Submit manuscript...
eISSN: 2378-315X

Biometrics & Biostatistics International Journal

Research Article Volume 12 Issue 3

Location and scale under exchangeable errors

DR Jensen

Department of Statistics, Virginia Tech, USA

Correspondence: DR Jensen, Department of Statistics, Virginia Tech, USA

Received: May 23, 2023 | Published: June 29, 2023

Citation: Jensen DR. Location and scale under exchangeable errors. Biom Biostat Int J. 2023;12(3):81-86. DOI: 10.15406/bbij.2023.12.00388

Download PDF

Abstract

Classical multivariate analysis rests on observations Y( n×k ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadMfadaqadaWdaeaapeGaamOBaiabgEna0kaadUgaaiaawIcacaGL Paaaaaa@3C23@  having n>k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajaayqaaaaaaaaa Wdbiaad6gacqGH+aGpcaWGRbaaaa@3B3C@  mutually independent rows, with dispersion matrix as a direct product V( Y )= I n Σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadAfadaqadaWdaeaapeGaamywaaGaayjkaiaawMcaaiabg2da9iaa dMeapaWaaSbaaSqaa8qacaWGUbaapaqabaGcpeGaey4LIqSaeu4Odm faaa@3FCC@ , supported in turn by a rich literature. That independence may fail is modeled here on taking the rows of Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aahMfaaaa@3685@  to be exchangeably dependent such that V( Υ )=ΩΣ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadAfadaqadaWdaeaapeGaeuyPdufacaGLOaGaayzkaaGaeyypa0Ja euyQdCLaey4LIqSaeu4Odmfaaa@3FCF@  where exchangeability rests on the choice for Ω( n×n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abfM6axnaabmaapaqaa8qacaWGUbGaey41aqRaamOBaaGaayjkaiaa wMcaaaaa@3CD6@ . Three choices are considered; each interjects additional parameters into the model; and it remains to ask which, if any, of findings widely known under independence, might apply also under exchangeable dependence. Conventional inferences for the location and scale parameters ( μ,Σ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aabmaabaGaeqiVd0Maaiilaiabfo6atbGaayjkaiaawMcaaaaa@3B16@  are reconsidered. Excluding μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieWaqaaaaaaaaa Wdbiaa=X7aaaa@36EF@  these are found to carry over in large part to include the exchangeable errors of this study.

AMS subject classification: 62E15, 62H15, 62J20

Keywords: exchangeable matrix errors, recovered properties, location and scale parameters

Introduction

The model { Y= 1 n μ+ } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaabaaaaaaaaapeGae83mH0Ka eyyyIO7aaiWaa8aabaWdbiaabMfacqGH9aqpcaaIXaWdamaaBaaale aapeGaamOBaaWdaeqaaOWdbiabeY7aTjabgUcaRiab=btifbGaay5E aiaaw2haaaaa@4C23@  asserts the n rows of Y( n×k ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadMfadaqadaWdaeaapeGaamOBaiabgEna0kaadUgaaiaawIcacaGL Paaaaaa@3C23@  to be k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadUgaaaa@3693@ –dimensional responses, having location parameters μ=[ μ 1 , μ 2 ,... μ k ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTHqada baaaaaaaaapeGaa8xpamaadmaapaqaa8qacqaH8oqBpaWaaSbaaSqa a8qacaaIXaaapaqabaGcpeGaaiilaiabeY7aT9aadaWgaaWcbaWdbi aaikdaa8aabeaak8qacaGGSaGaaiOlaiaac6cacaGGUaGaeqiVd02d amaaBaaaleaapeGaam4AaaWdaeqaaaGcpeGaay5waiaaw2faaaaa@4865@  where 1 n = [1,1,....1]   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aaigdapaWaaSbaaSqaa8qacaWGUbaapaqabaGcpeGaeyypa0Jaai4w aiaaigdacaGGSaGaaGymaiaacYcacaGGUaGaaiOlaiaac6cacaGGUa GaaGymaiaac2fapaWaaWbaaSqabeaapeGabeiOa8aagaqbaaaaaaa@426E@  and with ε( n×k ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abew7aLnaabmaapaqaa8qacaWGUbGaey41aqRaam4AaaGaayjkaiaa wMcaaaaa@3CEC@  as an array of random errors. Conventional analysts take the n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaqGUbaaaa@3708@  rows of Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aahMfaaaa@3685@ to be mutually independent and Gaussian, so that V( Y )= I n Σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadAfadaqadaWdaeaapeGaamywaaGaayjkaiaawMcaaiabg2da9iaa dMeapaWaaSbaaSqaa8qacaWGUbaapaqabaGcpeGaey4LIqSaeu4Odm faaa@3FCC@ . To the contrary, independence often fails; venues include multiple time series, econometrics, and empirical adjustments that induce dependencies among the adjusted responses, as in references1,2 for calibrated data. Accordingly, it is instructive to replace independence among rows by exchangeable dependence, on letting V( Υ )=ΩΣ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadAfadaqadaWdaeaapeGaeuyPdufacaGLOaGaayzkaaGaeyypa0Ja euyQdCLaey4LIqSaeu4Odmfaaa@3FCF@  where exchangeably rests on the choice for Ω( n×n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abfM6axnaabmaapaqaa8qacaWGUbGaey41aqRaamOBaaGaayjkaiaa wMcaaaaa@3CD6@ .

