWbaaSqabKqaGeaajugWaiabeI7aXbaaaOqaaKqbaoaa bmaakeaajugibiaadwgajuaGdaahaaWcbeqcbasaaKqzadGaeqiUde haaKqzGeGaeyOeI0IaaGymaaGccaGLOaGaayzkaaqcfa4aaeWaaOqa aKqzGeGaamyzaSWaaWbaaKqaGeqabaqcLbmacqaH4oqCaaqcLbsacq GHRaWkcaaIYaaakiaawIcacaGLPaaaaaaaaa@64A1@

 It can be easily verified that SBDLD is over-dispersed ( μ< σ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeGaeqiVd0MaeyipaWJaeq4Wdmxcfa4aaWbaaSqabKqaGeaa jugWaiaaikdaaaaakiaawIcacaGLPaaaaaa@3FFC@ , equi-dispersed ( μ= σ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeGaeqiVd0Maeyypa0Jaeq4Wdm3cdaahaaqcbasabeaajugW aiaaikdaaaaakiaawIcacaGLPaaaaaa@3F70@ and under-dispersed ( μ> σ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeGaeqiVd0MaeyOpa4Jaeq4Wdm3cdaahaaqcbasabeaajugW aiaaikdaaaaakiaawIcacaGLPaaaaaa@3F72@ for θ>(=)< θ =1.00505 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH4o qCcaaMc8UaeyOpa4Jaaiikaiabg2da9iaacMcacaaMc8UaeyipaWJa eqiUde3cdaahaaqcbasabeaajugWaiabgEHiQaaajugibiabg2da9i aaigdacaGGUaGaaGimaiaaicdacaaI1aGaaGimaiaaiwdaaaa@4A94@ . It should be noted that SBPLD is over-dispersed ( μ< σ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeGaeqiVd0MaeyipaWJaeq4Wdm3cdaahaaqcbasabeaajugW aiaaikdaaaaakiaawIcacaGLPaaaaaa@3F6E@ , equi-dispersed ( μ= σ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeGaeqiVd0Maeyypa0Jaeq4Wdm3cdaahaaqcbasabeaajugW aiaaikdaaaaakiaawIcacaGLPaaaaaa@3F70@ and under-dispersed ( μ> σ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeGaeqiVd0MaeyOpa4Jaeq4Wdm3cdaahaaqcbasabeaajugW aiaaikdaaaaakiaawIcacaGLPaaaaaa@3F72@ for θ<(=)> θ =1.671162 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH4o qCcqGH8aapcaaMc8Uaaiikaiabg2da9iaacMcacaaMc8UaeyOpa4Ja eqiUde3cdaahaaqcbasabeaajugWaiabgEHiQaaajugibiabg2da9i aaigdacaGGUaGaaGOnaiaaiEdacaaIXaGaaGymaiaaiAdacaaIYaaa aa@4B5B@ . The behavior of mean, variance, C.V, skewness, kurtosis and index of dispersion for varying values of parameter has been shown numerically in Table 1.

Theta

Mean

 

Variance

CV

Skewness

Kurtosis

Index of dispersion

0.25

47.7508

 

11.5624

0.5976

1.1637

5.0209

4.1298

0.50

11.7531

 

5.6245

0.6095

1.1910

5.0851

2.0896

0.75

5.0902

 

3.6858

0.6121

1.2368

5.1965

1.3810

1.00

2.7620

 

2.7459

0.6052

1.3021

5.3621

1.0059

1.25

1.6884

 

2.2047

0.5894

1.3877

5.5923

0.7658

1.50

1.1091

 

1.8617

0.5657

1.4950

5.9016

0.5958

1.75

0.7637

 

1.6310

0.5358

1.6257

6.3095

0.4682

2.00

0.5430

 

1.4696

0.5015

1.7818

6.8415

0.3695

2.25

0.3951

 

1.3535

0.4644

1.9658

7.5310

0.2919

2.50

0.2923

 

1.2683

0.4263

2.1806

8.4215

0.2304

2.75

0.2189

 

1.2049

0.3883

2.4294

9.5689

0.1817

3.00

0.1654

 

1.1572

0.3515

2.7163

11.0451

0.1430

Table 1 Values of coefficient of variation, skewness, kurtosis, index of dispersion, mean and variance of SBDLD for different values of parameter θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH4o qCaaa@383B@

