Submit manuscript...
eISSN: 2378-315X

Biometrics & Biostatistics International Journal

Research Article Volume 11 Issue 2

%PT-GSDesign: A SAS Macro for group sequential designs with time-to-event endpoint using the concept of proportional time

Milind A Phadnis, Nadeesha Thewarapperuma

Department of Biostatistics & Data Science, University of Kansas Medical Center, USA

Correspondence: Milind A. Phadnis, Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, USA

Received: June 16, 2022 | Published: June 27, 2022

Citation: Phadnis MA, Thewarapperuma N. %PT_GSDesign: A SAS Macro for group sequential designs with time-to-event endpoint using the concept of proportional time. Biom Biostat Int J. 2022;11(2):72-77. DOI: 10.15406/bbij.2022.11.00357

Download PDF

Abstract

Sequential testing can be used to meet the specific needs of a clinical trial, all while adhering to the study's ethical, financial, and administrative considerations. When the assumption of proportional hazards or exponentially distributed lifetimes is not satisfied, the researcher can rely on the Proportional Time assumption for sample size calculation. The proportional time method has the advantage that previous study results can be used to bolster the current study design and provide an easier interpretation of the treatment benefit by reporting results as an improvement in longevity versus the more traditional interpretation of reduction in risk. This ease in interpretation of treatment benefit helps in raising interest in study participation. This novel method can be applied through a SAS macro and can be utilized for all distributions that belong to the generalized gamma family. The macro incorporates features specific to time-to-event data such as loss to follow-up, administrative censoring, differing accrual times and patterns, binding or non-binding futility rules with or without skips, and flexible alpha and beta spending functions. The macro includes validation for any parameters defined by the user, as well as suggestions for correcting erroneous input. This paper demonstrates two practical applications of the SAS macro with varying design inputs.

Keywords: efficacy, error spending, futility, proportional time, sample size, SAS software

Abbreviations

RCT, randomized clinical trial; NDA, new drug application; FDA, food and drug Administration; GSD, group sequential design; PH, proportional hazard; PT, proportional time; AFT, accelerated failure time; GG, generalized gamma

Introduction

Two-arm randomized clinical trials (RCT) are considered the gold standard by biomedical researchers as they allow estimating how well a new treatment performs relative to a standard-of-care control. Treatments that are found to be promising in a Phase II trial are studied more comprehensively in a Phase III trial where, by enrolling a large number of patients (typically several hundred), researchers aim to investigate the effectiveness and safety of the new treatment against the current standard treatment. If such evidence is found in a Phase III trial, a new drug application (NDA) is submitted to the Food and Drug Administration (FDA) and on obtaining the FDA approval, the new drug becomes the new standard-of-care.

While traditional approaches require the calculation of a fixed sample size in advance of conducting a RCT depending on the type I error, power and clinically important treatment effect, in the medical setting they suffer from the limitation that patients are continually being accrued into a study which may be a time consuming process based on the accrual rate, the availability of qualified patients (based on inclusion/exclusion criteria) and the possibility of random dropouts among many factors. Thus, the primary outcome of interest is not available simultaneously on all patients and researchers may be interested to look at the early results on outcomes on the early enrollees and use that as a basis to decide whether the trial should be continued. This raises the concept of sequential testing in large-sized Phase III trials, where interim results can be used to – (i) stop the trial early for overwhelming evidence of efficacy, (ii) stop the trial early for overwhelming evidence for futility, and (iii) continue the trial for lack of evidence of efficacy or futility.

A Group Sequential Design (GSD) formalizes the above concept by providing a solid statistical framework under which either of the above three decisions can be taken after looking at results collected at interim points in the study. observation window. Ethical, financial, and administrative requirements often guide the statistical designs of GSDs.1–3 Such GSDs have been well developed for continuous and binary outcomes and have a long history starting with quality control application4 and progressing to the medical setting.5 Vast literature is available on this topic in many books6–10 and overview articles.11–13 When dealing with time-to-event outcome, a repeated significance testing approach incorporating a family of designs14–16 can be combined with the error spending method17 to implement a GSD using a log-rank test or by using the proportional hazards (PH) assumption. Popular statistical software often implement GSDs for time-to-event outcome using the weighted and unweighted versions of the log-rank test either explicitly assuming exponentially distributed survival times or with the PH assumption and are able to incorporate complexities of survival outcomes such as random dropouts, prespecified accrual and follow-up times, varying accrual patterns, equal/unequal spaced interim testing points (looks), efficacy-only designs, efficacy and futility designs, binding and non-binding futility rules, and many other flexible features specific to time-to-event outcomes.

When the underlying assumptions that drive the analytical and simulation-based approaches using the framework of the log-rank test are not valid, hardly any alternate methods are available in literature or in standard statistical software. Recent developments in this field have considered relaxing the PH assumption in favor of a ‘proportionality of time’ (PT) assumption leading to development of GSDs in the context of an accelerated failure time (AFT) model.18The authors have described various scenarios in the biomedical setting where their approach could be advantageous compared to the standard methods with the help of real-life examples. Their proposed GSD method provides an alternate approach when the PH assumption is not appropriate and allows various hazard shapes (increasing/decreasing monotonically over time, bathtub shaped, arc-shaped) using the generalized gamma ratio distribution.19 The purpose of this paper is to present a fully functional SAS macro that can be used to implement their GSD method. The SAS macro incorporates multitude of design features specific to a two-arm GSD for time-to-event outcome and the accompanying discussion of results provide information on how this macro can be implemented.

