Submit manuscript...
eISSN: 2378-315X

Biometrics & Biostatistics International Journal

Research Article Volume 6 Issue 4

New family of time series models and its bayesian analysis

D Venkatesan,1 Michele Gallo2

1Department of Statistics, Annamalai University, India
2Department of Social Science, University of Naples-L’Orientale, Italy

Correspondence: D. Venkatesan, Department of Statistics, Annamalai University, India

Received: August 23, 2017 | Published: October 10, 2017

Citation: Venkatesan D, Gallo M. New family of time series models and its bayesian analysis. Biom Biostat Int J. 2017;6(4):373-379. DOI: 10.15406/bbij.2017.06.00172

Download PDF

Synoptic Abstract

A new family of time series models, called the Full Range Autoregressive model, is introduced which avoids the difficult problem of order determination in time series analysis. Some of the basic statistical properties of the new model are studied. Further, the paper describes the Bayesian inference and forecasting as applied to the Full Range Autoregressive model. The Canadian lynx data is used to compare the efficiency of the predictive power of the new model with those of some of the existing models in the time series literature.

Keywords: full range autoregressive model, identifiability, stationary condition, posterior distribution, bayesian predictive distribution

Introducton

 The early days of time series analysis, most of the models fitted to the real life data were restricted to low orders because of availability of high speed computers and other facilities. However, now with the availability of high speed computers, there is no need for this type of restriction on the order determination and estimation of the fitted models. Further, most of the work in time series analysis are concerned with series having the property that the degree of dependence between observations, separated by a long time span, is zero or highly negligible. However, the empirical studies by Lawrance and Kottegoda1 reveal, particularly in cases arising in economics and hydrology, that the degree of dependence between observations a long time span apart, though small, is by no means negligible. Therefore, there is still a need for a family of models which can fully depict the properties of stationarity, linearity and long range dependence.

Moreover, the existing theory of autoregressive models assume that the coefficients of the model are not connected in any way among each other. Therefore, it would be useful, from practical point of view, to propose new models, called the Full Range Auto Regressive model and denoted as FRAR model for short, which can accommodate long range dependence and have the property that the coefficients of the past values in the model are functions of a limited number of parameters.

Thus, the chief objective of this paper is to introduce a family of new models which would involve only a few parameters and at the same time incorporate long range dependence, which would be an acceptable alternative to the current models representing stationary time series.

A family of models, introduced in this paper, called Full Range Auto Regressive model and denoted as FRAR model for short, are defined in such a way that they possess the following basic features. 

  1. The models should be capable of representing long term persistence. This is justified by the fact that the future may not depend on the present and a few past values alone, but may depend on the present and the whole past.
  2. The parameters of the model, which are likely to be large in number due to (1), should exhibit some degree of dependence among themselves.

Therefore, the new models are expected to have infinite structure with a finite number of parameters and so completely avoid the problem of order determination.

An outline of this paper is as follows. In Section 2, the FRAR model is defined, the identifiability region is obtained, the stationarity condition is derived, and the asymptotic stationarity is studied. In Section 3, the Bayesian analysis of the FRAR model is discussed and the predictive density of a single future observation is derived. In Section 4 the Canadian lynx data is used for forecasting through the FRAR model. In Section 5 a comparative study is provided to examine the efficiency of FRAR model. In Section 6 the summary and conclusion is given.

The full range autoregressive model

The model

We define a family of models by a discrete-time stochastic process ( X t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aae WaaeaacaWGybWaaSbaaeaajugWaiaadshaaKqbagqaaaGaayjkaiaa wMcaaaaa@3D0A@ , t=0,±1,±2,... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam iDaiabg2da9iaaicdacaGGSaGaeyySaeRaaGymaiaacYcacqGHXcqS caaIYaGaaiilaiaac6cacaGGUaGaaiOlaaaa@4400@ , called the Full Range Auto Regressive (FRAR) model, by the difference equation

X t = r=1 a r X tr + e t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam iwaKGbaoaaBaaajuaGbaqcLbmacaWG0baajuaGbeaacqGH9aqpdaae WaqaaiaadggajyaGdaWgaaqcfayaaKqzadGaamOCaaqcfayabaGaam iwaKGbaoaaBaaajuaGbaqcLbmacaWG0bGaeyOeI0IaamOCaaqcfaya baGaey4kaSIaamyzamaaBaaabaqcLbmacaWG0baajuaGbeaaaeaaju gWaiaadkhacqGH9aqpcaaIXaaajuaGbaqcLbmacqGHEisPaKqbakab ggHiLdaaaa@575C@       (1)

where a r =ksin( rθ )cos( rϕ )/ α r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam yyaKGbaoaaBaaajuaGbaqcLbmacaWGYbaajuaGbeaacqGH9aqpcaWG RbGaci4CaiaacMgacaGGUbWaaeWaaeaacaWGYbGaeqiUdehacaGLOa GaayzkaaGaci4yaiaac+gacaGGZbWaaeWaaeaacaWGYbGaeqy1dyga caGLOaGaayzkaaGaai4laiabeg7aHLGbaoaaCaaajuaGbeqaaKqzad GaamOCaaaaaaa@527A@ , ( r=1, 2, 3,... ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aae WaaeaacaWGYbGaeyypa0JaaGymaiaacYcacaqGGaGaaGOmaiaacYca caqGGaGaae4maiaabYcacaGGUaGaaiOlaiaac6caaiaawIcacaGLPa aaaaa@42EC@ , k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam 4Aaaaa@38BE@ , α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq ySdegaaa@396D@ , θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq iUdehaaa@3984@  and ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq y1dygaaa@3996@  are parameters, e 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam yzamaaBaaabaqcLbmacaaIXaaajuaGbeaaaaa@3B50@ , e 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam yzamaaBaaabaqcLbmacaaIYaaajuaGbeaaaaa@3B51@ , e 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam yzamaaBaaabaqcLbmacaaIZaaajuaGbeaaaaa@3B52@ , … are independent and identically distributed normal random variables with mean zero and variance σ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq 4Wdm3aaWbaaeqabaqcLbmacaaIYaaaaaaa@3B9D@ . The initial assumptions about the parameters are as follows:

It is assumed that X t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam iwaKGbaoaaBaaajuaGbaqcLbmacaWG0baajuaGbeaaaaa@3C9E@  will influence X t+n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam iwaKGbaoaaBaaajuaGbaqcLbmacaWG0bGaey4kaSIaamOBaaqcfaya baaaaa@3E73@  for all positive n and the influence of X t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam iwaKGbaoaaBaaajuaGbaqcLbmacaWG0baajuaGbeaaaaa@3C9E@  on X t+n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam iwaKGbaoaaBaaajuaGbaqcLbmacaWG0bGaey4kaSIaamOBaaqcfaya baaaaa@3E73@  will decrease, at least for large n, and become insignificant as n becomes very large, because more important for the recent observations and less important for an older observations. Hence a n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam yyamaaBaaabaqcLbmacaWGUbaajuaGbeaaaaa@3B84@  must tend to zero as n goes to infinity. This is achieved by assuming that α>1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq ySdeMaeyOpa4JaaGymaaaa@3B30@ . The feasibility of X t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam iwaKGbaoaaBaaajuaGbaqcLbmacaWG0baajuaGbeaaaaa@3C9E@  having various magnitudes of influence on X t+n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam iwaKGbaoaaBaaajuaGbaqcLbmacaWG0bGaey4kaSIaamOBaaqcfaya baaaaa@3E73@ , when n is small, is made possible by allowing k to take any real value. Because of the periodicity of the circular functions sine and cosine, the domain of θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq iUdehaaa@3984@  and ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq y1dygaaa@3996@  are restricted to the interval [ 0, 2π ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaK GeaeaacaaIWaGaaiilaiaabccacaaIYaGaeqiWdahacaGLBbGaayzk aaaaaa@3E27@ .

Thus, the initial assumptions are α>1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq ySdeMaeyOpa4JaaGymaaaa@3B30@ , kR MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam 4AaiabgIGiolaadkfaaaa@3B19@ , and θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq iUdehaaa@3984@ , ϕ[ 0, 2π ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq y1dyMaeyicI48aaKGeaeaacaaIWaGaaiilaiaabccacaaIYaGaeqiW dahacaGLBbGaayzkaaaaaa@4173@ . i.e., Θ=( α, k, θ, ϕ )S* MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu iMdeLaeyypa0ZaaeWaaeaacqaHXoqycaGGSaGaaeiiaiaadUgacaGG SaGaaeiiaiabeI7aXjaacYcacaqGGaGaeqy1dygacaGLOaGaayzkaa GaeyicI4Saam4uaiaacQcaaaa@48E4@ , where S*={ α, k, θ, ϕ |  kR, α>1, θ, ϕ[ 0, 2π ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam 4uaiaacQcacqGH9aqpdaGadaqaaiabeg7aHjaacYcacaqGGaGaam4A aiaacYcacaqGGaGaeqiUdeNaaiilaiaabccacqaHvpGzcaqGGaWaaq qaaeaacaqGGaGaam4AaiabgIGiolaadkfacaGGSaGaaeiiaiabeg7a Hjabg6da+iaaigdacaGGSaGaaeiiaiabeI7aXjaacYcacaqGGaGaeq y1dyMaeyicI48aaKGeaeaacaaIWaGaaiilaiaabccacaaIYaGaeqiW dahacaGLBbGaayzkaaaacaGLhWoaaiaawUhacaGL9baaaaa@5F6C@ . Further restrictions on the range of the parameters are placed by examining the identifiability of the model.

Identifiability condition

Identifiability ensures that there is a one to one correspondence between the parameter space and set of associated probability models. Without identifiability it is meaningless to proceed to estimate the parameters of a model using a set of given data. In the present context, identifiability is achieved by restricting the parameters space in such a way that no two points in the parameter space could produce the same time series model.

The coefficients a n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam yyaKGbaoaaBaaajuaGbaqcLbmacaWGUbaajuaGbeaaaaa@3CA1@ ’s in (1) are functions of k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam 4Aaaaa@38BE@ , α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq ySdegaaa@396D@ , θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq iUdehaaa@3984@ , ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq y1dygaaa@3996@  as well as n. That is, a n = a n ( k, α, θ, ϕ )=ksin( nθ )cos( nϕ )/ α n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam yyamaaBaaabaqcLbmacaWGUbaajuaGbeaacqGH9aqpcaWGHbqcga4a aSbaaKqbagaajugWaiaad6gaaKqbagqaamaabmaabaGaam4AaiaacY cacaqGGaGaeqySdeMaaiilaiaabccacqaH4oqCcaGGSaGaaeiiaiab ew9aMbGaayjkaiaawMcaaiabg2da9iaadUgaciGGZbGaaiyAaiaac6 gadaqadaqaaiaad6gacqaH4oqCaiaawIcacaGLPaaaciGGJbGaai4B aiaacohadaqadaqaaiaad6gacqaHvpGzaiaawIcacaGLPaaacaGGVa GaeqySdewcga4aaWbaaKqbagqabaqcLbmacaWGUbaaaaaa@62B5@ , θS* MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq iUdeNaeyicI4Saam4uaiaacQcaaaa@3C8E@ , n=1, 2, 3,... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam OBaiabg2da9iaaigdacaGGSaGaaeiiaiaaikdacaGGSaGaaeiiaiaa bodacaqGSaGaaiOlaiaac6cacaGGUaaaaa@415F@ .

Define A={ α, k, θ, ϕ |  α>1, kR, πθ, ϕ<2π } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam yqaiabg2da9maacmaabaGaeqySdeMaaiilaiaabccacaWGRbGaaiil aiaabccacqaH4oqCcaGGSaGaaeiiaiabew9aMjaabccadaabbaqaai aabccacqaHXoqycqGH+aGpcaaIXaGaaiilaiaabccacaWGRbGaeyic I4SaamOuaiaacYcacaqGGaGaeqiWdaNaeyizImQaeqiUdeNaaiilai aabccacqaHvpGzcqGH8aapcaaIYaGaeqiWdahacaGLhWoaaiaawUha caGL9baaaaa@5DBE@ ,

B={ α, k, θ, ϕ |  α>1, kR, 0θ<π, πϕ<2π } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam Oqaiabg2da9maacmaabaGaeqySdeMaaiilaiaabccacaWGRbGaaiil aiaabccacqaH4oqCcaGGSaGaaeiiaiabew9aMjaabccadaabbaqaai aabccacqaHXoqycqGH+aGpcaaIXaGaaiilaiaabccacaWGRbGaeyic I4SaamOuaiaacYcacaqGGaGaaeimaiabgsMiJkabeI7aXjabgYda8i abec8aWjaacYcacaqGGaGaeqiWdaNaeyizImQaeqy1dyMaeyipaWJa aGOmaiabec8aWbGaay5bSdaacaGL7bGaayzFaaaaaa@62E8@ , (2)

C={ α, k, θ, ϕ |  α>1, kR, πθ<2π, 0ϕ<π } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam 4qaiabg2da9maacmaabaGaeqySdeMaaiilaiaabccacaWGRbGaaiil aiaabccacqaH4oqCcaGGSaGaaeiiaiabew9aMjaabccadaabbaqaai aabccacqaHXoqycqGH+aGpcaaIXaGaaiilaiaabccacaWGRbGaeyic I4SaamOuaiaacYcacaqGGaGaeqiWdaNaeyizImQaeqiUdeNaeyipaW JaaGOmaiabec8aWjaacYcacaqGGaGaaGimaiabgsMiJkabew9aMjab gYda8iabec8aWbGaay5bSdaacaGL7bGaayzFaaaaaa@62F0@ ,

D={ α, k, θ, ϕ |  α>1, kR, 0θ, ϕ<π } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam iraiabg2da9maacmaabaGaeqySdeMaaiilaiaabccacaWGRbGaaiil aiaabccacqaH4oqCcaGGSaGaaeiiaiabew9aMjaabccadaabbaqaai aabccacqaHXoqycqGH+aGpcaaIXaGaaiilaiaabccacaWGRbGaeyic I4SaamOuaiaacYcacaqGGaGaaGimaiabgsMiJkabeI7aXjaacYcaca qGGaGaeqy1dyMaeyipaWJaeqiWdahacaGLhWoaaiaawUhacaGL9baa aaa@5C02@ .

Since a n = a n ( k, α, θ, ϕ )= a n ( k, α, 2πθ,  2πϕ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam yyaKGbaoaaBaaajuaGbaqcLbmacaWGUbaajuaGbeaacqGH9aqpcaWG Hbqcga4aaSbaaKqbagaajugWaiaad6gaaKqbagqaamaabmaabaGaam 4AaiaacYcacaqGGaGaeqySdeMaaiilaiaabccacqaH4oqCcaGGSaGa aeiiaiabew9aMbGaayjkaiaawMcaaiabg2da9iaadggadaWgaaqaaK qzadGaamOBaaqcfayabaWaaeWaaeaacqGHsislcaWGRbGaaiilaiaa bccacqaHXoqycaGGSaGaaeiiaiaabkdacqaHapaCcqGHsislcqaH4o qCcaGGSaGaaeiiaiaabccacaqGYaGaeqiWdaNaeyOeI0Iaeqy1dyga caGLOaGaayzkaaaaaa@66A2@ , θS* MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq iUdeNaeyicI4Saam4uaiaacQcaaaa@3C8E@           

to each ( α, k, θ, ϕ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aae WaaeaacqaHXoqycaGGSaGaaeiiaiaadUgacaGGSaGaaeiiaiabeI7a XjaacYcacaqGGaGaeqy1dygacaGLOaGaayzkaaaaaa@435D@  belonging to A there is a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam yyaaaa@38B4@   ( α, k, θ', ϕ' )( θ'=2πθ and ϕ'=2πϕ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aae WaaeaacqaHXoqycaGGSaGaaeiiaiaadUgacaGGSaGaaeiiaiabeI7a XjaacEcacaGGSaGaaeiiaiabew9aMjaacEcaaiaawIcacaGLPaaada qadaqaaiabeI7aXjaacEcacqGH9aqpcaaIYaGaeqiWdaNaeyOeI0Ia eqiUdeNaaeiiaiaabggacaqGUbGaaeizaiaabccacqaHvpGzcaGGNa Gaeyypa0JaaGOmaiabec8aWjabgkHiTiabew9aMbGaayjkaiaawMca aaaa@5B68@  belonging to D such that a n ( k, α, θ, ϕ )= a n ( k, α, θ',  ϕ' ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam yyaKGbaoaaBaaajuaGbaqcLbmacaWGUbaajuaGbeaadaqadaqaaiaa dUgacaGGSaGaaeiiaiabeg7aHjaacYcacaqGGaGaeqiUdeNaaiilai aabccacqaHvpGzaiaawIcacaGLPaaacqGH9aqpcaWGHbWaaSbaaeaa jugWaiaad6gaaKqbagqaamaabmaabaGaeyOeI0Iaam4AaiaacYcaca qGGaGaeqySdeMaaiilaiaabccacqaH4oqCcaGGNaGaaiilaiaabcca caqGGaGaeqy1dyMaai4jaaGaayjkaiaawMcaaaaa@5B61@ . So A is omitted. Similarly, it can be shown that B and C can also be omitted.
Define    D 1 ={ α, k, θ, ϕ |  α>1, kR, π/2θ, ϕ<π } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam iraKGbaoaaBaaajuaGbaqcLbmacaaIXaaajuaGbeaacqGH9aqpdaGa daqaaiabeg7aHjaacYcacaqGGaGaam4AaiaacYcacaqGGaGaeqiUde NaaiilaiaabccacqaHvpGzcaqGGaWaaqqaaeaacaqGGaGaeqySdeMa eyOpa4JaaGymaiaacYcacaqGGaGaam4AaiabgIGiolaadkfacaGGSa Gaaeiiaiabec8aWjaab+cacaqGYaGaeyizImQaeqiUdeNaaiilaiaa bccacqaHvpGzcqGH8aapcqaHapaCaiaawEa7aaGaay5Eaiaaw2haaa aa@6221@ ,

D 2 ={ α, k, θ, ϕ |  α>1, kR, 0θ<π/2, π/2ϕ<π } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam iraKGbaoaaBaaajuaGbaqcLbmacaaIYaaajuaGbeaacqGH9aqpdaGa daqaaiabeg7aHjaacYcacaqGGaGaam4AaiaacYcacaqGGaGaeqiUde NaaiilaiaabccacqaHvpGzcaqGGaWaaqqaaeaacaqGGaGaeqySdeMa eyOpa4JaaGymaiaacYcacaqGGaGaam4AaiabgIGiolaadkfacaGGSa GaaeiiaiaabcdacqGHKjYOcqaH4oqCcqGH8aapcqaHapaCcaqGVaGa aeOmaiaacYcacaqGGaGaeqiWdaNaae4laiaabkdacqGHKjYOcqaHvp GzcqGH8aapcqaHapaCaiaawEa7aaGaay5Eaiaaw2haaaaa@68B2@ ,

D 3 ={ α, k, θ, ϕ |  α>1, kR, 0θ, ϕ<π/2 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam iraKGbaoaaBaaajuaGbaqcLbmacaaIZaaajuaGbeaacqGH9aqpdaGa daqaaiabeg7aHjaacYcacaqGGaGaam4AaiaacYcacaqGGaGaeqiUde NaaiilaiaabccacqaHvpGzcaqGGaWaaqqaaeaacaqGGaGaeqySdeMa eyOpa4JaaGymaiaacYcacaqGGaGaam4AaiabgIGiolaadkfacaGGSa GaaeiiaiaabcdacqGHKjYOcqaH4oqCcaGGSaGaaeiiaiabew9aMjab gYda8iabec8aWjaab+cacaqGYaaacaGLhWoaaiaawUhacaGL9baaaa a@6119@ ,

D 4 ={ α, k, θ, ϕ |  α>1, kR, π/2θ<π, 0ϕ<π/2 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam iramaaBaaabaqcLbmacaaI0aaajuaGbeaacqGH9aqpdaGadaqaaiab eg7aHjaacYcacaqGGaGaam4AaiaacYcacaqGGaGaeqiUdeNaaiilai aabccacqaHvpGzcaqGGaWaaqqaaeaacaqGGaGaeqySdeMaeyOpa4Ja aGymaiaacYcacaqGGaGaam4AaiabgIGiolaadkfacaGGSaGaaeiiai abec8aWjaab+cacaqGYaGaeyizImQaeqiUdeNaeyipaWJaeqiWdaNa aiilaiaabccacaqGWaGaeyizImQaeqy1dyMaeyipaWJaeqiWdaNaae 4laiaabkdaaiaawEa7aaGaay5Eaiaaw2haaaaa@6797@ .