The behavior of coefficient of variation ( C.V ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeGaam4qaiaac6cacaWGwbaakiaawIcacaGLPaaaaaa@3B05@ , coefficient of Skewness ( β 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqbaoaakaaakeaajugibiabek7aITWaaSbaaKqaGeaajugWaiaa igdaaKqaGeqaaaWcbeaaaOGaayjkaiaawMcaaaaa@3D6D@ , coefficient of Kurtosis ( β 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeGaeqOSdiwcfa4aaSbaaKqaGeaajugWaiaaikdaaSqabaaa kiaawIcacaGLPaaaaaa@3D1F@ and index of dispersion ( γ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeGaeq4SdCgakiaawIcacaGLPaaaaaa@3A57@ of the SBDLD are shown in Figure 2. From Figure 2, it is obvious that C.V and index of dispersion are monotonically decreasing whereas coefficient of skewness and coefficient of kurtosis are monotonically increasing for increasing values of the parameter θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH4o qCaaa@383B@ .

Figure 2 Behavior of C.V, coefficient of Skewness, coefficient of Kurtosis and index of dispersion of the SBDLD for varying values of the parameter θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH4o qCaaa@383B@ .

The behavior of mean and variance for varying values of parameter θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH4o qCaaa@383B@ has been shown in Figure 3.

Figure 3 Behavior of Mean and Variance of the SBDLD for varying values of the parameter θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH4o qCaaa@383B@ .

Estimation of parameter

Method of Moment Estimate (MOME)

Equating the population mean to the corresponding sample mean, the method of moment estimate (MOME) θ ˜ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacuaH4o qCgaacaaaa@384A@ of θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH4o qCaaa@383B@ of SBDLD (2.1) is given by

θ ˜ =ln( x ¯ +2 x ¯ 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacuaH4o qCgaacaiabg2da9iGacYgacaGGUbqcfa4aaeWaaOqaaKqbaoaalaaa keaajugibiqadIhagaqeaiabgUcaRiaaikdaaOqaaKqzGeGabmiEay aaraGaeyOeI0IaaGymaaaaaOGaayjkaiaawMcaaaaa@449F@ ,

Where x ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWG4b Gbaebaaaa@379A@ is the sample mean.

Maximum Likelihood Estimate (MLE)

Let x 1 , x 2 ,..., x n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG4b WcdaWgaaqcbasaaKqzadGaaGymaaqcbasabaqcLbsacaGGSaGaamiE aSWaaSbaaKqaGeaajugWaiaaikdaaKqaGeqaaKqzGeGaaiilaiaac6 cacaGGUaGaaiOlaiaacYcacaWG4bWcdaWgaaqcbasaaKqzadGaamOB aaqcbasabaaaaa@4634@ be a random sample of size n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGUb aaaa@3778@ from the SBDLD (2.1) and let f x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGMb WcdaWgaaqcbasaaKqzadGaamiEaaqcbasabaaaaa@3A1B@ be the observed frequency in the sample corresponding to X=x(x=1,2,3,...,k) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGyb Gaeyypa0JaamiEaiaaykW7caaMc8UaaiikaiaadIhacqGH9aqpcaaI XaGaaiilaiaaikdacaGGSaGaaG4maiaacYcacaGGUaGaaiOlaiaac6 cacaGGSaGaam4AaiaacMcaaaa@47D1@ such that x=1 k f x =n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaabCaO qaaKqzGeGaamOzaSWaaSbaaKqaGeaajugWaiaadIhaaKqaGeqaaaqa aKqzadGaamiEaiabg2da9iaaigdaaKqaGeaajugWaiaadUgaaKqzGe GaeyyeIuoacqGH9aqpcaWGUbaaaa@4599@ , where is the largest observed value having non-zero frequency. The likelihood function of the SBDLD (2.1) is given by

L= ( ( e θ 1) 3 2 e 2θ ) n e θ x=1 k x f x x=1 k ( x+ x 2 ) f x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGmb Gaeyypa0tcfa4aaeWaaOqaaKqbaoaalaaakeaajugibiaacIcacaWG Lbqcfa4aaWbaaSqabKqaGeaajugWaiabeI7aXbaajugibiabgkHiTi aaigdacaGGPaWcdaahaaqcbasabeaajugWaiaaiodaaaaakeaajugi biaaikdacaWGLbqcfa4aaWbaaSqabKqaGeaajugWaiaaikdacqaH4o qCaaaaaaGccaGLOaGaayzkaaWcdaahaaqcbasabeaajugWaiaad6ga aaqcLbsacqGHflY1caWGLbqcfa4aaWbaaSqabKqaGeaajugWaiabgk HiTiabeI7aXTWaaabCaKqaGeaajugWaiaadIhacqGHflY1caWGMbWc daWgaaqccauaaKqzadGaamiEaaqccauabaaabaqcLbmacaWG4bGaey ypa0JaaGymaaqccauaaKqzadGaam4AaaGaeyyeIuoaaaqcLbsacqGH flY1juaGdaqeWbGcbaqcfa4aaeWaaOqaaKqzGeGaamiEaiabgUcaRi aadIhalmaaCaaajeaibeqaaKqzadGaaGOmaaaaaOGaayjkaiaawMca aKqbaoaaCaaaleqajeaibaqcLbmacaWGMbWcdaWgaaqccasaaKqzad GaamiEaaqccasabaaaaaqcbasaaKqzadGaamiEaiabg2da9iaaigda aKqaGeaajugWaiaadUgaaKqzGeGaey4dIunaaaa@82F2@