Material and methods

Statistical methods for GSD using the proportional time (PT) framework

The statistical framework for the method proposed based on the PT assumption18 assumes that the survival times follow a generalized gamma (GG) distribution.20The probability density function of the GG distribution is given as:

f(t)= β Γ( κ )θ ( t θ ) κβ1 e ( t θ ) β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOzaiaacIcacaWG0bGaaiykaiabg2da9maalaaabaGaeqOSdiga baGaeu4KdC0aaeWaaeaacqaH6oWAaiaawIcacaGLPaaacqaH4oqCaa WaaeWaaeaadaWcaaqaaiaadshaaeaacqaH4oqCaaaacaGLOaGaayzk aaWaaWbaaSqabeaacqaH6oWAcqaHYoGycqGHsislcaaIXaaaaOGaam yzamaaCaaaleqabaGaeyOeI0YaaeWaaeaadaWcaaqaaiaadshaaeaa cqaH4oqCaaaacaGLOaGaayzkaaWaaWbaaWqabeaacqaHYoGyaaaaaa aa@5510@   (1)

where β>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdiMaeyOpa4JaaGimaaaa@3A91@ and κ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOUdSMaeyOpa4JaaGimaaaa@3AA2@  are the shape parameters, θ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiUdeNaeyOpa4JaaGimaaaa@3AA6@ is the scale parameter and Γ( k ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4KdC0aaeWaaeaacaWGRbaacaGLOaGaayzkaaaaaa@3B0F@ is the gamma function defined as Γ( k )=  0 x k1 e x dx MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaqGtoWaaeWaa8aabaWdbiaadUgaaiaawIcacaGLPaaacqGH9aqp caGGGcWaaybCaeqal8aabaWdbiaaicdaa8aabaWdbiabg6HiLcqdpa qaa8qacqGHRiI8aaGccaWG4bWdamaaCaaaleqabaWdbiaadUgacqGH sislcaaIXaaaaOGaamyza8aadaahaaWcbeqaa8qacqGHsislcaWG4b aaaOGaamizaiaadIhaaaa@49F0@ . For model fitting purposes a re-parametrization GG( μ,σ, λ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGhbGaam4ramaabmaapaqaa8qacqaH8oqBcaGGSaGaeq4WdmNa aiilaiaacckacqaH7oaBaiaawIcacaGLPaaaaaa@4108@  is used to avoid convergence problems using location parameter μ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaH8oqBaaa@37CD@  scale parameter σ and shape parameter λ that generalizes the two-parameter gamma distribution. The density function is given by:

f GG ( t )=  | λ | σtΓ( λ 2 ) [ λ 2 { exp( μ )t } λ σ ] λ 2 exp[ λ 2 { exp( μ )t } λ σ ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGMbWdamaaBaaaleaapeGaam4raiaadEeaa8aabeaak8qadaqa daWdaeaapeGaamiDaaGaayjkaiaawMcaaiabg2da9iaacckadaWcaa WdaeaapeWaaqWaa8aabaWdbiabeU7aSbGaay5bSlaawIa7aaWdaeaa peGaeq4WdmNaamiDaiaabo5adaqadaWdaeaapeGaeq4UdW2damaaCa aaleqabaWdbiabgkHiTiaaikdaaaaakiaawIcacaGLPaaaaaWaamWa a8aabaWdbiabeU7aS9aadaahaaWcbeqaa8qacqGHsislcaaIYaaaaO WaaiWaa8aabaWdbiGacwgacaGG4bGaaiiCamaabmaapaqaa8qacqGH sislcqaH8oqBaiaawIcacaGLPaaacaWG0baacaGL7bGaayzFaaWdam aaCaaaleqabaWdbmaaliaapaqaa8qacqaH7oaBa8aabaWdbiabeo8a ZbaaaaaakiaawUfacaGLDbaapaWaaWbaaSqabeaapeGaeq4UdW2dam aaCaaameqabaWdbiabgkHiTiaaikdaaaaaaOGaciyzaiaacIhacaGG WbWaamWaa8aabaWdbiabgkHiTiabeU7aS9aadaahaaWcbeqaa8qacq GHsislcaaIYaaaaOWaaiWaa8aabaWdbiGacwgacaGG4bGaaiiCamaa bmaapaqaa8qacqGHsislcqaH8oqBaiaawIcacaGLPaaacaWG0baaca GL7bGaayzFaaWdamaaCaaaleqabaWdbmaaliaapaqaa8qacqaH7oaB a8aabaWdbiabeo8aZbaaaaaakiaawUfacaGLDbaaaaa@7CB4@   (2)