Since a n ( k, α, θ, ϕ )= a n ( k, α, πθ,  πϕ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam yyamaaBaaabaqcLbmacaWGUbaajuaGbeaadaqadaqaaiaadUgacaGG SaGaaeiiaiabeg7aHjaacYcacaqGGaGaeqiUdeNaaiilaiaabccacq aHvpGzaiaawIcacaGLPaaacqGH9aqpcaWGHbWaaSbaaeaajugWaiaa d6gaaKqbagqaamaabmaabaGaeyOeI0Iaam4AaiaacYcacaqGGaGaeq ySdeMaaiilaiaabccacqaHapaCcqGHsislcqaH4oqCcaGGSaGaaeii aiaabccacqaHapaCcqGHsislcqaHvpGzaiaawIcacaGLPaaaaaa@5E42@

 for kR,  α>1, 0θ, ϕ<π MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam 4AaiabgIGiolaadkfacaGGSaGaaeiiaiaabccacqaHXoqycqGH+aGp caaIXaGaaiilaiaabccacaqGWaGaeyizImQaeqiUdeNaaiilaiaabc cacqaHvpGzcqGH8aapcqaHapaCaaa@4BBE@                                                (3)

Using (3) it can be shown as before, that the regions D 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam iraKGbaoaaBaaajuaGbaqcLbmacaaIXaaajuaGbeaaaaa@3C4C@  and D 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam iraKGbaoaaBaaajuaGbaqcLbmacaaIYaaajuaGbeaaaaa@3C4D@  can be omitted. Since no further reduction is possible, it is finally deduced that the region of identifiability of the model is given by S={ α, k, θ, ϕ |  kR, α>1, θ[ 0,π ), ϕ[ 0,π/2 ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam 4uaiabg2da9maacmaabaGaeqySdeMaaiilaiaabccacaWGRbGaaiil aiaabccacqaH4oqCcaGGSaGaaeiiaiabew9aMjaabccadaabbaqaai aabccacaWGRbGaeyicI4SaamOuaiaacYcacaqGGaGaeqySdeMaeyOp a4JaaGymaiaacYcacaqGGaGaeqiUdeNaeyicI48aaKGeaeaacaaIWa Gaaiilaiabec8aWbGaay5waiaawMcaaiaacYcacaqGGaGaeqy1dyMa eyicI48aaKGeaeaacaaIWaGaaiilaiabec8aWjaac+cacaaIYaaaca GLBbGaayzkaaaacaGLhWoaaiaawUhacaGL9baaaaa@654C@ .

Stationarity of the FRAR process

The stationarity of the newly developed FRAR time series model is now examined. The model is given by X t = r=1 a r X tr + e t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam iwamaaBaaabaqcLbmacaWG0baajuaGbeaacqGH9aqpdaaeWaqaaiaa dggadaWgaaqcfasaaiaadkhaaeqaaKqbakaadIfadaWgaaqcfasaai aadshacqGHsislcaWGYbaajuaGbeaacqGHRaWkcaWGLbWaaSbaaKqb GeaacaWG0baajuaGbeaaaKqbGeaacaWGYbGaeyypa0JaaGymaaqaai abg6HiLcqcfaOaeyyeIuoaaaa@4E49@ . That is, ( 1 a 1 B a 2 B 2 ) X t = e t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aae WaaeaacaaIXaGaeyOeI0IaamyyamaaBaaajuaibaGaaGymaaqcfaya baGaamOqaiabgkHiTiaadggadaWgaaqcfasaaiaaikdaaKqbagqaai aadkeadaahaaqcfasabeaacaaIYaaaaKqbakabgkHiTiablAcilbGa ayjkaiaawMcaaiaadIfadaWgaaqcfasaaiaadshaaKqbagqaaiabg2 da9iaadwgadaWgaaqcfasaaiaadshaaeqaaaaa@4C0B@ , where B is the backward shift operator, defined by B n X t = X tn MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam OqamaaCaaajuaibeqaaiaad6gaaaqcfaOaamiwamaaBaaajuaibaGa amiDaaqabaqcfaOaeyypa0JaamiwamaaBaaajuaibaGaamiDaiabgk HiTiaad6gaaeqaaaaa@4224@ . Thus, the model is given by Ψ( B ) X t = e t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu iQdK1aaeWaaeaacaWGcbaacaGLOaGaayzkaaGaamiwamaaBaaajuai baGaamiDaaqabaqcfaOaeyypa0JaamyzamaaBaaajuaibaGaamiDaa qabaaaaa@4198@ , or X t = Ψ 1 ( B ) e t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam iwamaaBaaajuaibaGaamiDaaqabaqcfaOaeyypa0JaeuiQdK1aaWba aKqbGeqabaGaeyOeI0IaaGymaaaajuaGdaqadaqaaiaadkeaaiaawI cacaGLPaaacaWGLbWaaSbaaKqbGeaacaWG0baabeaaaaa@441E@ , where Ψ( B )=1 a 1 B a 2 B 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu iQdK1aaeWaaeaacaWGcbaacaGLOaGaayzkaaGaeyypa0JaaGymaiab gkHiTiaadggadaWgaaqcfasaaiaaigdaaeqaaKqbakaadkeacqGHsi slcaWGHbWaaSbaaKqbGeaacaaIYaaabeaajuaGcaWGcbWaaWbaaKqb GeqabaGaaGOmaaaajuaGcqGHsislcqWIMaYsaaa@497C@ .

Box and Jenkins2 and Priestley3 have shown that a necessary condition for the stationarity of such processes is that the roots of the equation Ψ( B )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu iQdK1aaeWaaeaacaWGcbaacaGLOaGaayzkaaGaeyypa0JaaGimaaaa @3D6D@  must all lie outside the unit circle. So, it is now proposed to investigate the nature of the zeros of Ψ( B ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu iQdK1aaeWaaeaacaWGcbaacaGLOaGaayzkaaaaaa@3BAD@ .

The power series Ψ( B ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu iQdK1aaeWaaeaacaWGcbaacaGLOaGaayzkaaaaaa@3BAD@  may be rewritten as Ψ( B )=1[ a 1 B+ a 2 B 2 + ]=1 n=1 a n B n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu iQdK1aaeWaaeaacaWGcbaacaGLOaGaayzkaaGaeyypa0JaaGymaiab gkHiTmaadmaabaGaamyyamaaBaaajuaibaGaaGymaaqabaqcfaOaam OqaiabgUcaRiaadggadaWgaaqcfasaaiaaikdaaKqbagqaaiaadkea daahaaqcfasabeaacaaIYaaaaKqbakabgUcaRiablAcilbGaay5wai aaw2faaiabg2da9iaaigdacqGHsisldaaeWaqaaiaadggadaWgaaqc fasaaiaad6gaaKqbagqaaiaadkeadaahaaqabKqbGeaacaWGUbaaaa qaaiaad6gacqGH9aqpcaaIXaaabaGaeyOhIukajuaGcqGHris5aaaa @5963@ , where a n B n =( k B n / α n )[ sin( nθ )cos( nϕ ) ]=( k' B n / α n )[ sin( n θ 1 )+sin( n θ 2 ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam yyamaaBaaabaqcLbmacaWGUbaajuaGbeaacaWGcbWaaWbaaeqabaqc LbmacaWGUbaaaKqbakabg2da9maabmaabaGaam4Aaiaadkeadaahaa qabeaajugWaiaad6gaaaqcfaOaai4laiabeg7aHnaaCaaabeqaaKqz adGaamOBaaaaaKqbakaawIcacaGLPaaadaWadaqaaiGacohacaGGPb GaaiOBamaabmaabaGaamOBaiabeI7aXbGaayjkaiaawMcaaiGacoga caGGVbGaai4CamaabmaabaGaamOBaiabew9aMbGaayjkaiaawMcaaa Gaay5waiaaw2faaiabg2da9maabmaabaGaam4AaiaacEcacaWGcbWa aWbaaeqabaqcLbmacaWGUbaaaKqbakaac+cacqaHXoqydaahaaqabe aajugWaiaad6gaaaaajuaGcaGLOaGaayzkaaWaamWaaeaaciGGZbGa aiyAaiaac6gadaqadaqaaiaad6gacqaH4oqCdaWgaaqaaKqzadGaaG ymaaqcfayabaaacaGLOaGaayzkaaGaey4kaSIaci4CaiaacMgacaGG UbWaaeWaaeaacaWGUbGaeqiUde3aaSbaaeaajugWaiaaikdaaKqbag qaaaGaayjkaiaawMcaaaGaay5waiaaw2faaaaa@7E67@ , k'=k/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam 4AaiaacEcacqGH9aqpcaWGRbGaai4laiaaikdaaaa@3CCE@ , θ 1 =θ+ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq iUdexcga4aaSbaaKqbagaajugWaiaaigdaaKqbagqaaiabg2da9iab eI7aXjabgUcaRiabew9aMbaa@429F@  and θ 2 =θϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq iUdexcga4aaSbaaKqbagaajugWaiaaikdaaKqbagqaaiabg2da9iab eI7aXjabgkHiTiabew9aMbaa@42AB@ . Therefore, n=1 a n B n = n=1 k' B n α n sin( n θ 1 )+ n=1 k' B n α n sin( n θ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaa bmaeaacaWGHbqcga4aaSbaaKqbagaajugWaiaad6gaaKqbagqaaiaa dkeadaahaaqabeaajugWaiaad6gaaaaajuaGbaqcLbmacaWGUbGaey ypa0JaaGymaaqcfayaaKqzadGaeyOhIukajuaGcqGHris5aiabg2da 9maaqadabaWaaSaaaeaacaWGRbGaai4jaiaadkeadaahaaqabeaaju gWaiaad6gaaaaajuaGbaGaeqySde2aaWbaaeqabaqcLbmacaWGUbaa aaaajuaGciGGZbGaaiyAaiaac6gadaqadaqaaiaad6gacqaH4oqCda WgaaqaaiaaigdaaeqaaaGaayjkaiaawMcaaiabgUcaRaqaaKqzadGa amOBaiabg2da9iaaigdaaKqbagaajugWaiabg6HiLcqcfaOaeyyeIu oadaaeWaqaamaalaaabaGaam4AaiaacEcacaWGcbWaaWbaaeqabaqc LbmacaWGUbaaaaqcfayaaiabeg7aHnaaCaaabeqaaKqzadGaamOBaa aaaaqcfaOaci4CaiaacMgacaGGUbWaaeWaaeaacaWGUbGaeqiUdexc ga4aaSbaaKqbagaajugWaiaaikdaaKqbagqaaaGaayjkaiaawMcaaa qaaKqzadGaamOBaiabg2da9iaaigdaaKqbagaajugWaiabg6HiLcqc faOaeyyeIuoaaaa@84C2@ .

The above two series are separately evaluated below.

n=1 k' B n α n sin( n θ 1 )=IP of  n=1 k' B n α n e in θ 1 =IP{ kB e i θ 1 ( αB e i θ 1 ) 1 } =k'Bαsin( θ 1 )/ G 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaa bmaeaadaWcaaqaaiaadUgacaGGNaGaamOqamaaCaaabeqaaKqzadGa amOBaaaaaKqbagaacqaHXoqydaahaaqabeaajugWaiaad6gaaaaaaK qbakGacohacaGGPbGaaiOBamaabmaabaGaamOBaiabeI7aXnaaBaaa baqcLbmacaaIXaaajuaGbeaaaiaawIcacaGLPaaacqGH9aqpcaWGjb GaamiuaiaabccacaqGVbGaaeOzaiaabccaaeaajugWaiaad6gacqGH 9aqpcaaIXaaajuaGbaqcLbmacqGHEisPaKqbakabggHiLdWaaabmae aadaWcaaqaaiaadUgacaGGNaGaamOqamaaCaaabeqaaKqzadGaamOB aaaaaKqbagaacqaHXoqydaahaaqabeaajugWaiaad6gaaaaaaKqbak aadwgadaahaaqabeaacaWGPbGaamOBaiabeI7aXLGbaoaaBaaajuaG baqcLbmacaaIXaaajuaGbeaaaaGaeyypa0JaamysaiaadcfadaGada qaaiaadUgacaWGcbGaamyzamaaCaaabeqaaiaadMgacqaH4oqCjyaG daWgaaqcfayaaKqzadGaaGymaaqcfayabaaaamaabmaabaGaeqySde MaeyOeI0IaamOqaiaadwgadaahaaqabeaacaWGPbGaeqiUdexcga4a aSbaaKqbagaajugWaiaaigdaaKqbagqaaaaaaiaawIcacaGLPaaada ahaaqabeaajugWaiabgkHiTiaaigdaaaaajuaGcaGL7bGaayzFaaaa baqcLbmacaWGUbGaeyypa0JaaGymaaqcfayaaKqzadGaeyOhIukaju aGcqGHris5aiabg2da9iaadUgacaGGNaGaamOqaiabeg7aHjGacoha caGGPbGaaiOBamaabmaabaGaeqiUde3aaSbaaeaajugWaiaaigdaaK qbagqaaaGaayjkaiaawMcaaiaac+cacaWGhbqcga4aaSbaaKqbagaa jugWaiaaigdaaKqbagqaaaaa@A6AD@ , where G 1 = B 2 + α 2 2Bαcos( θ 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam 4raKGbaoaaBaaajuaGbaqcLbmacaaIXaaajuaGbeaacqGH9aqpcaWG cbqcga4aaWbaaKqbagqabaqcLbmacaaIYaaaaKqbakabgUcaRiabeg 7aHnaaCaaabeqaaKqzadGaaGOmaaaajuaGcqGHsislcaaIYaGaamOq aiabeg7aHjGacogacaGGVbGaai4CamaabmaabaGaeqiUdexcga4aaS baaKqbagaajugWaiaaigdaaKqbagqaaaGaayjkaiaawMcaaaaa@54C4@ and IP stands for imaginary part.

Similarly, it can be shown that n=1 k' B n α n sin( n θ 2 )=( k'Bαsin( n θ 2 ) )/ G 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaa bmaeaadaWcaaqaaiaadUgacaGGNaGaamOqamaaCaaabeqaaKqzadGa amOBaaaaaKqbagaacqaHXoqydaahaaqabKGbagaacaWGUbaaaaaaju aGciGGZbGaaiyAaiaac6gadaqadaqaaiaad6gacqaH4oqCdaWgaaqc gayaaiaaikdaaKqbagqaaaGaayjkaiaawMcaaiabg2da9maabmaaba Gaam4AaiaacEcacaWGcbGaeqySdeMaci4CaiaacMgacaGGUbWaaeWa aeaacaWGUbGaeqiUdexcga4aaSbaaeaacaaIYaaabeaaaKqbakaawI cacaGLPaaaaiaawIcacaGLPaaacaGGVaGaam4raKGbaoaaBaaabaGa aGOmaaqabaaajuaGbaqcLbmacaWGUbGaeyypa0JaaGymaaqcfayaaK qzadGaeyOhIukajuaGcqGHris5aaaa@667A@ , where G 2 = B 2 + α 2 2Bαcos( θ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam 4raKGbaoaaBaaabaGaaGOmaaqabaqcfaOaeyypa0JaamOqamaaCaaa beqcgayaaiaaikdaaaqcfaOaey4kaSIaeqySdewcga4aaWbaaeqaba GaaGOmaaaajuaGcqGHsislcaaIYaGaamOqaiabeg7aHjGacogacaGG VbGaai4CamaabmaabaGaeqiUdexcga4aaSbaaeaacaaIYaaabeaaaK qbakaawIcacaGLPaaaaaa@4EF3@ .