The log likelihood function can be obtained as

lnL=n( 3ln( e θ 1)ln(2 e 2θ ) )θ x=1 k x f x + x=1 k f x ln(x+ x 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaciGGSb GaaiOBaiaadYeacqGH9aqpcaWGUbqcfa4aaeWaaOqaaKqzGeGaaG4m aiGacYgacaGGUbGaaiikaiaadwgalmaaCaaajeaibeqaaKqzadGaeq iUdehaaKqzGeGaeyOeI0IaaGymaiaacMcacqGHsislciGGSbGaaiOB aiaacIcacaaIYaGaamyzaSWaaWbaaKqaGeqabaqcLbmacaaIYaGaeq iUdehaaKqzGeGaaiykaaGccaGLOaGaayzkaaqcLbsacqGHsislcqaH 4oqCjuaGdaaeWbGcbaqcLbsacaWG4bGaaGPaVlaadAgajuaGdaWgaa qcbasaaKqzadGaamiEaaWcbeaaaKqaGeaajugWaiaadIhacqGH9aqp caaIXaaajeaibaqcLbmacaWGRbaajugibiabggHiLdGaey4kaSscfa 4aaabCaOqaaKqzGeGaamOzaSWaaSbaaKqaGeaajugWaiaadIhaaKqa GeqaaKqzGeGaaGPaVlGacYgacaGGUbGaaiikaiaadIhacqGHRaWkca WG4bqcfa4aaWbaaSqabKqaGeaajugWaiaaikdaaaqcLbsacaGGPaaa jeaibaqcLbmacaWG4bGaeyypa0JaaGymaaqcbasaaKqzadGaam4Aaa qcLbsacqGHris5aaaa@80D2@

The first derivative of the log likelihood function is thus given by

dlnL dθ = 3n e θ ( e θ 1 ) 2nn x ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaamizaiGacYgacaGGUbGaamitaaGcbaqcLbsacaWGKbGa eqiUdehaaiabg2da9KqbaoaalaaakeaajugibiaaiodacaaMc8Uaam OBaiaaykW7caWGLbqcfa4aaWbaaSqabKqaGeaajugWaiabeI7aXbaa aOqaaKqbaoaabmaakeaajugibiaadwgalmaaCaaajeaibeqaaKqzad GaeqiUdehaaKqzGeGaeyOeI0IaaGymaaGccaGLOaGaayzkaaaaaKqz GeGaeyOeI0IaaGOmaiaaykW7caWGUbGaeyOeI0IaamOBaiaaykW7ce WG4bGbaebaaaa@5C0F@ ,

Where x ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWG4b Gbaebaaaa@379A@ is the sample mean. The maximum likelihood estimate (MLE), θ ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacuaH4o qCgaqcaaaa@384B@ of θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH4o qCaaa@383B@ of SBDLD (2.1) is the solution of the equation dlnL dθ =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaamizaiGacYgacaGGUbGaamitaaGcbaqcLbsacaWGKbGa eqiUdehaaiabg2da9iaaicdaaaa@3FC3@ and is given by

θ ^ =ln( x ¯ +2 x ¯ 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacuaH4o qCgaqcaiabg2da9iGacYgacaGGUbqcfa4aaeWaaOqaaKqbaoaalaaa keaajugibiqadIhagaqeaiabgUcaRiaaikdaaOqaaKqzGeGabmiEay aaraGaeyOeI0IaaGymaaaaaOGaayjkaiaawMcaaaaa@44A0@

Thus, like DLD, both MOME and MLE give the same estimate of the parameter θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH4o qCaaa@383B@ in case of SBDLD.

Goodness of fit

We know that size-biased distributions are useful for modeling data relating to situation when organisms occur in groups and the group size influence the probability of detection. In this section, the goodness of fit of SBDLD has been discussed with data relating to the size distribution of freely -forming small groups at various public places, reported by James15 and Coleman & James.16 The expected frequency by size-biased Poisson distribution (SBPD) and size-biased Poisson-Lindley distribution (SBPLD) have also been presented for ready comparison with SBDLD. Note that the goodness of fit of SBDLD, SBPD and SBPLD is based on the maximum likelihood estimates of the parameter.