A complete taxonomy of the various hazard functions for the GG family is explained in literature.21 Briefly, the GG family allows the flexibility of modeling different hazard shapes such as increasing from 0 to ∞ or from a constant to ∞ decreasing from ∞ to 0, or from ∞ to a constant, arc shaped hazards, and bathtub shaped hazards. Special cases of the GG family are (i) two parameter gamma: λ=σ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaH7oaBcqGH9aqpcqaHdpWCaaa@3A94@  (ii) standard gamma: μ=0;σ=1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaH8oqBcqGH9aqpcaaIWaGaai4oaiabeo8aZjabg2da9iaaigda aaa@3DD0@  for fixed values of λ (iii) Weibull: λ=1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaH7oaBcqGH9aqpcaaIXaaaaa@398C@  (iv) exponential: λ=σ=1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaH7oaBcqGH9aqpcqaHdpWCcqGH9aqpcaaIXaaaaa@3C55@ (v) lognormal: λ=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaH7oaBcqGH9aqpcaaIWaaaaa@398B@ (vi) inverse Weibull: λ=1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaH7oaBcqGH9aqpcqGHsislcaaIXaaaaa@3A79@  (vii) inverse gamma: λ=σ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaH7oaBcqGH9aqpcqGHsislcqaHdpWCaaa@3B81@  (viii) ammag: λ=1/σ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaH7oaBcqGH9aqpcaaIXaGaai4laiabeo8aZbaa@3C02@  (ix) inverse ammag: λ=1/σ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaH7oaBcqGH9aqpcqGHsislcaaIXaGaai4laiabeo8aZbaa@3CEF@ .

Concept of proportional time (PT) as a special case of relative time (RT)

For a GG( μ, σ, λ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGhbGaam4ramaabmaapaqaa8qacqaH8oqBcaGGSaGaaiiOaiab eo8aZjaacYcacaGGGcGaeq4UdWgacaGLOaGaayzkaaaaaa@422C@  distribution, we have

log{ t GG( μ, σ, λ ) ( p ) }=μ+σlog{ t GG( 0, 1, λ ) ( p ) } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qaciGGSbGaai4BaiaacEgadaGadaWdaeaapeGaamiDa8aadaWgaaWc baWdbiaadEeacaWGhbWaaeWaa8aabaWdbiabeY7aTjaacYcacaGGGc Gaeq4WdmNaaiilaiaacckacqaH7oaBaiaawIcacaGLPaaaa8aabeaa k8qadaqadaWdaeaapeGaamiCaaGaayjkaiaawMcaaaGaay5Eaiaaw2 haaiabg2da9iabeY7aTjabgUcaRiabeo8aZjabgwSixlGacYgacaGG VbGaai4zamaacmaapaqaa8qacaWG0bWdamaaBaaaleaapeGaam4rai aadEeadaqadaWdaeaapeGaaGimaiaacYcacaGGGcGaaGymaiaacYca caGGGcGaeq4UdWgacaGLOaGaayzkaaaapaqabaGcpeWaaeWaa8aaba WdbiaadchaaiaawIcacaGLPaaaaiaawUhacaGL9baaaaa@663C@
 =μ+σ g λ ( p ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaGGGcGaeyypa0JaeqiVd0Maey4kaSIaeq4WdmNaeyyXICTaam4z a8aadaWgaaWcbaWdbiabeU7aSbWdaeqaaOWdbmaabmaapaqaa8qaca WGWbaacaGLOaGaayzkaaaaaa@4497@   (3)

g λ (p) is the logarithm of the pth quantile from the GG (0,1,λ) distribution. The location parameter μ acts as a time-multiplier and governs the values of the median for fixed values of σ and λ resulting in the accelerated failure time (AFT) model. The scale parameter σ determines the interquartile ratio for fixed values of λ and independently of μ. The shape parameter λ determines the GG (0,1,λ) distribution. Together, σ and λ describe the type of hazard function for the GG(0,1,λ) distribution.

The time by which p% of the population experience an event can lead to a statistic called ‘relative times RT(p),’ which can be used to compare survival profiles of patients in different treatment arms (new treatment versus standard treatment). Thus,

RT( p )=  t 1 ( p ) t 0 ( p ) =  S 1 1 ( 1p ) S 0 1 ( 1p ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGsbGaamivamaabmaapaqaa8qacaWGWbaacaGLOaGaayzkaaGa eyypa0JaaiiOamaalaaapaqaa8qacaWG0bWdamaaBaaaleaapeGaaG ymaaWdaeqaaOWdbmaabmaapaqaa8qacaWGWbaacaGLOaGaayzkaaaa paqaa8qacaWG0bWdamaaBaaaleaapeGaaGimaaWdaeqaaOWdbmaabm aapaqaa8qacaWGWbaacaGLOaGaayzkaaaaaiabg2da9iaacckadaWc aaWdaeaapeGaam4ua8aadaqhaaWcbaWdbiaaigdaa8aabaWdbiabgk HiTiaaigdaaaGcdaqadaWdaeaapeGaaGymaiabgkHiTiaadchaaiaa wIcacaGLPaaaa8aabaWdbiaadofapaWaa0baaSqaa8qacaaIWaaapa qaa8qacqGHsislcaaIXaaaaOWaaeWaa8aabaWdbiaaigdacqGHsisl caWGWbaacaGLOaGaayzkaaaaaaaa@58C6@   (4)