Therefore,

n=1 a n B n =k'Bα[ ( B 2 + α 2 )( sin( θ 1 )+sin( θ 2 ) )2Bα( sin( θ 1 )cos( θ 2 )cos( θ 1 )sin( θ 2 ) ) ]/ G 1 G 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaa bmaeaacaWGHbWaaSbaaKGbagaacaWGUbaajuaGbeaacaWGcbWaaWba aeqajyaGbaGaamOBaaaaaeaacaWGUbGaeyypa0JaaGymaaqaaiabg6 HiLcqcfaOaeyyeIuoacqGH9aqpcaWGRbGaai4jaiaadkeacqaHXoqy daWadaqaamaabmaabaGaamOqamaaCaaabeqcgayaaiaaikdaaaqcfa Oaey4kaSIaeqySde2aaWbaaeqajyaGbaGaaGOmaaaaaKqbakaawIca caGLPaaadaqadaqaaiGacohacaGGPbGaaiOBamaabmaabaGaeqiUde 3aaSbaaKGbagaacaaIXaaajuaGbeaaaiaawIcacaGLPaaacqGHRaWk ciGGZbGaaiyAaiaac6gadaqadaqaaiabeI7aXnaaBaaajyaGbaGaaG OmaaqcfayabaaacaGLOaGaayzkaaaacaGLOaGaayzkaaGaeyOeI0Ia aGOmaiaadkeacqaHXoqydaqadaqaaiGacohacaGGPbGaaiOBamaabm aabaGaeqiUdexcga4aaSbaaeaacaaIXaaabeaaaKqbakaawIcacaGL PaaaciGGJbGaai4BaiaacohadaqadaqaaiabeI7aXLGbaoaaBaaaba GaaGOmaaqabaaajuaGcaGLOaGaayzkaaGaeyOeI0Iaci4yaiaac+ga caGGZbWaaeWaaeaacqaH4oqCjyaGdaWgaaqaaiaaigdaaeqaaaqcfa OaayjkaiaawMcaaiGacohacaGGPbGaaiOBamaabmaabaGaeqiUde3a aSbaaKGbagaacaaIYaaajuaGbeaaaiaawIcacaGLPaaaaiaawIcaca GLPaaaaiaawUfacaGLDbaacaGGVaGaam4raKGbaoaaBaaabaGaaGym aaqabaqcfaOaam4ramaaBaaajyaGbaGaaGOmaaqcfayabaaaaa@9334@ .

Thus, Ψ( B )=1 n=1 a n B n =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu iQdK1aaeWaaeaacaWGcbaacaGLOaGaayzkaaGaeyypa0JaaGymaiab gkHiTmaaqadabaGaamyyamaaBaaajyaGbaGaamOBaaqcfayabaGaam OqaKGbaoaaCaaabeqaaiaad6gaaaaabaGaamOBaiabg2da9iaaigda aeaacqGHEisPaKqbakabggHiLdGaeyypa0JaaGimaaaa@4C3A@ implies that ( B 2 + α 2 2Bαcos( θ 1 ) )( B 2 + α 2 2Bαcos( θ 2 ) )k'Bα [ ( B 2 + α 2 ) s 1 2B d 1 c 2 ] =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aae WaaeaacaWGcbWaaWbaaeqajyaGbaGaaGOmaaaajuaGcqGHRaWkcqaH XoqydaahaaqabKGbagaacaaIYaaaaKqbakabgkHiTiaaikdacaWGcb GaeqySdeMaci4yaiaac+gacaGGZbWaaeWaaeaacqaH4oqCdaWgaaqc gayaaiaaigdaaKqbagqaaaGaayjkaiaawMcaaaGaayjkaiaawMcaam aabmaabaGaamOqamaaCaaabeqcgayaaiaaikdaaaqcfaOaey4kaSIa eqySde2aaWbaaeqajyaGbaGaaGOmaaaajuaGcqGHsislcaaIYaGaam Oqaiabeg7aHjGacogacaGGVbGaai4CamaabmaabaGaeqiUde3aaSba aKGbagaacaaIYaaajuaGbeaaaiaawIcacaGLPaaaaiaawIcacaGLPa aacqGHsislcaWGRbGaai4jaiaadkeacqaHXoqydaWadaqaamaabmaa baGaamOqamaaCaaabeqcgayaaiaaikdaaaqcfaOaey4kaSIaeqySde 2aaWbaaeqajyaGbaGaaGOmaaaaaKqbakaawIcacaGLPaaacaWGZbqc ga4aaSbaaeaacaaIXaaabeaajuaGcqGHsislcaaIYaGaamOqaiaads gajyaGdaWgaaqaaiaaigdaaeqaaKqbakaadogadaWgaaqcgayaaiaa ikdaaKqbagqaaaGaay5waiaaw2faamaaCaaabeqaaaaacqGH9aqpca aIWaaaaa@7E3F@

where c 1 =cos( θ 1 )+cos( θ 2 )=2cos( θ )cos( φ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam 4yaKGbaoaaBaaabaGaaGymaaqabaqcfaOaeyypa0Jaci4yaiaac+ga caGGZbWaaeWaaeaacqaH4oqCjyaGdaWgaaqaaiaaigdaaeqaaaqcfa OaayjkaiaawMcaaiabgUcaRiGacogacaGGVbGaai4CamaabmaabaGa eqiUdexcga4aaSbaaeaacaaIYaaabeaaaKqbakaawIcacaGLPaaacq GH9aqpcaaIYaGaci4yaiaac+gacaGGZbWaaeWaaeaacqaH4oqCaiaa wIcacaGLPaaaciGGJbGaai4BaiaacohadaqadaqaaiabeA8aQbGaay jkaiaawMcaaaaa@5A9B@ , c 2 =sin( 2 θ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam 4yaKGbaoaaBaaabaGaaGOmaaqabaqcfaOaeyypa0Jaci4CaiaacMga caGGUbWaaeWaaeaacaaIYaGaeqiUde3aaSbaaKGbagaacaaIYaaaju aGbeaaaiaawIcacaGLPaaaaaa@4483@ , s 1 =sin( θ 1 )+sin( θ 2 )=2sin( θ )cos( φ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam 4CamaaBaaajyaGbaGaaGymaaqcfayabaGaeyypa0Jaci4CaiaacMga caGGUbWaaeWaaeaacqaH4oqCjyaGdaWgaaqaaiaaigdaaeqaaaqcfa OaayjkaiaawMcaaiabgUcaRiGacohacaGGPbGaaiOBamaabmaabaGa eqiUdexcga4aaSbaaeaacaaIYaaabeaaaKqbakaawIcacaGLPaaacq GH9aqpcaaIYaGaci4CaiaacMgacaGGUbWaaeWaaeaacqaH4oqCaiaa wIcacaGLPaaaciGGJbGaai4BaiaacohadaqadaqaaiabeA8aQbGaay jkaiaawMcaaaaa@5ABA@ , d 1 =cos( θ 1 )cos( θ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam izaKGbaoaaBaaabaGaaGymaaqabaqcfaOaeyypa0Jaci4yaiaac+ga caGGZbWaaeWaaeaacqaH4oqCjyaGdaWgaaqaaiaaigdaaeqaaaqcfa OaayjkaiaawMcaaiabgkHiTiGacogacaGGVbGaai4CamaabmaabaGa eqiUde3aaSbaaKGbagaacaaIYaaajuaGbeaaaiaawIcacaGLPaaaaa a@4CBA@ . After simplifying, the above equation becomes B 4 B 3 α( 2 c 1 +k' s 1 )+ B 2 α 2 ( 2+4 d 1 +2k' c 2 )B α 3 ( 2 c 1 +k' s 1 )+ α 4 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam OqamaaCaaabeqcgayaaiaaisdaaaqcfaOaeyOeI0IaamOqaKGbaoaa CaaabeqaaiaaiodaaaqcfaOaeqySde2aaeWaaeaacaaIYaGaam4yaK GbaoaaBaaabaGaaGymaaqabaqcfaOaey4kaSIaam4AaiaacEcacaWG Zbqcga4aaSbaaeaacaaIXaaabeaaaKqbakaawIcacaGLPaaacqGHRa WkcaWGcbqcga4aaWbaaeqabaGaaGOmaaaajuaGcqaHXoqydaahaaqa bKGbagaacaaIYaaaaKqbaoaabmaabaGaaGOmaiabgUcaRiaaisdaca WGKbqcga4aaSbaaeaacaaIXaaabeaajuaGcqGHRaWkcaaIYaGaam4A aiaacEcacaWGJbqcga4aaSbaaeaacaaIYaaabeaaaKqbakaawIcaca GLPaaacqGHsislcaWGcbGaeqySdewcga4aaWbaaeqabaGaaG4maaaa juaGdaqadaqaaiaaikdacaWGJbqcga4aaSbaaeaacaaIXaaabeaaju aGcqGHRaWkcaWGRbGaai4jaiaadohajyaGdaWgaaqaaiaaigdaaeqa aaqcfaOaayjkaiaawMcaaiabgUcaRiabeg7aHLGbaoaaCaaabeqaai aaisdaaaqcfaOaeyypa0JaaGimaaaa@74B6@ . Thus,

B 4 B 3 α A 1 + B 2 α 2 A 2 B α 3 A 1 + α 4 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam OqamaaCaaabeqcgayaaiaaisdaaaqcfaOaeyOeI0IaamOqaKGbaoaa CaaabeqaaiaaiodaaaqcfaOaeqySdeMaamyqaKGbaoaaBaaabaGaaG ymaaqabaqcfaOaey4kaSIaamOqamaaCaaabeqcgayaaiaaikdaaaqc faOaeqySde2aaWbaaeqajyaGbaGaaGOmaaaajuaGcaWGbbqcga4aaS baaeaacaaIYaaabeaajuaGcqGHsislcaWGcbGaeqySdewcga4aaWba aeqabaGaaG4maaaajuaGcaWGbbqcga4aaSbaaeaacaaIXaaabeaaju aGcqGHRaWkcqaHXoqydaahaaqabKGbagaacaaI0aaaaKqbakabg2da 9iaaicdaaaa@5AEA@ (4)

or S 4 A 1 S 3 + A 2 S 2 A 1 S+1=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam 4uaKGbaoaaCaaabeqaaiaaisdaaaqcfaOaeyOeI0IaamyqaKGbaoaa BaaabaGaaGymaaqabaqcfaOaam4uamaaCaaabeqcgayaaiaaiodaaa qcfaOaey4kaSIaamyqaKGbaoaaBaaabaGaaGOmaaqabaqcfaOaam4u amaaCaaabeqcgayaaiaaikdaaaqcfaOaeyOeI0IaamyqamaaBaaajy aGbaGaaGymaaqcfayabaGaam4uaiabgUcaRiaaigdacqGH9aqpcaaI Waaaaa@4F79@ (5)

where A 1 =2 c 1 +k' s 1 =cos( φ )( 4cos( θ )+ksin( φ ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam yqaKGbaoaaBaaabaGaaGymaaqabaqcfaOaeyypa0JaaGOmaiaadoga jyaGdaWgaaqaaiaaigdaaeqaaKqbakabgUcaRiaadUgacaGGNaGaam 4CaKGbaoaaBaaabaGaaGymaaqabaqcfaOaeyypa0Jaci4yaiaac+ga caGGZbWaaeWaaeaacqaHgpGAaiaawIcacaGLPaaadaqadaqaaiaais daciGGJbGaai4BaiaacohadaqadaqaaiabeI7aXbGaayjkaiaawMca aiabgUcaRiaadUgaciGGZbGaaiyAaiaac6gadaqadaqaaiabeA8aQb GaayjkaiaawMcaaaGaayjkaiaawMcaaaaa@5C06@ , A 2 =2+4 d 1 +2k' c 2 =2[ 1sin( ϕ )( 4sin( θ )kcos( ϕ ) ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam yqaKGbaoaaBaaabaGaaGOmaaqabaqcfaOaeyypa0JaaGOmaiabgUca RiaaisdacaWGKbqcga4aaSbaaeaacaaIXaaabeaajuaGcqGHRaWkca aIYaGaam4AaiaacEcacaWGJbqcga4aaSbaaeaacaaIYaaabeaajuaG cqGH9aqpcaaIYaWaamWaaeaacaaIXaGaeyOeI0Iaci4CaiaacMgaca GGUbWaaeWaaeaacqaHvpGzaiaawIcacaGLPaaadaqadaqaaiaaisda ciGGZbGaaiyAaiaac6gadaqadaqaaiabeI7aXbGaayjkaiaawMcaai abgkHiTiaadUgaciGGJbGaai4Baiaacohadaqadaqaaiabew9aMbGa ayjkaiaawMcaaaGaayjkaiaawMcaaaGaay5waiaaw2faaaaa@62D1@ , and S=B/α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam 4uaiabg2da9iaadkeacaGGVaGaeqySdegaaa@3CC5@ . This equation (of degree 4) reduces to Z 2 A 1 Z+( A 2 2 )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam OwaKGbaoaaCaaabeqaaiaaikdaaaqcfaOaeyOeI0IaamyqaKGbaoaa BaaabaGaaGymaaqabaqcfaOaamOwaiabgUcaRmaabmaabaGaamyqaK GbaoaaBaaabaGaaGOmaaqabaqcfaOaeyOeI0IaaGOmaaGaayjkaiaa wMcaaiabg2da9iaaicdaaaa@47C7@  where Z=S+( 1/S ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam Owaiabg2da9iaadofacqGHRaWkdaqadaqaaiaaigdacaGGVaGaam4u aaGaayjkaiaawMcaaaaa@3F3C@ .

The roots of this equation are, say r 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam OCaKGbaoaaBaaabaGaaGymaaqabaaaaa@3A30@  and r 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam OCamaaBaaajyaGbaGaaGOmaaqcfayabaaaaa@3ABF@ , are given by Z=( 1/2 ) [ A 1 ± ( A 1 2 4 A 2 +8 ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam Owaiabg2da9maabmaabaGaaGymaiaac+cacaaIYaaacaGLOaGaayzk aaWaamWaaeaacaWGbbqcga4aaSbaaeaacaaIXaaabeaajuaGcqGHXc qSdaGcaaqaamaabmaabaGaamyqaKGbaoaaDaaabaGaaGymaaqaaiaa ikdaaaqcfaOaeyOeI0IaaGinaiaadgeadaWgaaqcgayaaiaaikdaaK qbagqaaiabgUcaRiaaiIdaaiaawIcacaGLPaaaaeqaaaGaay5waiaa w2faamaaCaaabeqaaaaaaaa@4F4B@ .

Since Z=S+( 1/S ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam Owaiabg2da9iaadofacqGHRaWkdaqadaqaaiaaigdacaGGVaGaam4u aaGaayjkaiaawMcaaaaa@3F3C@ , one finally gets the four roots of the equation (4), as R 1 =( 1/2 ) [ r 1 + r 1 2 4 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam OuaKGbaoaaBaaabaGaaGymaaqabaqcfaOaeyypa0ZaaeWaaeaacaaI XaGaai4laiaaikdaaiaawIcacaGLPaaadaWadaqaaiaadkhajyaGda WgaaqaaiaaigdaaeqaaKqbakabgUcaRmaakaaabaGaamOCaKGbaoaa DaaabaGaaGymaaqaaiaaikdaaaqcfaOaeyOeI0IaaGinaaqabaaaca GLBbGaayzxaaWaaWbaaeqabaaaaaaa@4AA5@ , R 2 =( 1/2 ) [ r 1 r 1 2 4 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam OuamaaBaaajyaGbaGaaGOmaaqcfayabaGaeyypa0ZaaeWaaeaacaaI XaGaai4laiaaikdaaiaawIcacaGLPaaadaWadaqaaiaadkhajyaGda WgaaqaaiaaigdaaeqaaKqbakabgkHiTmaakaaabaGaamOCaKGbaoaa DaaabaGaaGymaaqaaiaaikdaaaqcfaOaeyOeI0IaaGinaaqabaaaca GLBbGaayzxaaWaaWbaaeqabaaaaaaa@4AB1@ , R 3 =( 1/2 ) [ r 2 + r 2 2 4 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam OuamaaBaaajyaGbaGaaG4maaqcfayabaGaeyypa0ZaaeWaaeaacaaI XaGaai4laiaaikdaaiaawIcacaGLPaaadaWadaqaaiaadkhadaWgaa qcgayaaiaaikdaaKqbagqaaiabgUcaRmaakaaabaGaamOCamaaDaaa jyaGbaGaaGOmaaqaaiaaikdaaaqcfaOaeyOeI0IaaGinaaqabaaaca GLBbGaayzxaaWaaWbaaeqabaaaaaaa@4AA9@  and R 2 =( 1/2 ) [ r 2 r 2 2 4 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam OuamaaBaaajyaGbaGaaGOmaaqcfayabaGaeyypa0ZaaeWaaeaacaaI XaGaai4laiaaikdaaiaawIcacaGLPaaadaWadaqaaiaadkhajyaGda WgaaqaaiaaikdaaeqaaKqbakabgkHiTmaakaaabaGaamOCaKGbaoaa DaaabaGaaGOmaaqaaiaaikdaaaqcfaOaeyOeI0IaaGinaaqabaaaca GLBbGaayzxaaWaaWbaaeqabaaaaaaa@4AB3@ .

The equation (5) implies that, if S 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam 4uaKGbaoaaBaaabaGaaGimaaqabaaaaa@3A10@  is a root of the equation (5) then 1/ S 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaG ymaiaac+cacaWGtbWaaSbaaKGbagaacaaIWaaajuaGbeaaaaa@3C0C@  is also a root. This implies that α S 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq ySdeMaam4uaKGbaoaaBaaabaGaaGimaaqabaaaaa@3BAF@  and ( α/ S 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aae WaaeaacqaHXoqycaGGVaGaam4uamaaBaaajyaGbaGaaGimaaqcfaya baaacaGLOaGaayzkaaaaaa@3E79@  are roots of equation (4). Therefore the process is stationary for sufficiently large values of α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq ySdegaaa@396D@ . But when α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq ySdegaaa@396D@  is small it seems difficult to examine the stationarity of the process by this approach. Hence, it is proposed to study the asymptotic stationarity of the process in the following section.