Based on the values of chi-square ( χ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHhp WylmaaCaaajeaibeqaaKqzadGaaGOmaaaaaaa@3A7D@ ) and p-value, it is obvious that SBDLD gives much closer fit than SBPD and SBPLD in the Tables 2-4 while in Table 5, SBPLD gives much closer fit than both SBPD and SBDLD. Thus, SBDLD can be considered an important distribution for modeling the distribution of freely-forming small group size at various public places.

Group Size

Observed Frequency

Expected Frequency

SBPD

SBPLD

SBDLD

1
2
3
4
5
6

1486
694
195
37
10
1

1452.4
743.3
190.2
32.4
4.1
0.6

1532.5
630.6
191.9
51.3
12.8
3.9

1486.4
693.0
193.9
41.0
7.3
1.4

Total

2423

2423.0

2423.0

2423

ML estimate

 

θ ^ =0.5118 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacuaH4o qCgaqcaiabg2da9iaaicdacaGGUaGaaGynaiaaigdacaaIXaGaaGio aaaa@3DB4@

θ ^ =4.5082 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacuaH4o qCgaqcaiabg2da9iaaisdacaGGUaGaaGynaiaaicdacaaI4aGaaGOm aaaa@3DB8@

θ ^ =2.3725 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacuaH4o qCgaqcaiabg2da9iaaikdacaGGUaGaaG4maiaaiEdacaaIYaGaaGyn aaaa@3DB8@

χ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHhp WylmaaCaaajeaibeqaaKqzadGaaGOmaaaaaaa@3A7D@

 

7.370

1.760

1.007

d.f.

 

2

3

3

p-value

 

0.0251

0.0030

0.9088

Table 2 Pedestrians-eugene, spring, morning

Group Size

Observed Frequency

Expected Frequency

SBPD

SBPLD

SBDLD

1
2
3
4
5

316
141
44
5
4

306.3
156.2
39.8
6.8
0.9

323.0
132.5
40.2
10.7
3.6

313.4
145.6
40.6
8.6
1.8

Total

510

510.0

510.0

510.0

ML estimate

 

θ ^ =0.5098 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacuaH4o qCgaqcaiabg2da9iaaicdacaGGUaGaaGynaiaaicdacaaI5aGaaGio aaaa@3DBB@

θ ^ =4.5224 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacuaH4o qCgaqcaiabg2da9iaaisdacaGGUaGaaGynaiaaikdacaaIYaGaaGin aaaa@3DB6@

θ ^ =2.3760 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacuaH4o qCgaqcaiabg2da9iaaikdacaGGUaGaaG4maiaaiEdacaaI2aGaaGim aaaa@3DB7@

χ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHhp WylmaaCaaajqwaa+FabeaajugWaiaaikdaaaaaaa@3C40@

 

2.463

3.020

0.640

d.f.

 

2

2

2

p-value

 

0.4818

0.3884

0.8872

Table 3 Shopping groups–eugene, spring, department store and public market

Group Size

Observed Frequency

Expected Frequency

SBPD

SBPLD

SBDLD

1
2
3
4
5
6

305
144
50
5
2
1

296.5
159.0
42.6
7.6
1.0
0.3

314.4
134.4
42.5
11.8
3.1
0.8

304.1
148.0
43.2
9.5
1.8
0.4

Total

507

507.0

507.0

507

ML estimate

 

θ ^ =0.5365 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacuaH4o qCgaqcaiabg2da9iaaicdacaGGUaGaaGynaiaaiodacaaI2aGaaGyn aaaa@3DB8@

θ ^ =4.3179 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacuaH4o qCgaqcaiabg2da9iaaisdacaGGUaGaaG4maiaaigdacaaI3aGaaGyo aaaa@3DBD@

θ ^ =2.3294 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacuaH4o qCgaqcaiabg2da9iaaikdacaGGUaGaaG4maiaaikdacaaI5aGaaGin aaaa@3DB9@

χ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHhp WylmaaCaaajeaibeqaaKqzadGaaGOmaaaaaaa@3A7D@

 

3.035

6.415

2.351

d.f.