The interpretation of RT(p) is that the time required for p% of individuals in one study arm to experience an event is RT(p) times the time required for p% of individuals in the second study arm. Thus if ( μ 0 ,  σ 0 ,  λ 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qadaqadaWdaeaapeGaeqiVd02damaaBaaaleaapeGaaGimaaWdaeqa aOWdbiaacYcacaGGGcGaeq4Wdm3damaaBaaaleaapeGaaGimaaWdae qaaOWdbiaacYcacaGGGcGaeq4UdW2damaaBaaaleaapeGaaGimaaWd aeqaaaGcpeGaayjkaiaawMcaaaaa@441E@  and ( μ 1 ,  σ 1 ,  λ 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qadaqadaWdaeaapeGaeqiVd02damaaBaaaleaapeGaaGymaaWdaeqa aOWdbiaacYcacaGGGcGaeq4Wdm3damaaBaaaleaapeGaaGymaaWdae qaaOWdbiaacYcacaGGGcGaeq4UdW2damaaBaaaleaapeGaaGymaaWd aeqaaaGcpeGaayjkaiaawMcaaaaa@4421@  denote two different sets of GG parameter values, then

RT( p )=exp( ( μ 1   μ 0 )+  σ 1 g λ 1 ( p ) σ 0 g λ 0 ( p )  ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGsbGaamivamaabmaapaqaa8qacaWGWbaacaGLOaGaayzkaaGa eyypa0JaciyzaiaacIhacaGGWbWaaeWaa8aabaWdbmaabmaapaqaa8 qacqaH8oqBpaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaeyOeI0Ia aiiOaiabeY7aT9aadaWgaaWcbaWdbiaaicdaa8aabeaaaOWdbiaawI cacaGLPaaacqGHRaWkcaGGGcGaeq4Wdm3damaaBaaaleaapeGaaGym aaWdaeqaaOWdbiabgwSixlaadEgapaWaaSbaaSqaa8qacqaH7oaBpa WaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbmaabmaapaqaa8qa caWGWbaacaGLOaGaayzkaaGaeyOeI0Iaeq4Wdm3damaaBaaaleaape GaaGimaaWdaeqaaOWdbiabgwSixlaadEgapaWaaSbaaSqaa8qacqaH 7oaBpaWaaSbaaWqaa8qacaaIWaaapaqabaaaleqaaOWdbmaabmaapa qaa8qacaWGWbaacaGLOaGaayzkaaGaaiiOaaGaayjkaiaawMcaaaaa @6582@   (5)

The manner in which covariates affect RT(p) can be summarized as:

  1. If λ 1 =  λ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaH7oaBpaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaeyypa0Ja aiiOaiabeU7aS9aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3DEC@ and σ 1 =  σ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaHdpWCpaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaeyypa0Ja aiiOaiabeo8aZ9aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3E0A@ , then we have a conventional AFT model resulting in non‐PH, but proportional RT or simply “proportional times (PT) assumption”. Then, covariates affect μ only.
  2. RT( p )=exp( μ 1 μ 0 )=  Δ PT  PT assumption MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGsbGaamivamaabmaapaqaa8qacaWGWbaacaGLOaGaayzkaaGa eyypa0JaciyzaiaacIhacaGGWbWaaeWaa8aabaWdbiabeY7aT9aada WgaaWcbaWdbiaaigdaa8aabeaak8qacqGHsislcqaH8oqBpaWaaSba aSqaa8qacaaIWaaapaqabaaak8qacaGLOaGaayzkaaGaeyypa0Jaai iOaiaabs5apaWaaSbaaSqaa8qacaWGqbGaamivaaWdaeqaaOWdbiaa cckacqGHHjIUcaWGqbGaamivaiaacckacaWGHbGaam4Caiaadohaca WG1bGaamyBaiaadchacaWG0bGaamyAaiaad+gacaWGUbaaaa@5B4D@

  3. If only λ 1 =  λ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaH7oaBpaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaeyypa0Ja aiiOaiabeU7aS9aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3DEC@ , then we have a model that results in non‐PH and nonproportional RT(p). Then, covariates affect both μ and σ.
  4. Full generalization is obtained by having covariates affect all 3 parameters.

Test Statistic

Based on the discussion above, a test statistic that follows the four-parameter generalized gamma ratio (GGR) distribution can be developed. 20 That is, the parameters of the GG distribution can be used to express RT(p) as:

RT( p )=exp( μ 1 μ 0 )=exp{ ln( θ 1 )+ 1 β ln( λ 2 )ln( θ 0 )  1 β ln( λ 2 ) }=  θ 1 θ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGsbGaamivamaabmaapaqaa8qacaWGWbaacaGLOaGaayzkaaGa eyypa0JaciyzaiaacIhacaGGWbWaaeWaa8aabaWdbiabeY7aT9aada WgaaWcbaWdbiaaigdaa8aabeaak8qacqGHsislcqaH8oqBpaWaaSba aSqaa8qacaaIWaaapaqabaaak8qacaGLOaGaayzkaaGaeyypa0Jaci yzaiaacIhacaGGWbWaaiWaa8aabaWdbiGacYgacaGGUbWaaeWaa8aa baWdbiabeI7aX9aadaWgaaWcbaWdbiaaigdaa8aabeaaaOWdbiaawI cacaGLPaaacqGHRaWkdaWcaaWdaeaapeGaaGymaaWdaeaapeGaeqOS digaaiGacYgacaGGUbWaaeWaa8aabaWdbiabeU7aS9aadaahaaWcbe qaa8qacqGHsislcaaIYaaaaaGccaGLOaGaayzkaaGaeyOeI0IaciiB aiaac6gadaqadaWdaeaapeGaeqiUde3damaaBaaaleaapeGaaGimaa WdaeqaaaGcpeGaayjkaiaawMcaaiabgkHiTiaacckadaWcaaWdaeaa peGaaGymaaWdaeaapeGaeqOSdigaaiGacYgacaGGUbWaaeWaa8aaba WdbiabeU7aS9aadaahaaWcbeqaa8qacqGHsislcaaIYaaaaaGccaGL OaGaayzkaaaacaGL7bGaayzFaaGaeyypa0JaaiiOamaalaaapaqaa8 qacqaH4oqCpaWaaSbaaSqaa8qacaaIXaaapaqabaaakeaapeGaeqiU de3damaaBaaaleaapeGaaGimaaWdaeqaaaaaaaa@796F@   (6)

Thus, for new treatment to standard treatment allocation ratio r= n 1 / n 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGYbGaeyypa0JaamOBa8aadaWgaaWcbaWdbiaaigdaa8aabeaa k8qacaGGVaGaamOBa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3CF0@  we get a test statistic Q that follows the GGR distribution.

Q=  θ 1 ^ θ 0 ^  ~ GGR( 1 r [ θ 1 θ 0 ] β ,  n 1 k r  ,  n 1 k, β  ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGrbGaeyypa0JaaiiOamaalaaapaqaamaaHaaabaWdbiabeI7a X9aadaWgaaWcbaWdbiaaigdaa8aabeaaaOGaayPadaaabaWaaecaae aapeGaeqiUde3damaaBaaaleaapeGaaGimaaWdaeqaaaGccaGLcmaa aaWdbiaacckacaGG+bGaaiiOaiaadEeacaWGhbGaamOuamaabmaapa qaa8qadaWcaaWdaeaapeGaaGymaaWdaeaapeGaamOCaaaadaWadaWd aeaapeWaaSaaa8aabaWdbiabeI7aX9aadaWgaaWcbaWdbiaaigdaa8 aabeaaaOqaa8qacqaH4oqCpaWaaSbaaSqaa8qacaaIWaaapaqabaaa aaGcpeGaay5waiaaw2faa8aadaahaaWcbeqaa8qacqaHYoGyaaGcca GGSaGaaiiOamaalaaapaqaa8qacaWGUbWdamaaBaaaleaapeGaaGym aaWdaeqaaOWdbiaadUgaa8aabaWdbiaadkhaaaGaaiiOaiaacYcaca GGGcGaamOBa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaWGRbGa aiilaiaacckacqaHYoGycaGGGcaacaGLOaGaayzkaaaaaa@64C2@   (7)

Although this test statistic can be used to calculate the sample size for a two-arm RCT in the case of a fixed study design (a design without any interim testing), when designing a more complex study incorporating all the desired features of a GSD, calculations become more complicated and have to be conducted using a simulation-based approach. The remainder of the paper discusses how the simulation-based GSD method of Phadnis et al.18 can be implemented for a two-arm phase III trial using a SAS macro.

Description of SAS Macro

A ten-step algorithm has been detailed in the GSD method of Phadnis et al.18 along with the appropriate formulas for performing sample size calculations. The proposed SAS macro titled PT_GS Design fully implements this algorithm and is written in base SAS and SAS/STAT.22 The various design features available in our macro are summarized below:

NumSimul: Number of simulated samples for the given sample size

alpha: Type I error

sides: 1-sided or 2-sided test

lambda: Shape parameter of the Control Arm using GG distribution

sigma: Scale parameter of the Control Arm using GG distribution

med: User entered Median of the Control Arm using GG distribution

evt_rate: Anticipated event rate for loss-to-follow-up (right censoring)

seed: A random seed is chosen

r: Allocation Ratio: (number in Treatment arm)/ (number in Standard Arm)

Delta_PT_Ha: Under the alternative, PT is greater than 1

a: Accrual time for the study

a_type: Accrual pattern: "1" = Uniform, "2" = Truncated Exponential (parameter omega)

a_omega: Parameter of "2" = truncated exponential distribution: >0 (convex) or <0 (concave); input will only be used with truncated exponential

t: Total time for the study = Accrual time + Follow-up time

bind: Binding futility = 1; Non-binding futility=0

num_look: Total number of looks (including the look at the end-of-study)

look_points: equally spaced looks = 1, unequally spaced looks = 2

alpha_spend: Type of Alpha spending function: 1 = Jennison-Turnbull, 2 = Hwang-Shih-DeCani, 3 = User defined spending

The following datasets are needed to take advantage of the macro’s user defined options.