Asymptotic stationarity of the FRAR process

In this section we derive the condition for asymptotic stationarity of the FRAR process. For which one has to solve the difference equation (1), so as to obtain an expression for X t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam iwaKGbaoaaBaaabaGaamiDaaqabaaaaa@3A54@  in terms of e t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam yzamaaBaaajyaGbaGaamiDaaqcfayabaaaaa@3AEF@ , e t1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam yzaKGbaoaaBaaabaGaamiDaiabgkHiTiaaigdaaeqaaaaa@3C09@ , e t2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam yzamaaBaaajyaGbaGaamiDaiabgkHiTiaaikdaaKqbagqaaaaa@3C98@ , e t3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam yzaKGbaoaaBaaabaGaamiDaiabgkHiTiaaiodaaeqaaaaa@3C0B@ , .... The precise solution of this equation depends on the initial conditions. So to investigate the nature of the first and second moments of X t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam iwaKGbaoaaBaaabaGaamiDaaqabaaaaa@3A54@ , following Priestley,3 it is assumed that X t =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam iwaKGbaoaaBaaabaGaamiDaaqabaqcfaOaeyypa0JaaGimaaaa@3CA2@  for t<N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam iDaiabgYda8iabgkHiTiaad6eaaaa@3B8B@ , N being the number of observations in the time series. Then solving (1) by repeated substitutions one obtains

X t = e t + a 11 X t1 + a 12 X t2 + a 13 X t3 + MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam iwamaaBaaajyaGbaGaamiDaaqcfayabaGaeyypa0JaamyzaKGbaoaa BaaabaGaamiDaaqabaqcfaOaey4kaSIaamyyamaaBaaajyaGbaGaaG ymaiaaigdaaKqbagqaaiaadIfajyaGdaWgaaqaaiaadshacqGHsisl caaIXaaabeaajuaGcqGHRaWkcaWGHbqcga4aaSbaaeaacaaIXaGaaG OmaaqabaqcfaOaamiwamaaBaaajyaGbaGaamiDaiabgkHiTiaaikda aKqbagqaaiabgUcaRiaadggadaWgaaqcgayaaiaaigdacaaIZaaaju aGbeaacaWGybqcga4aaSbaaeaacaWG0bGaeyOeI0IaaG4maaqabaqc faOaey4kaSIaeSOjGSeaaa@5CBB@ ,

where a 1j = a j =( k/ α j )sin( jθ )cos( jϕ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam yyaKGbaoaaBaaabaGaaGymaiaadQgaaeqaaKqbakabg2da9iaadgga jyaGdaWgaaqaaiaadQgaaeqaaKqbakabg2da9maabmaabaGaam4Aai aac+cacqaHXoqydaahaaqabKGbagaacaWGQbaaaaqcfaOaayjkaiaa wMcaaiGacohacaGGPbGaaiOBamaabmaabaGaamOAaiabeI7aXbGaay jkaiaawMcaaiGacogacaGGVbGaai4CamaabmaabaGaamOAaiabew9a MbGaayjkaiaawMcaaaaa@55CD@ ; j=1, 2,  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam OAaiabg2da9iaaigdacaGGSaGaaeiiaiaaikdacaGGSaGaaeiiaiab lAcilbaa@3F02@ ,

= e t + a 11 e t1 + a 22 X t2 + a 23 X t3 + a 24 X t4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaey ypa0JaamyzaKGbaoaaBaaabaGaamiDaaqabaqcfaOaey4kaSIaamyy aKGbaoaaBaaabaGaaGymaiaaigdaaeqaaKqbakaadwgajyaGdaWgaa qaaiaadshacqGHsislcaaIXaaabeaajuaGcqGHRaWkcaWGHbWaaSba aKGbagaacaaIYaGaaGOmaaqcfayabaGaamiwaKGbaoaaBaaabaGaam iDaiabgkHiTiaaikdaaeqaaKqbakabgUcaRiaadggadaWgaaqcgaya aiaaikdacaaIZaaajuaGbeaacaWGybWaaSbaaKGbagaacaWG0bGaey OeI0IaaG4maaqcfayabaGaey4kaSIaamyyamaaBaaajyaGbaGaaGOm aiaaisdaaKqbagqaaiaadIfadaWgaaqcgayaaiaadshacqGHsislca aI0aaajuaGbeaacqWIMaYsaaa@6213@ ,

where a 2j = a 11 a 1j1 + a 1j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam yyaKGbaoaaBaaabaGaaGOmaiaadQgaaeqaaKqbakabg2da9iaadgga jyaGdaWgaaqaaiaaigdacaaIXaaabeaajuaGcaWGHbqcga4aaSbaae aacaaIXaGaamOAaiabgkHiTiaaigdaaeqaaKqbakabgUcaRiaadgga jyaGdaWgaaqaaiaaigdacaWGQbaabeaaaaa@49D5@ ; j=2, 3, 4  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam OAaiabg2da9iaaikdacaGGSaGaaeiiaiaaiodacaGGSaGaaeiiaiaa isdacaqGGaGaeSOjGSeaaa@4065@ .

Similarly proceeding one finally gets

X t = [ e t + a 11 e t1 + a 22 e t2 + a 33 e t3 + a 44 e t4 ++ a pp e tp ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam iwamaaBaaajyaGbaGaamiDaaqcfayabaGaeyypa0ZaamWaaeaacaWG LbWaaSbaaKGbagaacaWG0baajuaGbeaacqGHRaWkcaWGHbWaaSbaaK GbagaacaaIXaGaaGymaaqcfayabaGaamyzaKGbaoaaBaaabaGaamiD aiabgkHiTiaaigdaaeqaaKqbakabgUcaRiaadggajyaGdaWgaaqaai aaikdacaaIYaaabeaajuaGcaWGLbqcga4aaSbaaeaacaWG0bGaeyOe I0IaaGOmaaqabaqcfaOaey4kaSIaamyyaKGbaoaaBaaabaGaaG4mai aaiodaaeqaaKqbakaadwgajyaGdaWgaaqaaiaadshacqGHsislcaaI ZaaabeaajuaGcqGHRaWkcaWGHbqcga4aaSbaaeaacaaI0aGaaGinaa qabaqcfaOaamyzaKGbaoaaBaaabaGaamiDaiabgkHiTiaaisdaaeqa aKqbakabgUcaRiablAciljabgUcaRiaadggadaWgaaqcgayaaiaadc hacaWGWbaajuaGbeaacaWGLbWaaSbaaKGbagaacaWG0bGaeyOeI0Ia amiCaaqcfayabaaacaGLBbGaayzxaaWaaWbaaeqabaaaaaaa@723A@ + [ a p+1p+1 X t( p+1 ) + a p+1p+2 X t( p+2 ) + ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaey 4kaSYaamWaaeaacaWGHbqcga4aaSbaaeaacaWGWbGaey4kaSIaaGym aiaadchacqGHRaWkcaaIXaaabeaajuaGcaWGybqcga4aaSbaaeaaca WG0bGaeyOeI0YaaeWaaeaacaWGWbGaey4kaSIaaGymaaGaayjkaiaa wMcaaaqabaqcfaOaey4kaSIaamyyaKGbaoaaBaaabaGaamiCaiabgU caRiaaigdacaWGWbGaey4kaSIaaGOmaaqabaqcfaOaamiwaKGbaoaa BaaabaGaamiDaiabgkHiTmaabmaabaGaamiCaiabgUcaRiaaikdaai aawIcacaGLPaaaaeqaaKqbakabgUcaRiablAcilbGaay5waiaaw2fa amaaCaaabeqaaaaaaaa@5C74@  

where a ij = a i1i1 a 1j+1i + a i1j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam yyaKGbaoaaBaaabaGaamyAaiaadQgaaeqaaKqbakabg2da9iaadgga jyaGdaWgaaqaaiaadMgacqGHsislcaaIXaGaamyAaiabgkHiTiaaig daaeqaaKqbakaadggajyaGdaWgaaqaaiaaigdacaWGQbGaey4kaSIa aGymaiabgkHiTiaadMgaaeqaaKqbakabgUcaRiaadggajyaGdaWgaa qaaiaadMgacqGHsislcaaIXaGaamOAaaqabaaaaa@5168@  with j>i=2, 3, 4  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam OAaiabg6da+iaadMgacqGH9aqpcaaIYaGaaiilaiaabccacaaIZaGa aiilaiaabccacaaI0aGaaeiiaiablAcilbaa@425B@ . Thus, if it is assumed that X t =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam iwaKGbaoaaBaaabaGaamiDaaqabaqcfaOaeyypa0JaaGimaaaa@3CA2@  for tN MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam iDaiabgsMiJkabgkHiTiaad6eaaaa@3C3C@ , which implies has n=N+t1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam OBaiabg2da9iaad6eacqGHRaWkcaWG0bGaeyOeI0IaaGymaaaa@3E1D@ , then, X t = e t + a 11 e t1 + a 22 e t2 + a 33 e t3 + a 44 e t4 ++ a N+t1,N+t1 e 1N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam iwamaaBaaajyaGbaGaamiDaaqcfayabaGaeyypa0JaamyzaKGbaoaa BaaabaGaamiDaaqabaqcfaOaey4kaSIaamyyamaaBaaajyaGbaGaaG ymaiaaigdaaKqbagqaaiaadwgajyaGdaWgaaqaaiaadshacqGHsisl caaIXaaabeaajuaGcqGHRaWkcaWGHbWaaSbaaKGbagaacaaIYaGaaG OmaaqcfayabaGaamyzaKGbaoaaBaaabaGaamiDaiabgkHiTiaaikda aeqaaKqbakabgUcaRiaadggajyaGdaWgaaqaaiaaiodacaaIZaaabe aajuaGcaWGLbqcga4aaSbaaeaacaWG0bGaeyOeI0IaaG4maaqabaqc faOaey4kaSIaamyyaKGbaoaaBaaabaGaaGinaiaaisdaaeqaaKqbak aadwgadaWgaaqcgayaaiaadshacqGHsislcaaI0aaajuaGbeaacqGH RaWkcqWIMaYscqGHRaWkcaWGHbWaaSbaaKGbagaacaWGobGaey4kaS IaamiDaiabgkHiTiaaigdacaGGSaGaamOtaiabgUcaRiaadshacqGH sislcaaIXaaajuaGbeaacaWGLbqcga4aaSbaaeaacaaIXaGaeyOeI0 IaamOtaaqabaaaaa@76AA@ .

Further, it can be shown that

E[ X t X t+1 ]= σ e 2 [ a 11 ( 1+ a 11 2 + a 22 2 ++ a N+t1  N+t1 2 )+( a 11 a 12 + a 22 a 23 ++ a N+t2  N+t2 a N+t2  N+t1 ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam yramaadmaabaGaamiwaKGbaoaaBaaabaGaamiDaaqabaqcfaOaamiw aKGbaoaaBaaabaGaamiDaiabgUcaRiaaigdaaeqaaaqcfaOaay5wai aaw2faaiabg2da9iabeo8aZLGbaoaaDaaabaGaamyzaaqaaiaaikda aaqcfa4aamWaaeaacaWGHbWaaSbaaKGbagaacaaIXaGaaGymaaqcfa yabaWaaeWaaeaacaaIXaGaey4kaSIaamyyaKGbaoaaDaaabaGaaGym aiaaigdaaeaacaaIYaaaaKqbakabgUcaRiaadggajyaGdaqhaaqaai aaikdacaaIYaaabaGaaGOmaaaajuaGcqGHRaWkcqWIMaYscqGHRaWk caWGHbWaa0baaKGbagaacaWGobGaey4kaSIaamiDaiabgkHiTiaaig dacaqGGaGaaeiiaiaad6eacqGHRaWkcaWG0bGaeyOeI0IaaGymaaqa aiaaikdaaaaajuaGcaGLOaGaayzkaaGaey4kaSYaaeWaaeaacaWGHb WaaSbaaKGbagaacaaIXaGaaGymaaqcfayabaGaamyyamaaBaaajyaG baGaaGymaiaaikdaaKqbagqaaiabgUcaRiaadggadaWgaaqcgayaai aaikdacaaIYaaajuaGbeaacaWGHbWaaSbaaKGbagaacaaIYaGaaG4m aaqcfayabaGaey4kaSIaeSOjGSKaey4kaSIaamyyamaaBaaajyaGba GaamOtaiabgUcaRiaadshacqGHsislcaaIYaGaaeiiaiaabccacaWG obGaey4kaSIaamiDaiabgkHiTiaaikdaaKqbagqaaiaadggadaWgaa qcgayaaiaad6eacqGHRaWkcaWG0bGaeyOeI0IaaGOmaiaabccacaqG GaGaamOtaiabgUcaRiaadshacqGHsislcaaIXaaajuaGbeaaaiaawI cacaGLPaaaaiaawUfacaGLDbaadaahaaqabeaaaaaaaa@96EC@

E[ X t X t+2 ]= σ e 2 [ a 22 ( 1+ a 11 2 + a 22 2 ++ a N+t1  N+t1 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam yramaadmaabaGaamiwamaaBaaajyaGbaGaamiDaaqcfayabaGaamiw amaaBaaajyaGbaGaamiDaiabgUcaRiaaikdaaKqbagqaaaGaay5wai aaw2faaiabg2da9iabeo8aZnaaDaaajyaGbaGaamyzaaqaaiaaikda aaqcfa4aamqaaeaacaWGHbWaaSbaaKGbagaacaaIYaGaaGOmaaqcfa yabaWaaeWaaeaacaaIXaGaey4kaSIaamyyaKGbaoaaDaaabaGaaGym aiaaigdaaeaacaaIYaaaaKqbakabgUcaRiaadggajyaGdaqhaaqaai aaikdacaaIYaaabaGaaGOmaaaajuaGcqGHRaWkcqWIMaYscqGHRaWk caWGHbWaa0baaKGbagaacaWGobGaey4kaSIaamiDaiabgkHiTiaaig dacaqGGaGaaeiiaiaad6eacqGHRaWkcaWG0bGaeyOeI0IaaGymaaqa aiaaikdaaaaajuaGcaGLOaGaayzkaaaacaGLBbaadaahaaqabeaaaa aaaa@6928@

+ a 11 ( a 11 a 12 + a 22 a 23 ++ a N+t2  N+t2 a N+t2  N+t1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaey 4kaSIaamyyamaaBaaajyaGbaGaaGymaiaaigdaaKqbagqaamaabmaa baGaamyyaKGbaoaaBaaabaGaaGymaiaaigdaaeqaaKqbakaadggajy aGdaWgaaqaaiaaigdacaaIYaaabeaajuaGcqGHRaWkcaWGHbqcga4a aSbaaeaacaaIYaGaaGOmaaqabaqcfaOaamyyaKGbaoaaBaaabaGaaG OmaiaaiodaaeqaaKqbakabgUcaRiablAciljabgUcaRiaadggadaWg aaqcgayaaiaad6eacqGHRaWkcaWG0bGaeyOeI0IaaGOmaiaabccaca qGGaGaamOtaiabgUcaRiaadshacqGHsislcaaIYaaajuaGbeaacaWG HbWaaSbaaKGbagaacaWGobGaey4kaSIaamiDaiabgkHiTiaaikdaca qGGaGaaeiiaiaad6eacqGHRaWkcaWG0bGaeyOeI0IaaGymaaqcfaya baaacaGLOaGaayzkaaaaaa@6838@

 

+( a 11 a 13 + a 22 a 24 ++ a N+t3  N+t3 a N+t3  N+t1 ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aam GaaeaacqGHRaWkdaqadaqaaiaadggajyaGdaWgaaqaaiaaigdacaaI XaaabeaajuaGcaWGHbWaaSbaaKGbagaacaaIXaGaaG4maaqcfayaba Gaey4kaSIaamyyamaaBaaajyaGbaGaaGOmaiaaikdaaKqbagqaaiaa dggadaWgaaqcgayaaiaaikdacaaI0aaajuaGbeaacqGHRaWkcqWIMa YscqGHRaWkcaWGHbWaaSbaaKGbagaacaWGobGaey4kaSIaamiDaiab gkHiTiaaiodacaqGGaGaaeiiaiaad6eacqGHRaWkcaWG0bGaeyOeI0 IaaG4maaqcfayabaGaamyyamaaBaaajyaGbaGaamOtaiabgUcaRiaa dshacqGHsislcaaIZaGaaeiiaiaabccacaWGobGaey4kaSIaamiDai abgkHiTiaaigdaaKqbagqaaaGaayjkaiaawMcaaaGaayzxaaaaaa@65A1@

E[ X t X t+3 ]= σ e 2 [ a 33 ( 1+ a 11 2 ( 1+ a 22 + a 33 ++ a N+t3  N+t3 2 ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam yramaadmaabaGaamiwamaaBaaajyaGbaGaamiDaaqcfayabaGaamiw amaaBaaajyaGbaGaamiDaiabgUcaRiaaiodaaKqbagqaaaGaay5wai aaw2faaiabg2da9iabeo8aZnaaDaaajyaGbaGaamyzaaqaaiaaikda aaqcfa4aamqaaeaacaWGHbWaaSbaaKGbagaacaaIZaGaaG4maaqcfa yabaWaaeWaaeaacaaIXaGaey4kaSIaamyyaKGbaoaaDaaabaGaaGym aiaaigdaaeaacaaIYaaaaKqbaoaabmaabaGaaGymaiabgUcaRiaadg gadaWgaaqcgayaaiaaikdacaaIYaaajuaGbeaacqGHRaWkcaWGHbWa aSbaaKGbagaacaaIZaGaaG4maaqcfayabaGaey4kaSIaeSOjGSKaey 4kaSIaamyyamaaDaaajyaGbaGaamOtaiabgUcaRiaadshacqGHsisl caaIZaGaaeiiaiaabccacaWGobGaey4kaSIaamiDaiabgkHiTiaaio daaeaacaaIYaaaaaqcfaOaayjkaiaawMcaaaGaayjkaiaawMcaaaGa ay5waaWaaWbaaeqabaaaaaaa@6F36@