 

2

2

2

p-value

 

0.2190

0.0400

0.5028

Table 4 Play groups–eugene, spring, public playground D

Number times hares caught

Observed Frequency

Expected Frequency

SBPD

SBPLD

SBDLD

1
2
3
4
5

306
132
47
10
2

292.2
155.2
41.2
7.3
1.1

309.4
131.2
41.1
11.3
4.0

299.5
144.5
41.8
9.1
2.1

Total

497

497.0

497.0

497

ML estimate

 

θ ^ =0.5312 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacuaH4o qCgaqcaiabg2da9iaaicdacaGGUaGaaGynaiaaiodacaaIXaGaaGOm aaaa@3DB0@

θ ^ =4.3548 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacuaH4o qCgaqcaiabg2da9iaaisdacaGGUaGaaG4maiaaiwdacaaI0aGaaGio aaaa@3DBD@

θ ^ =2.3385 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacuaH4o qCgaqcaiabg2da9iaaikdacaGGUaGaaG4maiaaiodacaaI4aGaaGyn aaaa@3DBA@

χ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHhp WylmaaCaaajeaibeqaaKqzadGaaGOmaaaaaaa@3A7D@

 

6.479

0.932

1.926

d.f.

 

2

2

2

p-value

 

0.0390

0.6281

0.5878

Table 5 Play groups–eugene, spring, public playground A

Concluding remarks

In the present paper size-biased discrete Lindley distribution (SBDLD), a simple size-biased version of the discrete Lindley distribution (DLD) of Berhane & Shanker1 has been proposed and studied. Its raw moments and central moments have been obtained and hence expressions for coefficient of variation, skewness, kurtosis and index of dispersion have been presented and their behaviors have been discussed graphically. The estimation of its parameter has been discussed using the method of moments and the method of maximum likelihood. The goodness of fit of the SBDLD has been discussed with four examples of observed real datasets relating to freely-forming small group size at public places over SBPD and SBPLD and the fit given by SBDLD gives quite satisfactory fit. Therefore, SBDLD can be considered an important distribution for modeling count data relating to freely-forming small group size at public places.

Acknowledgement

None.

Conflict of interest

The author declares there is no conflict of interest.

References

  1. Berhane A, Shanker R. A discrete Lindley distribution with applications in Biological sciences. Biometrics & Biostatistics International Journal. 2018;7(2):1–5.
  2. Fisher RA. The effects of methods of ascertainment upon the estimation of frequencies. Annals of Eugenics. 1934;6(1):13–25.
  3. Rao CR. On discrete distributions arising out of methods of ascertainment. In: Patil GP, editor. Classical and Contagious Discrete Distributions. India: Statistical Publishing Society; 1965:320–332.
  4. Patil GP, Ord JK. On size–biased sampling and related form–invariant weighted distributions. Sankhyā: The Indian Journal of Statistics, Series B. 1976;38(1):48–61.
  5. Patil GP, Rao CR. The Weighted distributions: A survey and their applications. In: Krishnaiah PR, editor. Applications of Statistics. Netherlands: North Holland Publications; 1977:383–405.
  6. Patil GP, Rao CR. Weighted distributions and size–biased sampling with applications to wild-life populations and human families. Biometrics. 1978;34:179–189
  7. Patil GP. Studies in statistical ecology involving weighted distributions. In: Ghosh JK, Roy J, editors. Applications and New Directions. Proceeding of Indian Statistical Institute. Golden Jubliee, India: Statistical Publishing society; 1981:478–503.
  8. Lindley DV. Fiducial distributions and Bayes theorem. Journal of the Royal Statistical Society. 1958;20(1):102–107.
  9. Ghitany ME, Atieh B, Nadarajah S. Lindley distribution and its Application. Mathematics Computing and Simulation. 2008;78(4):493–506.
  10. Shanker R, Hagos F, Sujatha S. On modeling of lifetimes data using exponential and Lindley distributions. Biometrics & Biostatistics International Journal. (2015);2(5):1– 9.
  11. Sankaran M. The discrete Poisson–Lindley distribution. Biometrics. 1970;26(1):145–149.
  12. Barlow RE, Proschan F. Statistical Theory of Reliability and Life Testing. USA: Silver Spring; 1981.
  13. Ghitany ME, Al–Mutairi DK. Size–biased Poisson–Lindley distribution and Its Applications. Metron–International Journal of Statistics. 2008;16(3):299–311.
  14. Shanker R, Hagos F, Abrehe Y. On Size–Biased Poisson–Lindley Distribution and Its Applications to Model Thunderstorms. American Journal of Mathematics and Statistics. 2015;5(6):354–360.
  15. James J. The distribution of freely–forming small group size. American sociological Review. 1953;18:569–570.
  16. Coleman JS, James J. The equilibrium size distribution of freely–forming groups. Sociometry. 1961;24(1):36–45.
Creative Commons Attribution License

©2018 Sium, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.