  • If unequal look points (look_points=2) are selected then UserDefTime will need to include the number of look points (numuser) followed by the time points. The time points need to be in cumulative, ascending order and the last time point must equal the total study time, t.
  • If user defined alpha spending (alpha_spend=3) or beta spending (beta_spend=3) are selected then UserDefAlpha and UserDefBeta values must be split in cumulative, ascending order and the last entry must match the inputs for alpha and beta.

Default values for the macro parameters have been provided in the text description. Error checks in the code prohibit a user to input impossible values for the macro parameters. For example, where numerical input is required, character values cannot be entered. Likewise, numerical input outside the natural range of a macro parameters are not allowed. If such impossible values are entered, the macro will stop executing and display an error message in

the log window suggesting corrections to the input values.

In addition to the above, the following extra features are provided in the macro:

  1. The user can create his/her own user-defined inputs for: (i) Times at which the interim looks occur using the dataset UserDefTime (ii) The type-I error to be spent at each interim look using the dataset UserDefAlpha (iii) The type-II error to be spent at each interim look using the dataset UserDefBeta. If the user-defined options are selected and these datasets are left empty or contain incorrect (or trash) values, the macro generates an error message asking the user to enter correct input. If the default options of Pocock or O’Brien-Fleming and equally spaced look points are chosen, then the user-defined datasets are ignored.
  2. Warning messages have been added to the code wherever necessary. If the first interim is conducted very early (small value of time relative to the total study time) with only few events, the program may run into convergence problems with LIFEREG procedure, and the resulting output may not be reliable for the first interim. On such occasions, a warning message will be displayed in the SAS log file. This may also cause delay for full execution of the program. On such occasions, the user may want to re-run the program ensuring that the first look is conducted late enough to allow more events to be observed thereby ensuring convergence is obtained with the LIFEREG procedure.
  3. The SAS log file is saved as a separate text file, Mydoc.log, under the user-defined file path, while output tables are generated as an ods listing file. The first fifty errors will be printed at the bottom of the ods listing file.
  4. The macro will not run if the number of simulations < 1000. To make sure the macro parameters are valid, the user can comment out this statement and check the ods listing file for any errors before submitting a full simulation.

We have also provided a “README.pdf” file detailing a step-by-step procedure to help users navigate through the process of entering input values. This, along with the full code, is available at https://github.com/thewan05/GSD_SAS_Macro.

Results and discussion

These examples were first published under the methodology paper.18 The examples are presented once more so the reader can easily reproduce them. There may be some minor variations, depending on the seed used.

These macro parameters are used to obtain the results for example one:

NumSimul=10000, alpha=0.025, sides=1, lambda=0.5, sigma=0.75, med=20, evt_rate=0.7, seed=1729, r=1, Delta_PT_Ha=1.4, a=12, a_type=1, a_omega=1, t=60, bind=1, num_look=3, look_points=2, alpha_spend=1, rho=1 ,beta=0.10, beta_spend=1, rho_f=1, num_skip=0, maxiter=200, convg=1E3, direct=C:\Users\user1\Desktop

UserDefTime dataset: 3 24 36 60 (Table 1).

Look no.

Look times

No. events–H0 control arm

No.

events– H0 treatment arm

Alpha spent

Cumul. alpha spent

Upper Significance boundary (efficacy) GGR Test statistic

Stop probability under H0

Cumul. stop probability under H0

Cumul. subject time under H0

1

24

58.21

58.25

0.00883

0.00833

1.333

0.8053

0.8053

1992.86

2

36

87.74

87.74

0.00833

0.01667

1.259

0.1448

0.9501

2559.65

3

60

109.09

109.05

0.00833

0.025

1.219

0.0499

1

2940.79

Look no.

Look times

No. events – HA control arm

No. events – HA treatment arm

Beta spent

Cumul. beta spent

Lower significance boundary (efficacy) GGR Test statistic

Stop probability under HA

Cumul. stop probability under HA

Cumul. subject time under HA

1

24

58.21

40.03

0.03173

0.03173

1.105

0.6792

0.6792

2244.29

2

36

87.74

69.12

0.03173

0.06347

1.174

0.2136

0.8928

3093.34

3

60

109.09

99.41

0.03173

0.0952

1.219

0.1072

1

3875.05

Table 1 GSD - Ovarian CT using proposed method with 10,000 simulations; Pocock plans (efficacy and futility at all looks).

These macro parameters are used to obtain the results for example two:

NumSimul=10000, alpha=0.025, sides=1, lambda=0.5, sigma=0.75, med=20, evt_rate=0.7, seed=1729, r=1, Delta_PT_Ha=1.4, a=12, a_type=1, a_omega=1, t=60, bind=1, num_look=3, look_points=2, alpha_spend=1,

rho =3, beta=0.10, beta_spend=1, rho_f=3, num_skip=0, maxiter=200, convg=1E3, direct=C:\Users\user1\Desktop

UserDefTime dataset: 3 24 36 60 (Table 2).

Look no.

Look Times

No. events – H0 control arm

No. events – H0 treatment arm

Alpha spent

Cumul. alpha spent

Upper significance boundary (efficacy) GGR test statistic

Stop probability under H0

Cumul. stop probability under H0

Cumul. subject time under H0

1

24

52.57

52.63

0.00093

0.00093

1.457

0.4309

0.4309

1797.58

2

36

79.19

79.21

0.00648

0.00741

1.312

0.4378

0.8687

2308.8

3

60

98.42

98.4

0.01759

0.025

1.222

0.1313

1

2652.04

Look no.