+ a 11 ( a 22 a 34 + a 33 a 45 ++ a N+t3  N+t3 a N+t  N+t1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaey 4kaSIaamyyamaaBaaajyaGbaGaaGymaiaaigdaaKqbagqaamaabmaa baGaamyyamaaBaaajyaGbaGaaGOmaiaaikdaaKqbagqaaiaadggada WgaaqcgayaaiaaiodacaaI0aaajuaGbeaacqGHRaWkcaWGHbWaaSba aKGbagaacaaIZaGaaG4maaqcfayabaGaamyyamaaBaaajyaGbaGaaG inaiaaiwdaaKqbagqaaiabgUcaRiablAciljabgUcaRiaadggadaWg aaqcgayaaiaad6eacqGHRaWkcaWG0bGaeyOeI0IaaG4maiaabccaca qGGaGaamOtaiabgUcaRiaadshacqGHsislcaaIZaaajuaGbeaacaWG HbWaaSbaaKGbagaacaWGobGaey4kaSIaamiDaiaabccacaqGGaGaam OtaiabgUcaRiaadshacqGHsislcaaIXaaajuaGbeaaaiaawIcacaGL Paaaaaa@669D@

+( a 11 a 34 + a 22 a 45 ++ a N+t1  N+t1 a N+t3  N+t3 ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aam GaaeaacqGHRaWkdaqadaqaaiaadggadaWgaaqcgayaaiaaigdacaaI XaaajuaGbeaacaWGHbWaaSbaaKGbagaacaaIZaGaaGinaaqcfayaba Gaey4kaSIaamyyamaaBaaajyaGbaGaaGOmaiaaikdaaKqbagqaaiaa dggadaWgaaqcgayaaiaaisdacaaI1aaajuaGbeaacqGHRaWkcqWIMa YscqGHRaWkcaWGHbWaaSbaaKGbagaacaWGobGaey4kaSIaamiDaiab gkHiTiaaigdacaqGGaGaaeiiaiaad6eacqGHRaWkcaWG0bGaeyOeI0 IaaGymaaqcfayabaGaamyyamaaBaaajyaGbaGaamOtaiabgUcaRiaa dshacqGHsislcaaIZaGaaeiiaiaabccacaWGobGaey4kaSIaamiDai abgkHiTiaaiodaaKqbagqaaaGaayjkaiaawMcaaaGaayzxaaWaaWba aeqabaaaaaaa@65C7@  

and in general

E[ X t X t+s ]= σ e 2 [ a ss + a 11 a s+1s+1 + a 22 a s+2s+2 ++ a N+t1  N+t1 a N+t+s1  N+t+s1 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam yramaadmaabaGaamiwamaaBaaajyaGbaGaamiDaaqcfayabaGaamiw amaaBaaajyaGbaGaamiDaiabgUcaRiaadohaaKqbagqaaaGaay5wai aaw2faaiabg2da9iabeo8aZnaaDaaajyaGbaGaamyzaaqaaiaaikda aaqcfa4aamWaaeaacaWGHbWaaSbaaKGbagaacaWGZbGaam4Caaqcfa yabaGaey4kaSIaamyyamaaBaaajyaGbaGaaGymaiaaigdaaKqbagqa aiaadggadaWgaaqcgayaaiaadohacqGHRaWkcaaIXaGaam4CaiabgU caRiaaigdaaKqbagqaaiabgUcaRiaadggadaWgaaqcgayaaiaaikda caaIYaaajuaGbeaacaWGHbWaaSbaaKGbagaacaWGZbGaey4kaSIaaG OmaiaadohacqGHRaWkcaaIYaaajuaGbeaacqGHRaWkcqWIMaYscqGH RaWkcaWGHbWaaSbaaKGbagaacaWGobGaey4kaSIaamiDaiabgkHiTi aaigdacaqGGaGaaeiiaiaad6eacqGHRaWkcaWG0bGaeyOeI0IaaGym aaqcfayabaGaamyyamaaBaaajyaGbaGaamOtaiabgUcaRiaadshacq GHRaWkcaWGZbGaeyOeI0IaaGymaiaabccacaqGGaGaamOtaiabgUca RiaadshacqGHRaWkcaWGZbGaeyOeI0IaaGymaaqcfayabaaacaGLBb Gaayzxaaaaaa@849E@  

where a ss = a 11 a s1s1 + a s1s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam yyamaaBaaajyaGbaGaam4CaiaadohaaKqbagqaaiabg2da9iaadgga daWgaaqcgayaaiaaigdacaaIXaaajuaGbeaacaWGHbWaaSbaaKGbag aacaWGZbGaeyOeI0IaaGymaiaadohacqGHsislcaaIXaaajuaGbeaa cqGHRaWkcaWGHbWaaSbaaKGbagaacaWGZbGaeyOeI0IaaGymaiaado haaKqbagqaaaaa@4E84@ . Therefore, allowing N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam OtaiabgkziUkabg6HiLcaa@3BFF@ , we get E[ X t ]=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam yramaadmaabaGaamiwaKGbaoaaBaaajuaGbaqcLbmacaWG0baajuaG beaaaiaawUfacaGLDbaacqGH9aqpcaaIWaaaaa@411A@ , Var[ X t ]= σ e 2 [ 1+ a 11 2 + a 22 2 + ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam OvaiaadggacaWGYbWaamWaaeaacaWGybWaaSbaaKGbagaacaWG0baa juaGbeaaaiaawUfacaGLDbaacqGH9aqpcqaHdpWCdaqhaaqcgayaai aadwgaaeaacaaIYaaaaKqbaoaadmaabaGaaGymaiabgUcaRiaadgga daqhaaqcgayaaiaaigdacaaIXaaabaGaaGOmaaaajuaGcqGHRaWkca WGHbWaa0baaKGbagaacaaIYaGaaGOmaaqaaiaaikdaaaqcfaOaey4k aSIaeSOjGSeacaGLBbGaayzxaaaaaa@545F@  and E[ X t X t+s ]= σ e 2 [ a ss + a 11 a s+1s+1 + ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam yramaadmaabaGaamiwamaaBaaajyaGbaGaamiDaaqcfayabaGaamiw amaaBaaajyaGbaGaamiDaiabgUcaRiaadohaaKqbagqaaaGaay5wai aaw2faaiabg2da9iabeo8aZLGbaoaaDaaabaGaamyzaaqaaiaaikda aaqcfa4aamWaaeaacaWGHbWaaSbaaKGbagaacaWGZbGaam4Caaqcfa yabaGaey4kaSIaamyyamaaBaaajyaGbaGaaGymaiaaigdaaKqbagqa aiaadggadaWgaaqcgayaaiaadohacqGHRaWkcaaIXaGaam4CaiabgU caRiaaigdaaKqbagqaaiabgUcaRiablAcilbGaay5waiaaw2faamaa Caaabeqaaaaaaaa@5C30@  provided the series on the right converges. Thus, it is seen that if E[ X t X t+s ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam yramaadmaabaGaamiwamaaBaaajyaGbaGaamiDaaqcfayabaGaamiw aKGbaoaaBaaabaGaamiDaiabgUcaRiaadohaaeqaaaqcfaOaay5wai aaw2faaaaa@428C@  exists then it is a function of s only. In order to examine the convergence of Var[ X t ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam OvaiaadggacaWGYbWaamWaaeaacaWGybWaaSbaaKGbagaacaWG0baa juaGbeaaaiaawUfacaGLDbaaaaa@3F8C@  and E[ X t X t+s ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam yramaadmaabaGaamiwaKGbaoaaBaaabaGaamiDaaqabaqcfaOaamiw amaaBaaajyaGbaGaamiDaiabgUcaRiaadohaaKqbagqaaaGaay5wai aaw2faaaaa@428C@ , first the behaviour of a ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam yyaKGbaoaaBaaabaGaamyAaiaadQgaaeqaaaaa@3B41@ , as j tends infinity, is investigated. Since a 1j = a j =( k/ α j )sin( jθ )cos( jφ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam yyaKGbaoaaBaaabaGaaGymaiaadQgaaeqaaKqbakabg2da9iaadgga daWgaaqcgayaaiaadQgaaKqbagqaaiabg2da9maabmaabaGaam4Aai aac+cacqaHXoqyjyaGdaahaaqabeaacaWGQbaaaaqcfaOaayjkaiaa wMcaaiGacohacaGGPbGaaiOBamaabmaabaGaamOAaiabeI7aXbGaay jkaiaawMcaaiGacogacaGGVbGaai4CamaabmaabaGaamOAaiabeA8a QbGaayjkaiaawMcaaaaa@55C2@ , | a 1j | | k |/ α j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaq WaaeaacaWGHbqcga4aaSbaaeaacaaIXaGaamOAaaqabaaajuaGcaGL hWUaayjcSdGaeyizIm6aaSGbaeaadaabdaqaaiaadUgaaiaawEa7ca GLiWoaaeaacqaHXoqydaahaaqabKGbagaacaWGQbaaaaaaaaa@47DA@ . Similarly, | a 2j | | k |( 1+| k | )/ α j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaq WaaeaacaWGHbqcga4aaSbaaeaacaaIYaGaamOAaaqabaaajuaGcaGL hWUaayjcSdGaeyizIm6aaSGbaeaadaabdaqaaiaadUgaaiaawEa7ca GLiWoadaqadaqaaiaaigdacqGHRaWkdaabdaqaaiaadUgaaiaawEa7 caGLiWoaaiaawIcacaGLPaaaaeaacqaHXoqydaahaaqabKGbagaaca WGQbaaaaaaaaa@4F13@ ; j2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam OAaiabgwMiZkaaikdaaaa@3B3F@ . Thus, in general | a nj | | k | ( 1+| k | ) n1 / α j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaq WaaeaacaWGHbqcga4aaSbaaeaacaWGUbGaamOAaaqabaaajuaGcaGL hWUaayjcSdGaeyizIm6aaSGbaeaadaabdaqaaiaadUgaaiaawEa7ca GLiWoadaqadaqaaiaaigdacqGHRaWkdaabdaqaaiaadUgaaiaawEa7 caGLiWoaaiaawIcacaGLPaaajyaGdaahaaqabeaacaWGUbGaeyOeI0 IaaGymaaaaaKqbagaacqaHXoqydaahaaqabKGbagaacaWGQbaaaaaa aaa@5324@ , for jn MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam OAaiabgwMiZkaad6gaaaa@3B76@ .

Since α>1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq ySdeMaeyOpa4JaaGymaaaa@3B30@ , the above relation implies that | a nj |0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaq WaaeaacaWGHbqcga4aaSbaaeaacaWGUbGaamOAaaqabaaajuaGcaGL hWUaayjcSdGaeyOKH4QaaGimaaaa@419D@  as j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam OAaiabgkziUkabg6HiLcaa@3C1B@ , for any fixed n. Thus n=1 a jj 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaa bmaeaacaWGHbqcga4aa0baaeaacaWGQbGaamOAaaqaaiaaikdaaaaa baGaamOBaiabg2da9iaaigdaaeaacqGHEisPaKqbakabggHiLdaaaa@429C@  will converge if | ( 1+| k | ) α |<1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaq WaaeaadaWcaaqaamaabmaabaGaaGymaiabgUcaRmaaemaabaGaam4A aaGaay5bSlaawIa7aaGaayjkaiaawMcaaaqaaiabeg7aHbaaaiaawE a7caGLiWoacqGH8aapcaaIXaaaaa@4596@ .

If we assume that 1α<k<α1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaG ymaiabgkHiTiabeg7aHjabgYda8iaadUgacqGH8aapcqaHXoqycqGH sislcaaIXaaaaa@4154@ , then one can show that Var[ X t ]= σ X t 2 σ e 2 k 2 ( 1+k ) 2 [ α 2 α 2 ( 1+k ) 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam OvaiaadggacaWGYbWaamWaaeaacaWGybWaaSbaaKGbagaacaWG0baa juaGbeaaaiaawUfacaGLDbaacqGH9aqpcqaHdpWCdaqhaaqaaiaadI fadaWgaaqcgayaaiaadshaaKqbagqaaaqcgayaaiaaikdaaaqcfaOa eyizImQaeq4Wdm3aa0baaKGbagaacaWGLbaabaGaaGOmaaaajuaGda WcaaqaaiaadUgadaahaaqabKGbagaacaaIYaaaaaqcfayaamaabmaa baGaaGymaiabgUcaRiaadUgaaiaawIcacaGLPaaadaahaaqabKGbag aacaaIYaaaaaaajuaGdaWadaqaamaalaaabaGaeqySde2aaWbaaeqa jyaGbaGaaGOmaaaaaKqbagaacqaHXoqydaahaaqabKGbagaacaaIYa aaaKqbakabgkHiTmaabmaabaGaaGymaiabgUcaRiaadUgaaiaawIca caGLPaaadaahaaqabKGbagaacaaIYaaaaaaaaKqbakaawUfacaGLDb aaaaa@6701@  and E[ X t X t+s ] σ e 2 k 2 ( 1+k ) 2 k ( 1+k ) s1 α s [ α 2 α 2 ( 1+k ) 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam yramaadmaabaGaamiwaKGbaoaaBaaabaGaamiDaaqabaqcfaOaamiw amaaBaaajyaGbaGaamiDaiabgUcaRiaadohaaKqbagqaaaGaay5wai aaw2faaiabgsMiJkabeo8aZnaaDaaajyaGbaGaamyzaaqaaiaaikda aaqcfa4aaSaaaeaacaWGRbWaaWbaaeqajyaGbaGaaGOmaaaaaKqbag aadaqadaqaaiaaigdacqGHRaWkcaWGRbaacaGLOaGaayzkaaWaaWba aeqajyaGbaGaaGOmaaaaaaqcfa4aaSaaaeaacaWGRbWaaeWaaeaaca aIXaGaey4kaSIaam4AaaGaayjkaiaawMcaamaaCaaabeqcgayaaiaa dohacqGHsislcaaIXaaaaaqcfayaaiabeg7aHnaaCaaabeqcgayaai aadohaaaaaaKqbaoaadmaabaWaaSaaaeaacqaHXoqydaahaaqabKGb agaacaaIYaaaaaqcfayaaiabeg7aHnaaCaaabeqcgayaaiaaikdaaa qcfaOaeyOeI0YaaeWaaeaacaaIXaGaey4kaSIaam4AaaGaayjkaiaa wMcaamaaCaaabeqcgayaaiaaikdaaaaaaaqcfaOaay5waiaaw2faaa aa@6EF4@ .

Therefore, the auto-correlation function of the process exists and, as shown earlier, it is a function of s only. Finally allowing t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam iDaiabgkziUkabg6HiLcaa@3C25@ , it is seen that

  1. lim t E[ X t ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaC beaeaaciGGSbGaaiyAaiaac2gaaKGbagaacaWG0bGaeyOKH4QaeyOh IukajuaGbeaacaWGfbWaamWaaeaacaWGybWaaSbaaKGbagaacaWG0b aajuaGbeaaaiaawUfacaGLDbaaaaa@4610@  and lim t Var[ X t ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaC beaeaaciGGSbGaaiyAaiaac2gaaKGbagaacaWG0bGaeyOKH4QaeyOh IukajuaGbeaacaWGwbGaamyyaiaadkhadaWadaqaaiaadIfadaWgaa qcgayaaiaadshaaKqbagqaaaGaay5waiaaw2faaaaa@47FE@  exist finitely;
  2. lim t Cov[ X t , X t+s ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaC beaeaaciGGSbGaaiyAaiaac2gaaKGbagaacaWG0bGaeyOKH4QaeyOh IukajuaGbeaacaWGdbGaam4BaiaadAhadaWadaqaaiaadIfajyaGda WgaaqaaiaadshaaeqaaKqbakaacYcacaWGybWaaSbaaKGbagaacaWG 0bGaey4kaSIaam4CaaqcfayabaaacaGLBbGaayzxaaaaaa@4D9B@  exists finitely and is a function of ‘s’ only.

Thus, the condition for { X t } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aai WaaeaacaWGybqcga4aaSbaaeaacaWG0baabeaaaKqbakaawUhacaGL 9baaaaa@3D13@  to be asymptotically stationary is that 1α<k<α1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaG ymaiabgkHiTiabeg7aHjabgYda8iaadUgacqGH8aapcqaHXoqycqGH sislcaaIXaaaaa@4154@ . Therefore, we summarized the above results by the following theorem 1.

Theorem 1: The Full Range Auto Regressive (FRAR) process { X t } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aai WaaeaacaWGybqcga4aaSbaaeaacaWG0baabeaaaKqbakaawUhacaGL 9baaaaa@3D13@  is asymptotically stationary and identifiable if and only if the domain of the parameter space S MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam 4uaaaa@38A6@ is

{ kαθϕ/kR, 1α<k<α1, θ[ 0,π ), ϕ[ 0,π/2 ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aai WaaeaacaWGRbGaaeilaiaabccacaWGXoGaaeilaiaabccacaWG4oGa aeilaiaabccacqaHvpGzcaGGVaGaam4AaiabgIGiolaadkfacaGGSa GaaeiiaiaaigdacqGHsislcqaHXoqycqGH8aapcaWGRbGaeyipaWJa eqySdeMaeyOeI0IaaGymaiaacYcacaqGGaGaamiUdiabgIGiopaaji babaGaaGimaiaacYcacqaHapaCaiaawUfacaGLPaaacaGGSaGaaeii aiabew9aMjabgIGiopaajibabaGaaGimaiaacYcacqaHapaCcaGGVa GaaGOmaaGaay5waiaawMcaaaGaay5Eaiaaw2haaaaa@6616@ α>1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq ySdeMaeyOpa4JaaGymaaaa@3B30@ .

Thus, the new FRAR model incorporates long range dependence, involves only four parameters and is totally free from order determination problems.

Bayesian analysis of frar model

The posterior analysis

The Bayesian approach to the analyses of the new model consists in determining the posterior distribution of the parameters of the FRAR model and the predictive distribution of future observations. From the former, one makes posterior inferences about the parameters of the FRAR model including the variance of the white noise. From the latter, one may forecast future observations. All these techniques are illustrated by Broemeling4 for autoregressive models.

We shall consider the FRAR model and assume that it is asymptotically stationary and identifiable.

The problem is to estimate the unknown parameters k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam 4Aaaaa@38BE@ , α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq ySdegaaa@396D@ , θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq iUdehaaa@3984@ , ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq y1dygaaa@3996@  and σ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq 4Wdmxcga4aaWbaaeqabaGaaGOmaaaaaaa@3AFE@ , using the Bayesian methodology on the basis of a past random realization of { X t } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aai WaaeaacaWGybqcga4aaSbaaeaacaWG0baabeaaaKqbakaawUhacaGL 9baaaaa@3D13@  say x=( x 1 , x 2 ,..., x N ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam iEaiabg2da9maabmaabaGaamiEaKGbaoaaBaaabaGaaGymaaqabaqc faOaaiilaiaadIhajyaGdaWgaaqaaiaaikdaaeqaaKqbakaacYcaca GGUaGaaiOlaiaac6cacaGGSaGaamiEamaaBaaajyaGbaGaamOtaaqc fayabaaacaGLOaGaayzkaaaaaa@487B@ .

The joint probability density of X 1 , X 2 ,..., X N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam iwamaaBaaajyaGbaGaaGymaaqcfayabaGaaiilaiaadIfajyaGdaWg aaqaaiaaikdaaeqaaKqbakaacYcacaGGUaGaaiOlaiaac6cacaGGSa GaamiwamaaBaaajyaGbaGaamOtaaqcfayabaaaaa@448F@  is given by

P( X/Θ ) ( σ 2 ) N/2 exp[ 1 2 σ 2 t=1 2 ( x t k r=1 a r x tr ) 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam iuamaabmaabaGaamiwaiaac+cacqqHyoquaiaawIcacaGLPaaacqGH DisTdaqadaqaaiabeo8aZnaaCaaabeqcgayaaiaaikdaaaaajuaGca GLOaGaayzkaaWaaWbaaeqabaqcgaOaeyOeI0YaaSGbaeaacaWGobaa baGaaGOmaaaajuaGcaaMc8UaaGPaVlaaykW7aaGaciyzaiaacIhaca GGWbGaaGPaVlaaykW7daWadaqaaiabgkHiTmaalaaabaGaaGymaaqa aiaaikdacqaHdpWCdaahaaqabKGbagaacaaIYaaaaaaajuaGcaaMc8 UaaGPaVpaaqadabaWaaeWaaeaacaWG4bWaaSbaaKGbagaacaWG0baa juaGbeaacaaMc8UaeyOeI0IaaGPaVlaadUgacaaMc8+aaabmaeaaca WGHbqcga4aaSbaaeaacaWGYbaabeaacaaMc8EcfaOaaGPaVlaadIha daWgaaqcgayaaiaadshacqGHsislcaWGYbaajuaGbeaaaKGbagaaca WGYbGaeyypa0JaaGymaaqaaiabg6HiLcqcfaOaeyyeIuoaaiaawIca caGLPaaajyaGdaahaaqabeaacaaIYaaaaaqaaiaadshacqGH9aqpca aIXaaabaGaaGOmaaqcfaOaeyyeIuoacaaMc8UaaGPaVdGaay5waiaa w2faaaaa@85BC@  (6)

where x=( x 1 , x 2 ,..., x N ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam iEaiabg2da9maabmaabaGaamiEaKGbaoaaBaaabaGaaGymaaqabaqc faOaaiilaiaadIhajyaGdaWgaaqaaiaaikdaaeqaaKqbakaacYcaca GGUaGaaiOlaiaac6cacaGGSaGaamiEamaaBaaajyaGbaGaamOtaaqc fayabaaacaGLOaGaayzkaaaaaa@487B@ , Θ=( k,α,θ,φ, σ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu iMdeLaeyypa0ZaaeWaaeaacaWGRbGaaiilaiabeg7aHjaacYcacqaH 4oqCcaGGSaGaeqOXdOMaaiilaiabeo8aZLGbaoaaCaaabeqaaiaaik daaaaajuaGcaGLOaGaayzkaaaaaa@4854@ and a r =( 1/ α 2 )sin( rθ )cos( rϕ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam yyamaaBaaajyaGbaGaamOCaaqcfayabaGaeyypa0ZaaeWaaeaacaaI XaGaai4laiabeg7aHLGbaoaaCaaabeqaaiaaikdaaaaajuaGcaGLOa GaayzkaaGaci4CaiaacMgacaGGUbWaaeWaaeaacaWGYbGaeqiUdeha caGLOaGaayzkaaGaci4yaiaac+gacaGGZbWaaeWaaeaacaWGYbGaeq y1dygacaGLOaGaayzkaaaaaa@50A9@ .

The notation P MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam iuaaaa@38A3@  is used as a general notation for the probability density function of the random variables given within the parentheses following P MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam iuaaaa@38A3@ and X 0 , X 1 , X 2 ,... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam iwaKGbaoaaBaaabaGaaGimaaqabaqcfaOaaiilaiaadIfadaWgaaqc gayaaiabgkHiTiaaigdaaKqbagqaaiaacYcacaWGybWaaSbaaKGbag aacqGHsislcaaIYaaajuaGbeaacaGGSaGaaiOlaiaac6cacaGGUaaa aa@4650@  are the past realizations on X t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam iwaKGbaoaaBaaabaGaamiDaaqabaaaaa@3A54@  which are unknown. Following Priestley2 and Broemeling,3 these are assumed to be zero for the purpose of deriving the posterior distribution of Θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu iMdefaaa@3945@ . Therefore, the range for the index r, viz., 1 through ∞, reduces to 1 through N and so, in the joint probability density function of the observations given by (6), the range of the summation 1 through ∞ can be replaced by 1 through N. By expanding the square in the exponent and simplifying, one gets
P( X/Θ ) ( σ 2 ) N/2 exp(Q/2 σ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam iuamaabmaabaGaamiwaiaac+cacqqHyoquaiaawIcacaGLPaaacqGH DisTdaqadaqaaiabeo8aZnaaCaaabeqcgayaaiaaikdaaaaajuaGca GLOaGaayzkaaWaaWbaaeqabaqcga4aaSGbaeaacqGHsislcaWGobaa baGaaGOmaaaacaaMc8EcfaOaaGPaVlaaykW7aaGaciyzaiaacIhaca GGWbGaaGPaVlaaykW7caGGOaGaeyOeI0IaaGPaVlaadgfacaGGVaGa aGOmaiabeo8aZLGbaoaaCaaabeqaaiaaikdaaaqcfaOaaiykaaaa@5C31@ (7)

where Q= T 00 + k 2 r=1 N a r 2 T rr +2 k 2 r<s;r,s=1 N a r a s T rs 2k r=1 N a r T r0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam yuaiabg2da9iaadsfadaWgaaqcgayaaiaaicdacaaIWaaajuaGbeaa cqGHRaWkcaaMc8Uaam4AaKGbaoaaCaaabeqaaiaaikdaaaqcfa4aaa bmaeaacaWGHbWaa0baaKGbagaacaWGYbaabaGaaGOmaaaajuaGcaWG ubWaaSbaaKGbagaacaWGYbGaamOCaaqcfayabaaajyaGbaGaamOCai abg2da9iaaigdaaeaacaWGobaajuaGcqGHris5aiabgUcaRiaaikda caWGRbWaaWbaaeqajyaGbaGaaGOmaaaajuaGdaaeWaqaaiaadggajy aGdaWgaaqaaiaadkhaaeqaaKqbakaadggadaWgaaqcgayaaiaadoha aKqbagqaaiaadsfadaWgaaqcgayaaiaadkhacaWGZbaajuaGbeaaaK GbagaacaWGYbGaeyipaWJaam4CaiaacUdacaWGYbGaaiilaiaadoha caaMc8Uaeyypa0JaaGPaVlaaigdaaeaacaWGobaajuaGcqGHris5ai abgkHiTiaaikdacaWGRbWaaabmaeaacaWGHbWaaSbaaKGbagaacaWG YbaajuaGbeaacaWGubWaaSbaaKGbagaacaWGYbGaaGimaaqcfayaba aajyaGbaGaamOCaiabg2da9iaaigdaaeaacaWGobaajuaGcqGHris5 aaaa@7ED2@ , T rs = t=1 N x tr x ts MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam ivamaaBaaajyaGbaGaamOCaiaadohaaKqbagqaaiabg2da9maaqada baGaamiEamaaBaaajyaGbaGaamiDaiabgkHiTiaadkhaaKqbagqaai aadIhadaWgaaqcgayaaiaadshacqGHsislcaWGZbaajuaGbeaaaKGb agaacaWG0bGaeyypa0JaaGymaaqaaiaad6eaaKqbakabggHiLdaaaa@4D9F@ , r,s=0,1,...,N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam OCaiaacYcacaWGZbGaeyypa0JaaGimaiaacYcacaaIXaGaaiilaiaa c6cacaGGUaGaaiOlaiaacYcacaWGobaaaa@41E1@ , ΘS MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu iMdeLaaGPaVlabgIGiolaaykW7caWGtbaaaa@3EB7@ .

To find the posterior distribution of Θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu iMdefaaa@3945@ we first have to specify the prior distribution for the parameters.

α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq ySdegaaa@396D@ is distributed as the displaced exponential distribution(since it is bigger than 1) with parameter β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq OSdigaaa@396F@ ; σ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq 4Wdmxcga4aaWbaaeqabaGaaGOmaaaaaaa@3AFE@  has the inverted gamma distribution with parameter v and δ; k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam 4Aaaaa@38BE@ , θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq iUdehaaa@3984@  and ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq y1dygaaa@3996@  are uniformly distributed over their domain.

Thus, the joint prior density function of Θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu iMdefaaa@3945@   ( ΘS ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aae WaaeaacqqHyoqucqGHiiIZcaWGtbaacaGLOaGaayzkaaaaaa@3D2A@ is given by

P( Θ ) βexp( β( α1 )ν/ σ 2 ) ( σ 2 ) ( δ+1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam iuamaabmaabaGaeuiMdefacaGLOaGaayzkaaGaaeiiaiabg2Hi1kab ek7aIjGacwgacaGG4bGaaiiCamaabmaabaGaeyOeI0IaeqOSdi2aae WaaeaacqaHXoqycqGHsislcaaIXaaacaGLOaGaayzkaaGaeyOeI0Ia eqyVd4Maai4laiabeo8aZLGbaoaaCaaabeqaaiaaikdaaaaajuaGca GLOaGaayzkaaWaaeWaaeaacqaHdpWCjyaGdaahaaqabeaacaaIYaaa aaqcfaOaayjkaiaawMcaaKGbaoaaCaaabeqaaiabgkHiTmaabmaaba GaeqiTdqMaey4kaSIaaGymaaGaayjkaiaawMcaaaaaaaa@5DEF@          (8)

Using (7), (8), and Bayes’ theorem, the joint posterior density of k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam 4Aaaaa@38BE@ , α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq ySdegaaa@396D@ , θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq iUdehaaa@3984@ , ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq y1dygaaa@3996@  and σ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq 4Wdmxcga4aaWbaaeqabaGaaGOmaaaaaaa@3AFE@  is obtained as

P( Θ/X ) ( σ 2 ) N/2 exp(Q/2 σ 2 )exp [ β(α1)ν/ σ 2 ] ( σ 2 ) (δ+1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam iuamaabmaabaGaeuiMdeLaai4laiaadIfaaiaawIcacaGLPaaacqGH DisTdaqadaqaaiabeo8aZnaaCaaabeqcgayaaiaaikdaaaaajuaGca GLOaGaayzkaaWaaWbaaeqabaqcgaOaeyOeI0YaaSGbaeaacaWGobaa baGaaGOmaaaajuaGcaaMc8oaaiGacwgacaGG4bGaaiiCaiaaykW7ca aMc8UaaiikaiabgkHiTiaaykW7caWGrbGaai4laiaaikdacqaHdpWC jyaGdaahaaqabeaacaaIYaaaaKqbakaacMcaciGGLbGaaiiEaiaacc hadaWadaqaaiabgkHiTiabek7aIjaacIcacqaHXoqycqGHsislcaaI XaGaaiykaiabgkHiTiabe27aUjaac+cacqaHdpWCdaahaaqabKGbag aacaaIYaaaaaqcfaOaay5waiaaw2faamaaCaaabeqaaaaacaGGOaGa eq4Wdmxcga4aaWbaaeqabaGaaGOmaaaajuaGcaGGPaqcga4aaWbaae qabaGaeyOeI0Iaaiikaiabes7aKjabgUcaRiaaigdacaGGPaaaaaaa @779E@                     (9)

exp[ β(α1) ]exp [ 1/2 σ 2 (Q+2ν) ] ( σ 2 ) [ ( N/2 )+δ+1 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaey yhIuRaciyzaiaacIhacaGGWbWaamWaaeaacqGHsislcqaHYoGycaGG OaGaeqySdeMaeyOeI0IaaGymaiaacMcaaiaawUfacaGLDbaaciGGLb GaaiiEaiaacchadaWadaqaaiabgkHiTiaaigdacaGGVaGaaGOmaiab eo8aZLGbaoaaCaaabeqaaiaaikdaaaqcfaOaaiikaiaadgfacqGHRa WkcaaIYaGaeqyVd4MaaiykaaGaay5waiaaw2faamaaCaaabeqaaaaa caGGOaGaeq4Wdm3aaWbaaeqajyaGbaGaaGOmaaaajuaGcaGGPaqcga 4aaWbaaeqabaGaeyOeI0YaamWaaeaadaqadaqaaiaad6eacaGGVaGa aGOmaaGaayjkaiaawMcaaiabgUcaRiabes7aKjabgUcaRiaaigdaai aawUfacaGLDbaaaaaaaa@6728@                     (10)

Integrating σ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq 4Wdm3aaWbaaeqajyaGbaGaaGOmaaaaaaa@3AFE@ out of this joint posterior distribution, we obtain the joint posterior distribution of k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam 4Aaaaa@38BE@ , α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq ySdegaaa@396D@ , θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq iUdehaaa@3984@  and ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq y1dygaaa@3996@ ,

P( k,α,θ,ϕ/X ) e β(α1) { C[ 1+ A 1 ( k B 1 ) 2 ] } d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam iuamaabmaabaGaam4AaiaacYcacqaHXoqycaGGSaGaeqiUdeNaaiil aiabew9aMjaac+cacaWGybaacaGLOaGaayzkaaGaeyyhIuRaamyzaK GbaoaaCaaabeqaaiabgkHiTiabek7aIjaacIcacqaHXoqycqGHsisl caaIXaGaaiykaaaajuaGdaGadaqaaiaadoeadaWadaqaaiaaigdacq GHRaWkcaWGbbWaaSbaaKGbagaacaaIXaaajuaGbeaadaqadaqaaiaa dUgacqGHsislcaWGcbqcga4aaSbaaeaacaaIXaaabeaaaKqbakaawI cacaGLPaaadaahaaqabKGbagaacaaIYaaaaaqcfaOaay5waiaaw2fa aaGaay5Eaiaaw2haaKGbaoaaCaaabeqaaiabgkHiTiaadsgaaaaaaa@629F@                                                                 (11)

where C= T 00 B 2 /A+2ν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam 4qaiabg2da9iaadsfadaWgaaqcgayaaiaaicdacaaIWaaajuaGbeaa cqGHsislcaWGcbWaaWbaaeqajyaGbaGaaGOmaaaajuaGcaGGVaGaam yqaiabgUcaRiaaikdacqaH9oGBaaa@45A5@ ; B= r=1 N a r T 0r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam OqaiaaykW7cqGH9aqpdaaeWaqaaiaadggadaqhaaqcgayaaiaadkha aKqbagaaaaGaamivamaaBaaajyaGbaGaaGimaiaadkhaaKqbagqaaa qcgayaaiaadkhacqGH9aqpcaaIXaaabaGaamOtaaqcfaOaeyyeIuoa aaa@489C@ ; A= r=1 N a r 2 T rr +2 r,s=1 N a r a s T rs MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam yqaiabg2da9maaqadabaGaamyyamaaDaaajyaGbaGaamOCaaqaaiaa ikdaaaqcfaOaamivamaaBaaajyaGbaGaamOCaiaadkhaaKqbagqaaa qcgayaaiaadkhacqGH9aqpcaaIXaaabaGaamOtaaqcfaOaeyyeIuoa cqGHRaWkcaaIYaWaaabmaeaacaWGHbqcga4aaSbaaeaacaWGYbaabe aajuaGcaWGHbWaaSbaaKGbagaacaWGZbaajuaGbeaacaWGubWaaSba aKGbagaacaWGYbGaam4CaaqcfayabaaajyaGbaGaamOCaiaacYcaca WGZbGaaGPaVlabg2da9iaaykW7caaIXaaabaGaamOtaaqcfaOaeyye Iuoaaaa@5F34@ ; A 1 =A/C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam yqamaaBaaajyaGbaGaaGymaaqcfayabaGaeyypa0ZaaSGbaeaacaWG bbaabaGaam4qaaaaaaa@3D37@ ; B 1 =B/C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam OqaKGbaoaaBaaabaGaaGymaaqabaqcfaOaeyypa0ZaaSGbaeaacaWG cbaabaGaam4qaaaaaaa@3D39@ ; d= N 2 +δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam izaiabg2da9maalaaabaGaamOtaaqaaiaaikdaaaGaey4kaSIaeqiT dqgaaa@3DE3@ .

Thus, the posterior distribution of k conditional on α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq ySdegaaa@396D@ , θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq iUdehaaa@3984@  and ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq y1dygaaa@3996@  is a t-distribution located at B 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam OqaKGbaoaaBaaabaGaaGymaaqabaaaaa@3A00@  with ( 2d1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aae WaaeaacaaIYaGaamizaiabgkHiTiaaigdaaiaawIcacaGLPaaaaaa@3CA4@  degrees of freedom.