Look times

No. events – HA control arm

No. events – HA treatment arm

Beta spent

Cumul. beta spent

Lower significance boundary (efficacy) GGR test statistic

Stop probability under HA

Cumul. stop probability under HA

Cumul. subject time under HA

1

24

52.57

36.08

0.00352

0.00352

0.978

0.3887

0.3887

2026.69

2

36

79.19

62.34

0.02463

0.02815

1.127

0.356

0.7447

2793.83

3

60

98.42

89.7

0.06685

0.095

1.222

0.2557

1.0004

3501.2

Table 2 GSD - Ovarian CT using proposed method with 10,000 simulations; O’Brien-Fleming plan (efficacy and futility at all looks)

These macro parameters are used to obtain the results for example three:

NumSimul=10000, alpha =0.025, sides=1, lambda=0.5, sigma=0.75, med=20, evt_rate=0.7, seed=1729, r=1, Delta_PT_Ha=1.4, a=12, a_type=1, a_omega=1, t=60, bind=1, num_look=3, look_points=2, alpha_spend=3, rho=3, beta=0.10, beta_spend=3, rho_f=3, num_skip=0, maxiter=200, convg=1E3, direct=C:\Users\user1\Desktop

UserDefTime dataset: 3 24 36 60

UserDefAlpha dataset: 0.0050 0.0125 0.0250

UserDefBeta dataset: 0.0100 0.0350 0.1000 (Table 3).

Look no.

Look times

No. events – H0 control arm

No. events – H0 treatment arm

Alpha spent

Cumul. alpha spent

Upper significance boundary (efficacy) GGR Test statistic

Stop probability under H0

Cumul. stop Probability under H0

Cumul. subject time under H0

 

1

24

54.32

54.32

0.005

0.005

1.384

0.5758

0.5758

1859.49

 

2

36

81.82

81.83

0.0075

0.0125

1.279

0.3191

0.8949

2388.16

 

3

60

101.73

101.73

0.0125

0.025

1.224

0.1043

0.9992

2743.29

 

Look no.

Look times

No. events – HA control arm

No. events – HA treatment arm

Beta spent

Cumul. beta spent

Lower significance boundary (efficacy) GGR Test statistic

Stop probability under HA

Cumul. stop probability under HA

Cumul. subject time under HA

 

1

24

54.32

37.35

0.00922

0.00922

1.022

0.5416

0.5416

2094.91

 

2

36

81.82

64.53

0.02305

0.03227

1.135

0.2776

0.8192

2887.1

 

3

60

101.73

92.82

0.05933

0.0922

1.224

0.1798

0.999

3615.75

 

Table 3 GSD - Ovarian CT using proposed method with 10,000 simulations; user-defined alpha and beta spending (efficacy and futility at all looks)

These macro parameters are used to obtain the results for example four:

NumSimul=10000, alpha=0.025, sides=1, lambda=1, sigma=1, med=1, evt_rate=1, seed=1729, r =1, Delta_PT_Ha=1.75, a=1, a_type=1, a_omega=1, t=4, bind=1, num_look=4, look_points=1, alpha_spend=2,

rho=1, beta=0.20, beta_spend=2, rho_f=1, num_skip=2, maxiter=200, convg=1E3, direct=C:\Users\user1\Desktop (Table 4).

Look no.

Look times

No. events – H0 control arm

No. events – H0 treatment arm

Alpha spent

Cumul. alpha spent

Upper significance boundary (efficacy) GGR Test statistic

Stop probability under H0

Cumul. stop probability under H0

Cumul. subject time under H0

1

1

22.3

22.3

0.00875

0.00875

2.218

0.0088

0.0088

32.156

2

2

51.23

51.17

0.00681

0.01556

1.632

<0.0001

0.0088

73.726

3

3

65.58

65.61

0.00531

0.02087

1.522

0.9837

0.9922

94.496

4

4

72.79

72.84

0.00413

0.025

1.452

0.0077

0.9999

104.891

Look no.

Look times

No. events – HA control arm

No. events – HA treatment arm

Beta spent

Cumul. beta spent

Lower significance boundary (efficacy) GGR Test statistic

Stop probability under HA

Cumul. stop probability under HA

Cumul. subject time under HA

1

1

22.3

13.93

0

0

-

0.2674

0.2674

35.198

2

2

51.23

35.59

0

0

-

0.3524

0.6198

89.716

3

3

65.58

50.14

0.16268

0.16268

1.45

0.3082

0.928

126.351

4

4

72.79

59.94

0.03222

0.1949

1.453

0.0722

1.0002

150.989

Table 4 GSD output for exponential distributed data using proposed method with 10,000 simulation (two futility skips)

Figure 1 Ovarian CT efficacy and futility boundaries using Pocock plan under Test-statistic scale. Look times are at 24, 36 and 60 months.

Figure 2 Ovarian CT efficacy and futility boundaries using user-defined values under Test-statistic scale. Look times are at 24, 36 and 60 months.