Thus, the joint posterior density function of α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq ySdegaaa@396D@ , θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq iUdehaaa@3984@  and ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq y1dygaaa@3996@  can be obtained by integrating with respect to k. Thus,

P( α,θ,ϕ/x )exp( β(α1) ) C d A 1 1/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam iuamaabmaabaGaeqySdeMaaiilaiabeI7aXjaacYcacqaHvpGzcaGG VaGaamiEaaGaayjkaiaawMcaaiabg2Hi1kGacwgacaGG4bGaaiiCam aabmaabaGaeyOeI0IaeqOSdiMaaiikaiabeg7aHjabgkHiTiaaigda caGGPaaacaGLOaGaayzkaaGaam4qaKGbaoaaCaaabeqaaiabgkHiTi aadsgaaaqcfaOaamyqaKGbaoaaDaaabaGaaGymaaqaaiabgkHiTiaa igdacaGGVaGaaGOmaaaaaaa@5891@ ; with α>1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq ySdeMaeyOpa4JaaGymaaaa@3B30@ , 0θ<π MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaG imaiabgsMiJkabeI7aXjabgYda8iabec8aWbaa@3EB4@  and 0ϕ<π/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaG imaiabgsMiJkabew9aMjabgYda8iabec8aWjaac+cacaaIYaaaaa@4035@ .      (12)

The above joint posterior density of α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq ySdegaaa@396D@ , θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq iUdehaaa@3984@  and ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq y1dygaaa@3996@  is a very complicated expression and is analytically intractable. One way of solving the problem is to find the marginal posterior density of α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq ySdegaaa@396D@ , θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq iUdehaaa@3984@  and ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq y1dygaaa@3996@  from the joint density (12) using ordinary numerical integration, using FORTRAN.

One-step-ahead prediction

In order to forecast x N+1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam iEamaaBaaajyaGbaGaamOtaiabgUcaRiaaigdaaKqbagqaaaaa@3C79@  using the random realization x 1 , x 2 ,..., x N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam iEaKGbaoaaBaaabaGaaGymaaqabaqcfaOaaiilaiaadIhadaWgaaqc gayaaiaaikdaaKqbagqaaiaacYcacaGGUaGaaiOlaiaac6cacaGGSa GaamiEaKGbaoaaBaaabaGaamOtaaqabaaaaa@4461@  on ( X 1 , X 2 ,..., X N ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aae WaaeaacaWGybqcga4aaSbaaeaacaaIXaaabeaajuaGcaGGSaGaamiw aKGbaoaaBaaabaGaaGOmaaqabaqcfaOaaiilaiaac6cacaGGUaGaai OlaiaacYcacaWGybWaaSbaaKGbagaacaWGobaajuaGbeaaaiaawIca caGLPaaaaaa@4618@ , one must find the conditional distribution of X N+1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam iwaKGbaoaaBaaabaGaamOtaiabgUcaRiaaigdaaeqaaaaa@3BCB@  given the past observations. This is the predictive distribution of X N+1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam iwaKGbaoaaBaaabaGaamOtaiabgUcaRiaaigdaaeqaaaaa@3BCB@  and will be derived by multiplying the conditional density of X N+1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam iwaKGbaoaaBaaabaGaamOtaiabgUcaRiaaigdaaeqaaaaa@3BCB@  given X 1 , X 2 ,..., X N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam iwaKGbaoaaBaaabaGaaGymaaqabaqcfaOaaiilaiaadIfajyaGdaWg aaqaaiaaikdaaeqaaKqbakaacYcacaGGUaGaaiOlaiaac6cacaGGSa GaamiwamaaBaaajyaGbaGaamOtaaqcfayabaaaaa@448F@ , Θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu iMdefaaa@3945@  and the posterior density of Θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu iMdefaaa@3945@  given X 1 , X 2 ,..., X N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam iwaKGbaoaaBaaabaGaaGymaaqabaqcfaOaaiilaiaadIfajyaGdaWg aaqaaiaaikdaaeqaaKqbakaacYcacaGGUaGaaiOlaiaac6cacaGGSa GaamiwamaaBaaajyaGbaGaamOtaaqcfayabaaaaa@448F@  and then integrating with respect to Θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu iMdefaaa@3945@ . That is, P( X N+1 / X 1 , X 2 ,..., X N )= Θ P( X N+1 / X 1 , X 2 ,..., X N ,Θ )P( Θ/ X 1 , X 2 ,..., X N )dΘ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam iuamaabmaabaGaamiwamaaBaaajyaGbaGaamOtaiabgUcaRiaaigda aKqbagqaaiaac+cacaWGybqcga4aaSbaaeaacaaIXaaabeaajuaGca GGSaGaamiwaKGbaoaaBaaabaGaaGOmaaqabaqcfaOaaiilaiaac6ca caGGUaGaaiOlaiaacYcacaWGybWaaSbaaKGbagaacaWGobaajuaGbe aaaiaawIcacaGLPaaacqGH9aqpdaWdraqaaiaadcfadaqadaqaaiaa dIfadaWgaaqcgayaaiaad6eacqGHRaWkcaaIXaaajuaGbeaacaGGVa GaamiwaKGbaoaaBaaabaGaaGymaaqabaqcfaOaaiilaiaadIfajyaG daWgaaqaaiaaikdaaeqaaKqbakaacYcacaGGUaGaaiOlaiaac6caca GGSaGaamiwamaaBaaajyaGbaGaamOtaaqcfayabaGaaiilaiabfI5a rbGaayjkaiaawMcaaiaadcfadaqadaqaaiabfI5arjaac+cacaWGyb qcga4aaSbaaeaacaaIXaaabeaajuaGcaGGSaGaamiwaKGbaoaaBaaa baGaaGOmaaqabaqcfaOaaiilaiaac6cacaGGUaGaaiOlaiaacYcaca WGybWaaSbaaKGbagaacaWGobaajuaGbeaaaiaawIcacaGLPaaacaWG KbGaeuiMdefajyaGbaGaeuiMdefajuaGbeGaey4kIipaaaa@7BE4@ .

Thus, we obtain

P( x N+1 / x 1 , x 2 ,..., x N ,Θ ) ( σ 2 ) 1/2 exp[ 1 2 σ 2 ( x N+1 k i=1 a i x N+1i ) 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam iuamaabmaabaGaamiEamaaBaaajyaGbaGaamOtaiabgUcaRiaaigda aKqbagqaaiaac+cacaWG4bqcga4aaSbaaeaacaaIXaaabeaajuaGca GGSaGaamiEaKGbaoaaBaaabaGaaGOmaaqabaqcfaOaaiilaiaac6ca caGGUaGaaiOlaiaacYcacaWG4bWaaSbaaKGbagaacaWGobaajuaGbe aacaGGSaGaeuiMdefacaGLOaGaayzkaaGaeyyhIu7aaeWaaeaacqaH dpWCdaahaaqabKGbagaacaaIYaaaaaqcfaOaayjkaiaawMcaaKGbao aaCaaabeqaaiabgkHiTmaalyaabaGaaGymaaqaaiaaikdaaaGaaGPa VdaajuaGciGGLbGaaiiEaiaacchacaaMc8UaaGPaVpaadmaabaGaey OeI0YaaSaaaeaacaaIXaaabaGaaGOmaiabeo8aZLGbaoaaCaaabeqa aiaaikdaaaaaaKqbakaaykW7caaMc8+aaeWaaeaacaWG4bWaaSbaaK GbagaacaWGobGaey4kaSIaaGymaaqcfayabaGaaGPaVlabgkHiTiaa ykW7caWGRbGaaGPaVpaaqadabaGaamyyamaaBaaajyaGbaGaamyAaa qcfayabaGaaGPaVlaaykW7caWG4bWaaSbaaKGbagaacaWGobGaey4k aSIaaGymaiabgkHiTiaadMgaaKqbagqaaaqcgayaaiaadMgacqGH9a qpcaaIXaaabaGaeyOhIukajuaGcqGHris5aaGaayjkaiaawMcaamaa CaaabeqcgayaaiaaikdaaaqcfaOaaGPaVlaaykW7aiaawUfacaGLDb aaaaa@91A0@ , x N+1 R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam iEamaaBaaajyaGbaGaamOtaiabgUcaRiaaigdaaKqbagqaaiaaykW7 cqGHiiIZcaWGsbaaaa@405F@ . (13)

The square in the exponent in the above expression, say Q 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam yuaKGbaoaaBaaabaGaaGymaaqabaaaaa@3A0F@ , can be rewritten, after expanding the square, as Q 1 = x N+1 2 + k 2 i=1 N a i 2 P i 2 + 2 k 2 i<j;i=1 N a i a j P ij 2k i=1 N a i P i X N+1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam yuamaaBaaajyaGbaGaaGymaaqcfayabaGaeyypa0JaamiEamaaDaaa jyaGbaGaamOtaiabgUcaRiaaigdaaeaacaaIYaaaaKqbakabgUcaRi aadUgadaahaaqabKGbagaacaaIYaaaaKqbaoaaqadabaGaamyyamaa DaaajyaGbaGaamyAaaqaaiaaikdaaaqcfaOaamiuamaaDaaajyaGba GaamyAaaqaaiaaikdaaaqcfaOaey4kaScajyaGbaGaamyAaiabg2da 9iaaigdaaeaacaWGobaajuaGcqGHris5aiaaikdacaWGRbWaaWbaae qajyaGbaGaaGOmaaaajuaGdaaeWaqaaiaadggadaqhaaqcgayaaiaa dMgaaKqbagaaaaGaamyyamaaDaaajyaGbaGaamOAaaqcfayaaaaaca WGqbWaa0baaKGbagaacaWGPbGaamOAaaqcfayaaaaacqGHsislcaaI YaGaam4AaaqcgayaaiaadMgacqGH8aapcaWGQbGaai4oaiaadMgacq GH9aqpcaaIXaaabaGaamOtaaqcfaOaeyyeIuoadaaeWaqaaiaadgga daqhaaqcgayaaiaadMgaaKqbagaaaaGaamiuamaaDaaajyaGbaGaam yAaaqcfayaaaaacaWGybWaaSbaaKGbagaacaWGobGaey4kaSIaaGym aaqcfayabaaajyaGbaGaamyAaiabg2da9iaaigdaaeaacaWGobaaju aGcqGHris5aaaa@7F7A@ , where P i = X N+1i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam iuamaaBaaajyaGbaGaamyAaaqcfayabaGaeyypa0JaamiwamaaBaaa jyaGbaGaamOtaiabgUcaRiaaigdacqGHsislcaWGPbaajuaGbeaaaa a@423B@  and P ij = X N+1i X N+1j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam iuamaaBaaajyaGbaGaamyAaiaadQgaaKqbagqaaiabg2da9iaadIfa daWgaaqcgayaaiaad6eacqGHRaWkcaaIXaGaeyOeI0IaamyAaaqcfa yabaGaamiwamaaBaaajyaGbaGaamOtaiabgUcaRiaaigdacqGHsisl caWGQbaajuaGbeaaaaa@4991@ . Now multiplying (13) by the joint posterior density of Θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu iMdefaaa@3945@  and integrating over the parameter space Θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu iMdefaaa@3945@ , we obtain,

P( x N+1 / x 1 , x 2 ,..., x N ) exp( β( α1 ) ) ( 1/ σ 2 ) [ N 2 +δ+ 1 2 +1 ] exp[ 1 2 σ 2 ( Q+ Q 1 +2υ ) ]dΘ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam iuamaabmaabaGaamiEamaaBaaajyaGbaGaamOtaiabgUcaRiaaigda aKqbagqaaiaac+cacaWG4bWaaSbaaKGbagaacaaIXaaajuaGbeaaca GGSaGaamiEamaaBaaajyaGbaGaaGOmaaqcfayabaGaaiilaiaac6ca caGGUaGaaiOlaiaacYcacaWG4bWaaSbaaKGbagaacaWGobaajuaGbe aaaiaawIcacaGLPaaacqGHDisTdaWdbaqaaiGacwgacaGG4bGaaiiC aiaaykW7daqadaqaaiabgkHiTiabek7aInaabmaabaGaeqySdeMaey OeI0IaaGymaaGaayjkaiaawMcaaaGaayjkaiaawMcaamaabmaabaWa aSGbaeaacaaIXaaabaGaeq4Wdm3aaWbaaeqajyaGbaGaaGOmaaaaaa aajuaGcaGLOaGaayzkaaWaaWbaaeqabaWaamWaaeaadaWcaaqaaiaa d6eaaeaacaaIYaaaaiabgUcaRiabes7aKjabgUcaRmaalaaabaGaaG ymaaqaaiaaikdaaaGaey4kaSIaaGymaaGaay5waiaaw2faaaaaaeqa beGaey4kIipaciGGLbGaaiiEaiaacchacaaMc8UaaGPaVpaadmaaba GaeyOeI0YaaSaaaeaacaaIXaaabaGaaGOmaiabeo8aZnaaCaaabeqc gayaaiaaikdaaaaaaKqbakaaykW7caaMc8+aaeWaaeaacaWGrbGaey 4kaSIaamyuaKGbaoaaBaaabaGaaGymaaqabaqcfaOaey4kaSIaaGOm aiabew8a1bGaayjkaiaawMcaaaGaay5waiaaw2faaiaadsgacqqHyo quaaa@8AB3@ (14)

First, integrating out σ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq 4Wdmxcga4aaWbaaeqabaGaaGOmaaaaaaa@3AFE@  in (14), one gets the joint distribution of x N+1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam iEamaaBaaajyaGbaGaamOtaiabgUcaRiaaigdaaKqbagqaaaaa@3C79@ , k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam 4Aaaaa@38BE@ , α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq ySdegaaa@396D@ , θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq iUdehaaa@3984@  and ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq y1dygaaa@3996@  as

P( x N+1 ,k,α,θ,ϕ/ x 1 , x 2 ,..., x N )exp( β( α1 ) ) ( Q+ Q 1 +2υ ) ( N+1 2 +δ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam iuamaabmaabaGaamiEamaaBaaajyaGbaGaamOtaiabgUcaRiaaigda aKqbagqaaiaacYcacaWGRbGaaiilaiabeg7aHjaacYcacqaH4oqCca GGSaGaeqy1dyMaai4laiaadIhadaWgaaqcgayaaiaaigdaaKqbagqa aiaacYcacaWG4bWaaSbaaKGbagaacaaIYaaajuaGbeaacaGGSaGaai Olaiaac6cacaGGUaGaaiilaiaadIhadaWgaaqcgayaaiaad6eaaKqb agqaaaGaayjkaiaawMcaaiabg2Hi1kGacwgacaGG4bGaaiiCaiaayk W7daqadaqaaiabgkHiTiabek7aInaabmaabaGaeqySdeMaeyOeI0Ia aGymaaGaayjkaiaawMcaaaGaayjkaiaawMcaamaabmaabaGaamyuai abgUcaRiaadgfadaWgaaqcgayaaiaaigdaaKqbagqaaiabgUcaRiaa ikdacqaHfpqDaiaawIcacaGLPaaadaahaaqabeaacqGHsisldaqada qaamaalaaabaGaamOtaiabgUcaRiaaigdaaeaacaaIYaaaaiabgUca Riabes7aKbGaayjkaiaawMcaaaaaaaa@7615@                            (15)

where d 1 = i=1 N a i 2 T ii + 2 i<j;i=1 N a i a j T ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam izaKGbaoaaBaaabaGaaGymaaqabaqcfaOaeyypa0ZaaabmaeaacaWG Hbqcga4aa0baaeaacaWGPbaabaGaaGOmaaaajuaGcaWGubWaaSbaaK GbagaacaWGPbGaamyAaaqcfayabaGaey4kaScajyaGbaGaamyAaiab g2da9iaaigdaaeaacaWGobaajuaGcqGHris5aiaaikdadaaeWaqaai aadggajyaGdaWgaaqaaiaadMgaaeqaaKqbakaadggadaWgaaqcgaya aiaadQgaaKqbagqaaiaadsfadaWgaaqcgayaaiaadMgacaWGQbaaju aGbeaaaKGbagaacaWGPbGaeyipaWJaamOAaiaacUdacaWGPbGaeyyp a0JaaGymaaqaaiaad6eaaKqbakabggHiLdaaaa@5FE1@ , d 2 = i=1 N a i 2 P i 2 + 2 i<j;i=1 N a i a j P ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam izamaaBaaajyaGbaGaaGOmaaqcfayabaGaeyypa0ZaaabmaeaacaWG Hbqcga4aa0baaeaacaWGPbaabaGaaGOmaaaajuaGcaWGqbqcga4aa0 baaeaacaWGPbaabaGaaGOmaaaajuaGcqGHRaWkaKGbagaacaWGPbGa eyypa0JaaGymaaqaaiaad6eaaKqbakabggHiLdGaaGOmamaaqadaba GaamyyamaaBaaajyaGbaGaamyAaaqcfayabaGaamyyamaaBaaajyaG baGaamOAaaqcfayabaGaamiuaKGbaoaaBaaabaGaamyAaiaadQgaae qaaaqaaiaadMgacqGH8aapcaWGQbGaai4oaiaadMgacqGH9aqpcaaI XaaabaGaamOtaaqcfaOaeyyeIuoaaaa@5E8C@ , d 3 = i=1 N a i T i0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam izamaaBaaajyaGbaGaaG4maaqcfayabaGaeyypa0ZaaabmaeaacaWG Hbqcga4aaSbaaeaacaWGPbaabeaajuaGcaWGubqcga4aaSbaaeaaca WGPbGaaGimaaqabaaabaGaamyAaiabg2da9iaaigdaaeaacaWGobaa juaGcqGHris5aaaa@47F5@ , d 4 = i=1 N a i P i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam izaKGbaoaaBaaabaGaaGinaaqabaqcfaOaeyypa0ZaaabmaeaacaWG HbWaaSbaaKGbagaacaWGPbaajuaGbeaacaWGqbqcga4aaSbaaeaaca WGPbaabeaaaeaacaWGPbGaeyypa0JaaGymaaqaaiaad6eaaKqbakab ggHiLdaaaa@4738@ ; ( Q+ Q 1 +2υ )= k 2 ( d 1 + d 2 )2k( d 3 + d 4 x N+1 )+( x N+1 2 + T 00 +2υ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aae WaaeaacaWGrbGaey4kaSIaamyuaKGbaoaaBaaabaGaaGymaaqabaqc faOaey4kaSIaaGOmaiabew8a1bGaayjkaiaawMcaaiabg2da9iaadU gajyaGdaahaaqabeaacaaIYaaaaKqbaoaabmaabaGaamizaKGbaoaa BaaabaGaaGymaaqabaqcfaOaey4kaSIaamizaKGbaoaaBaaabaGaaG OmaaqabaaajuaGcaGLOaGaayzkaaGaeyOeI0IaaGOmaiaadUgadaqa daqaaiaadsgajyaGdaWgaaqaaiaaiodaaeqaaKqbakabgUcaRiaads gajyaGdaWgaaqaaiaaisdaaeqaaKqbakaadIhadaWgaaqcgayaaiaa d6eacqGHRaWkcaaIXaaajuaGbeaaaiaawIcacaGLPaaacqGHRaWkda qadaqaaiaadIhadaqhaaqcgayaaiaad6eacqGHRaWkcaaIXaaabaGa aGOmaaaajuaGcqGHRaWkcaWGubqcga4aaSbaaeaacaaIWaGaaGimaa qabaqcfaOaey4kaSIaaGOmaiabew8a1bGaayjkaiaawMcaaaaa@6C81@ .

Thus,

P( x N+1 ,k,α,θ,ϕ/ x 1 , x 2 ,..., x n )exp( β( α1 ) ) C 1 [ 1+ E 1 ( k C 2 ) 2 ] d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam iuamaabmaabaGaamiEamaaBaaajyaGbaGaamOtaiabgUcaRiaaigda aKqbagqaaiaacYcacaWGRbGaaiilaiabeg7aHjaacYcacqaH4oqCca GGSaGaeqy1dyMaai4laiaadIhajyaGdaWgaaqaaiaaigdaaeqaaKqb akaacYcacaWG4bqcga4aaSbaaeaacaaIYaaabeaajuaGcaGGSaGaai Olaiaac6cacaGGUaGaaiilaiaadIhadaWgaaqcgayaaiaad6gaaKqb agqaaaGaayjkaiaawMcaaiabg2Hi1kGacwgacaGG4bGaaiiCaiaayk W7daqadaqaaiabgkHiTiabek7aInaabmaabaGaeqySdeMaeyOeI0Ia aGymaaGaayjkaiaawMcaaaGaayjkaiaawMcaaiaadoeajyaGdaWgaa qaaiaaigdaaeqaaKqbaoaadmaabaGaaGymaiabgUcaRiaadweadaWg aaqcgayaaiaaigdaaKqbagqaamaabmaabaGaam4AaiabgkHiTiaado eajyaGdaWgaaqaaiaaikdaaeqaaaqcfaOaayjkaiaawMcaaKGbaoaa CaaabeqaaiaaikdaaaaajuaGcaGLBbGaayzxaaqcga4aaWbaaeqaba GaeyOeI0Iaamizaaaaaaa@7822@ (16)

where C 1 = { x N+1 2 + T 00 +2υ[ ( d 3 + d 4 x N+1 ) 2 / ( d 1 + d 2 ) ] } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam 4qamaaBaaajyaGbaGaaGymaaqcfayabaGaeyypa0ZaaiWaaeaacaWG 4bWaa0baaKGbagaacaWGobGaey4kaSIaaGymaaqaaiaaikdaaaqcfa Oaey4kaSIaamivamaaBaaajyaGbaGaaGimaiaaicdaaKqbagqaaiab gUcaRiaaikdacqaHfpqDcqGHsisldaWadaqaamaalyaabaWaaeWaae aacaWGKbqcga4aaSbaaeaacaaIZaaabeaajuaGcqGHRaWkcaWGKbqc ga4aaSbaaeaacaaI0aaabeaajuaGcaWG4bWaaSbaaKGbagaacaWGob Gaey4kaSIaaGymaaqcfayabaaacaGLOaGaayzkaaWaaWbaaeqajyaG baGaaGOmaaaaaKqbagaadaqadaqaaiaadsgajyaGdaWgaaqaaiaaig daaeqaaKqbakabgUcaRiaadsgadaWgaaqcgayaaiaaikdaaKqbagqa aaGaayjkaiaawMcaaaaaaiaawUfacaGLDbaaaiaawUhacaGL9baada ahaaqabeaaaaaaaa@6521@ , C 2 = ( d 3 + d 4 x N+1 )/ ( d 1 + d 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam 4qamaaBaaajyaGbaGaaGOmaaqcfayabaGaeyypa0ZaaSGbaeaadaqa daqaaiaadsgadaWgaaqcgayaaiaaiodaaKqbagqaaiabgUcaRiaads gadaWgaaqcgayaaiaaisdaaKqbagqaaiaadIhadaWgaaqcgayaaiaa d6eacqGHRaWkcaaIXaaajuaGbeaaaiaawIcacaGLPaaaaeaadaqada qaaiaadsgajyaGdaWgaaqaaiaaigdaaeqaaKqbakabgUcaRiaadsga jyaGdaWgaaqaaiaaikdaaeqaaaqcfaOaayjkaiaawMcaaaaaaaa@50BB@ , E 1 = ( d 1 + d 2 )/ C 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam yraKGbaoaaBaaabaGaaGymaaqabaqcfaOaeyypa0ZaaSGbaeaadaqa daqaaiaadsgajyaGdaWgaaqaaiaaigdaaeqaaKqbakabgUcaRiaads gajyaGdaWgaaqaaiaaikdaaeqaaaqcfaOaayjkaiaawMcaaaqaaiaa doeadaWgaaqcgayaaiaaigdaaKqbagqaaaaaaaa@469E@ .

Further, integrating out < k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam 4Aaaaa@38BE@  from (16) we get

P( x N+1 ,k,α,θ,ϕ/ x 1 , x 2 ,..., x N )exp( β( α1 ) ) C 1 d E 1 ( 1/2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam iuamaabmaabaGaamiEamaaBaaajyaGbaGaamOtaiabgUcaRiaaigda aKqbagqaaiaacYcacaWGRbGaaiilaiabeg7aHjaacYcacqaH4oqCca GGSaGaeqy1dyMaai4laiaadIhajyaGdaWgaaqaaiaaigdaaeqaaKqb akaacYcacaWG4bqcga4aaSbaaeaacaaIYaaabeaajuaGcaGGSaGaai Olaiaac6cacaGGUaGaaiilaiaadIhadaWgaaqcgayaaiaad6eaaKqb agqaaaGaayjkaiaawMcaaiabg2Hi1kGacwgacaGG4bGaaiiCaiaayk W7daqadaqaaiabgkHiTiabek7aInaabmaabaGaeqySdeMaeyOeI0Ia aGymaaGaayjkaiaawMcaaaGaayjkaiaawMcaaiaadoeajyaGdaqhaa qaaiaaigdaaeaacqGHsislcaWGKbaaaKqbakaadweajyaGdaqhaaqa aiaaigdaaeaacqGHsisldaqadaqaamaalyaabaGaaGymaaqaaiaaik daaaaacaGLOaGaayzkaaaaaaaa@6F16@                                   (17)

with d=( υ+1 )/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam izaiabg2da9maabmaabaGaeqyXduNaey4kaSIaaGymaaGaayjkaiaa wMcaaiaac+cacaaIYaaaaa@4019@ which is the conditional predictive distribution of x N+1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam iEamaaBaaajyaGbaGaamOtaiabgUcaRiaaigdaaKqbagqaaaaa@3C79@  given α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq ySdegaaa@396D@ , θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq iUdehaaa@3984@  and ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq y1dygaaa@3996@ . Further elimination of the parameters α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq ySdegaaa@396D@ , θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq iUdehaaa@3984@  and ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq y1dygaaa@3996@ from (17) is not possible analytically. So the marginal posterior density of x N+1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG4b WaaSbaaSqaaiaad6eacqGHRaWkcaaIXaaabeaaaaa@3B45@  cannot be expressed in a closed form. Since the distribution in (17) is analytically not tractable, a complete Bayesian analysis is possible by numerical integration technique or simulation based approach, viz., MCMC technique.

Suppose one wants a point estimate (posterior mean) of x N+1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam iEamaaBaaajyaGbaGaamOtaiabgUcaRiaaigdaaKqbagqaaaaa@3C79@ , then one should compute the marginal posterior density of x N+1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam iEamaaBaaajyaGbaGaamOtaiabgUcaRiaaigdaaKqbagqaaaaa@3C79@  from (17) and use it to calculate the marginal posterior mean of x N+1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam iEamaaBaaajyaGbaGaamOtaiabgUcaRiaaigdaaKqbagqaaaaa@3C79@ . Thus four dimensional numerical integration is necessary in order to estimate x N+1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam iEamaaBaaajyaGbaGaamOtaiabgUcaRiaaigdaaKqbagqaaaaa@3C79@ . But it is a very difficult problem.

Practically, to perform four dimensional numerical integration is very difficult and therefore to reduce the dimensions of the numerical integration one may substitute the estimators, posterior means, α ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOafq ySdeMbaKaaaaa@397D@ , θ ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOafq iUdeNbaKaaaaa@3994@  and ϕ ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOafq y1dyMbaKaaaaa@39A6@  respectively in the place of α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq ySdegaaa@396D@ , θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq iUdehaaa@3984@  and ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq y1dygaaa@3996@ and then perform one dimensional numerical integration to find the conditional mean of X N+1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam iwaKGbaoaaBaaabaGaamOtaiabgUcaRiaaigdaaeqaaaaa@3BCB@ . That is, one may eliminate the parameters as much as possible by analytical methods and then use the conditional estimates for the remaining parameters to compute the marginal posterior mean of the future observation.

Numerical example - canadian lynx data

A numerical example is considered for illustrating the one-step ahead predictive analysis of a future observation from the Canadian Lynx data. This data consists of the annual record of the numbers of Canadian Lynx trapped in the Mackenzie River district of North-west Canada for the period 1821 – 1934 (both years inclusive) giving a total of 114 observations. Brockwel and Davis5 (page 501) have transformed these data using the log transformation for the purpose of statistical analysis. These transformed data are used in our Bayesian predictive analysis.

Bayesian predictive distribution of the ( r+1 ) th MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aae WaaeaacaWGYbGaey4kaSIaaGymaaGaayjkaiaawMcaaKGbaoaaCaaa beqaaiaadshacaWGObaaaaaa@3E82@ observation, using the r observation, is obtained. The mean of this distribution is taken to be the ( r+1 ) th MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aae WaaeaacaWGYbGaey4kaSIaaGymaaGaayjkaiaawMcaaKGbaoaaCaaa beqaaiaadshacaWGObaaaaaa@3E82@  predicted value of the Lynx data. Since the direct evaluation of the mean of the one-step ahead predictive distribution involves four dimensional numerical integration, instead of the marginal predictive distribution of X N+1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam iwaKGbaoaaBaaabaGaamOtaiabgUcaRiaaigdaaeqaaaaa@3BCB@ , the conditional predictive distribution of X N+1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam iwaKGbaoaaBaaabaGaamOtaiabgUcaRiaaigdaaeqaaaaa@3BCB@ , given by (17) got by fixing the parameters k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam 4Aaaaa@38BE@ , α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq ySdegaaa@396D@ , θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq iUdehaaa@3984@  and ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq y1dygaaa@3996@  at their estimates, is used and the mean (posterior mean) is calculated using FORTRAN language. The posterior mean of the predictive distribution is computed numerically after fixing the parameters at their respective estimated values. The prediction is done for the cases r=11, 12,….,114 by taking first 10 observations as initial observations to estimate the parameters of the model and are given in the Table 1 which contains both the true values and the one-step ahead predicted values for the transformed data and the figure 1 represent graphically, the original data and one step-step ahead predicted values of the same. Figure 2 represent graphically, the original data for the last 14 observations and predicted values of the same through different methods, using FORTRAN program.

S. No.

Y

Y ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOabm ywayaajaaaaa@38BC@

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S. No.

Y

Y ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOabm ywayaajaaaaa@38BC@

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S. No.

Y

Y ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOabm ywayaajaaaaa@38BC@

1

2.430

-

41

2.373

2.283

81

2.880

2.963

2

2.506

-

42

2.389

2.360

82

3.115

3.143

3

2.767

-

43

2.742

2.726

83

3.540

3.633

4

2.940

-

44

3.210

3.292

84

3.845

3.881

5

3.169

-

45

3.520

3.569

85

3.800

3.713

6

3.450

-

46

3.828

3.856

86

3.579

3.494

7

3.594

-

47

3.628

3.542

87

3.264

3.249

8

3.774

-

48

2.837

2.656

88

2.538

2.306

9

3.695

-

49

2.406

2.252

89

2.582

2.547

10

3.411

-

50

2.675

2.614

90

2.907

2.917

11

2.718

2.582

51

2.554

2.481

91

3.142

3.204

12

1.991

1.767

52

2.894

2.973

92

3.433

3.473

13

2.265

2.181

53

3.202

3.248

93

3.580

3.562

14

2.446

2.413

54

3.224

3.229

94

3.490

3.408

15

2.612

2.650

55

3.352

3.344

95

3.475

3.406

16

3.359

3.482

56

3.154

3.062

96

3.579

3.539

17

3.429

3.468

57

2.878

2.765

97

2.829

2.663

18

3.533

3.596

58

2.476

2.023

98

1.909

1.587

19

3.261

3.182

59

2.303

2.255

99

1.903

1.833

20

2.612

2.444

60

2.360

2.315

100

2.033

2.069

21

2.179

1.999

61

2.671

2.672

101

2.360

2.439

22

1.653

1.461

62

2.867

2.934

102

2.601

2.621

23

1.832

1.801

63

3.310

3.466

103

3.054

3.108

24

2.328

2.385

64

3.449

3.479

104

3.386

3.409

25

2.737

2.839

65

3.646

3.684

105

3.553

3.528

26

3.014

3.069

66

3.400

3.296

106

3.468

3.454

27

3.328

3.380

67

2.590

2.399

107

3.187

3.150

28

3.404

3.405

68

1.863

1.806

108

2.723

2.518

29

2.981

2.849

69

1.591

1.454

109

2.686

2.646

30

2.557

2.379

70

1.690

1.677

110

2.821

2.864

31

2.576

2.500

71

1.771

1.766

111

3.000

3.053

32

2.352

2.260

72

2.274

2.398

112

3.201

3.231

33

2.556

2.569

73

2.576

2.642

113

3.424

3.464

34

2.864

2.895

74

3.111

3.241

114

3.531

3.512

35

3.214

3.296

75

3.605

3.683

 

 

 

Y – Lynx (Transformed)

- one-step-ahead

Predicted value

 

 

36

3.435

3.481

76

3.543

3.499

37

3.458

3.449

77

2.769

2.589

38

3.326

3.263

78

2.021

1.877

39

2.835

2.668

79

2.185

2.105

40

2.476

2.325

80

2.588

2.671

Table 1  One-Step-ahead predicted values of the transformed Lynx data

Figure 1 Original data and one step-step ahead predicted values of the same.

Figure 2 Predicted values through different methods.

A comparison of the one-step ahead predicted values using FRAR model with other models relating to this data available in the literatures are discussed in the following Section.

Comparative study

Lin6 has studied the Canadian lynx data through various time series models and Nicholls and Quinn7 have used the Canadian lynx data to compare the quality of the predicted values obtained by several methods, viz., (1) Moran-1 (2) Tong (3) NQ-1 (4) Moran-2 and (5) NQ-2 as presented above.

Moran-I refers to the linear predictor obtained from the second order autoregressive model, Tong refers to the linear predictor from autoregressive model of order eleven, NQ-1 denotes the linear predictor obtained from the second order random coefficient model while Moran-2 and NQ-2 denotes the non-linear predictors for the lynx data. The models and other details can found in the Nicholls and Quinn.7

Nicholls and Quinn7 have used these methods to predict the last 14 values of the Canadian lynx data and calculated the error sum of squares (refer Table 8.1 in page 146). To compare the efficiency of prediction of the new FRAR model developed in this paper with those of the others stated above, the Table cited above is reproduced in Table 2 wherein the values predicted by the FRAR model are given as an additional column. The error sum of squares for the last 14 predicted values is 0.0637 under the FRAR model whereas they are 0.2531, 0.2541, 0.2561, 0.2070 and 0.1887 respectively under the other methods. So, at least in the above context the superiority of the FRAR model is established beyond doubt.

S.No

Year

Lynx data

Moran-I

Tong

NQ-1

Moran-2

NQ-2

FRAR

1

1921

2.3598

2.4448

2.4559

2.4596

2.3835

2.3842

2.4390

2

1922

2.6010

2.7971

2.8088

2.8173

2.6271

2.6323

2.6210

3

1923

3.0538

2.8850

2.8991

2.8989

3.1193

3.0955

3.1080

4

1924

3.3860

3.3285

3.2306

3.3474

3.3883

3.3971

3.4090

5

1925

3.5532

3.4471

3.3879

3.4571

3.4955

3.4999

3.5280

6

1926

3.4676

3.4289

3.3321

3.4296

3.4787

3.4781

3.4540

7

1927

3.1867

3.1859

3.0060

3.1759

3.2683

3.2555

3.1500

8

1928

2.7235

2.8628

2.6875

2.8468

2.6405

2.6587

2.5180

9

1929

2.6857

2.4348

2.4286

2.4153

2.3747

2.3650

2.6460

10

1930

2.8209

2.7296

2.7643

2.7299

2.5977

2.6292

2.8640

11

1931

3.0000

2.9440

2.9838

2.9508

3.1277

3.0927

3.0530

12

1932

3.2014

3.0897

3.2169

3.0966

3.1981

3.1762

3.2310

13

1933

3.4244

3.2331

3.3656

3.2390

3.3065

3.2956

3.4640

14

1934

3.5309

3.3896

3.5035

3.3942

3.443

3.4413

3.5120

Error sum of squares

0.2531

0.2541

0.2561

0.2070

0.1887

0.0637

Table 2 One-Step ahead predictors of the transformed lynx data

Summary and conclusion

The Full Range Autoregressive model provides an acceptable alternative to the existing methodology. The main advantage associated with the new method is that one is completely avoiding the problem of order determination of the model as in the existing methods.

Thus, it is not unreasonable to claim the FRAR model proposed and its Bayesian analysis presented above certainly provides a viable alternative to the existing time series methodology, completely avoiding the problem of order determination.

Acknowledgements

We thank Prof. M.Rajagopalan, the editor and referees for helpful suggestions that significantly improve the quality of this article.

Conflicts of interest

None

References

Creative Commons Attribution License

©2017 Venkatesan, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.