Conclusion

A GSD is generally implemented as a large sample Phase III trial and therefore provides an opportunity to incorporate information obtained from a preceding moderate-sized Phase II study. In our paper, we have built a SAS macro that implements a GSD incorporating various design features specific to time-to-event outcome in the case of non-proportional hazards. While earlier methods using the nonparametric log-rank test or the PH assumption are available in standard statistics software, our macro is the first of its kind in implementing a GSD in the non-PH case using a three-parameter GG distribution. The macro fully executes the method based on the PT assumption18 and thereby offers researchers an additional option in designing Phase III trials for the non-PH case. Some of the advantages of using the macro are - it handles different types of hazard shapes, utilizes Phase II data to ensure that early interims are not conducted with too few events, is simulation based and does not depend on any asymptotic normality of the test statistic, and most importantly provides clinical meaningful and easy-to-interpret efficacy and/or futility boundaries based on the concept of improvement in longevity. Due to this direct interpretation of "treatment effect" as an improvement in survival time, we hope that researchers working in this area will find our SAS macro to be of practical value in implementing a GSD for Phase III time-to-event trials.

Acknowledgments

The High performance computing capabilities, which were used to conduct some of the analyses described in this paper, were supported in part by the National Cancer Institute (NCI) Cancer Center Support Grant P30 CA168524; the Kansas IDeA Network of Biomedical Research Excellence Bioinformatics Core, supported by the National Institute of General Medical Science award P20 GM103418; and the Kansas Institute for Precision Medicine COBRE, supported by the National Institute of General Medical Science award P20 GM130423.

Conflicts of interest

The authors declare no conflicts of interest.

References

  1. Enas G, Dornseif B, Sampson C, Rochhol F, et al. Monitoring versus Interim Analysis of Clinical Trials: Perspective from the Pharmaceutical Industry. Controlled Clinical Trials. 1989;10(1):57–70.
  2. Jennison C, Turnbull BW. Statistical Approaches to Interim Monitoring of Medical Trials: A Review and Commentary. Statistical Science. 1990;5(3):299–317.
  3. Ellenberg SS, Fleming TR, DeMets DL. Data Monitoring Committees in Clinical Trials: A Practical Perspective. John Wiley & Sons. 2019.
  4. Wald A. Sequential analysis. Sequential analysis. John Wiley; 1947:xii, 212-xii, 212.
  5. Armitage P. Sequential Medical Trials. 1st ed. Springfield; 1960.
  6. Whitehead J. The Design and Analysis of Sequential Clinical Trials. 2nd ed. John Wiley & Sons; 1997.
  7. Proschan MA, Lan KKG, Wittes JT. Statistical Monitoring of Clinical Trials. Statistics for Biology and Health. Springer-Verlag; 2006.
  8. Dmitrienko A, Molenberghs G, Chuang-Stein C, et al. Analysis of Clinical Trials Using SAS: A Practical Guide. SAS Institute; 2005.
  9. Wassmer G, Brannath W. Group Sequential and Confirmatory Adaptive Designs in Clinical Trials. 1 ed. Springer Series in Pharmaceutical Statistics. Springer Cham; 2016.
  10. Jennison & Turnbull, CRC/Chapman & Hall, Boca Raton. Group Sequential Methods with Applications to Clinical Trials. 2000.
  11. Whitehead J. A unified theory for sequential clinical trials. Stat Med. 1999;18(17-18):2271–2286.
  12. Todd SA. 25-year review of sequential methodology in clinical studies. Statistics in Medicine. 2007;26(2):237–252.
  13. Mazumdar M, Bang H. 16 Sequential and Group Sequential Designs in Clinical Trials: Guidelines for Practitioners. Handbook of Statistics. Elsevier; 2007.
  14. Pocock SJ. Group Sequential Methods in the Design and Analysis of Clinical Trials. Biometrika. 1977;64(2):191–199.
  15. O'Brien PC, Fleming TR. A Multiple Testing Procedure for Clinical Trials. Biometrics. 1979;35(3):549–556.
  16. Wang SK, Tsiatis AA. Approximately Optimal One-Parameter Boundaries for Group Sequential Trials. Biometrics. 1987;43(1):193–199.
  17. Lan KKG, Demets DL. Discrete Sequential Boundaries for Clinical Trials. Biometrika. 1983;70(3):659–663.
  18. Phadnis MA, Mayo MS. Group sequential design for time-to-event data using the concept of proportional time. Statistical methods in medical research. 2020;29(7):1867–1890.
  19. Phadnis MA, Wetmore JB, Mayo MS. A clinical trial design using the concept of proportional time using the generalized gamma ratio distribution. Statistics in medicine. 2017;36(26):4121–4140.
  20. Stacy EW, Mihram GA. Parameter Estimation for a Generalized Gamma Distribution. Technometrics. 1965;7(3):349–358.
  21. Cox C, Chu H, Schneider MF, et al. Parametric survival analysis and taxonomy of hazard functions for the generalized gamma distribution. Statistics in Medicine. 2007;26(23):4352-4374.
  22. SAS Institute Inc.  SAS Software, Version 9.4. Cary, NC, USA. 2017.
Creative Commons Attribution License

©2022 Phadnis, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.