In short, the basic foundations remain to be reworked, as in this study with regard to independence. Specifically, with n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H MmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaabaaaaaaaaapeGae8xhHi1d amaaCaaaleqabaWdbiaad6gaaaaaaa@419A@  as Euclidean n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiaad6gaaaa@37FF@ –space and F n×k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H MmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=vi8gnaaBaaaleaacaWG UbGaey41aqRaam4Aaaqabaaaaa@47CC@  the real matrices of order ( n×k ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aabmaabaGaamOBaiabgEna0kaadUgaaiaawIcacaGLPaaaaaa@3D66@  then the distribution ( Y ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaabaaaaaaaaapeGae8NeHW0a aeWaaeaatCvAUfeBSn0BKvguHDwzZbqeh0uySDwDUbYrVrhAPngaiy qacaGFzbaacaGLOaGaayzkaaaaaa@4FA1@  for Y n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatCvAUfeBSn0BKv guHDwzZbqeg0uySDwDUbYrVrhAPngaiuqaqaaaaaaaaaWdbiaa=Lfa cqGHiiIZtuuDJXwAK1uy0HMmaeXbfv3ySLgzG0uy0HgiuD3BaGGbai ab+1ris9aadaahaaWcbeqaa8qacaWGUbaaaaaa@4EC5@  is said to be exchangeable provided that ( P n Y )=(Y) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaabaaaaaaaaapeGae8NeHW0a aeWaaeaacaWGqbWaaSbaaSqaaiaad6gaaeqaamXvP5wqSX2qVrwzqf 2zLnharCqtHX2z15gih9gDOL2yaGGbdOWdaiaa+Lfaa8qacaGLOaGa ayzkaaGaeyypa0Jae8NeHWKaaiika8aacaGFzbWdbiaacMcaaaa@561B@  for every P n n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbWaaSbaaS qaaiaad6gaaeqaaOGaeyicI48efv3ySLgznfgDOjdaryqr1ngBPrgi nfgDObcv39gaiuqacqWFzecudaWgaaWcbaGaamOBaaqabaaaaa@4717@  the ( n×n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqadaqaaiaad6 gacqGHxdaTcaWGUbaacaGLOaGaayzkaaaaaa@3D49@  permutation group, a concept due to Johnson.3 In this study exchangeable errors on F n×k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H MmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=vi8gnaaBaaaleaacaWG UbGaey41aqRaam4Aaaqabaaaaa@47CC@  are identified; their use is seen to offer a rich class of alternatives to independence. A brief survey follows.

Selected classes of exchangeable errors on F n×k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H MmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=vi8gnaaBaaaleaacaWG UbGaey41aqRaam4Aaaqabaaaaa@47CC@  are studied, as are moments for the model M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad2eaaaa@3675@ . The focus here centers on ( μ,Σ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aabmaabaGaeqiVd0Maaiilaiabfo6atbGaayjkaiaawMcaaaaa@3B16@  as the conventional location/scale parameters. But since additional parameters are injected into the model on requiring that it should be exchangeable, it is essential to identify those properties, if any, which do carry over to include exchangeable errors.

Preliminaries

Notation

 Identify n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H MmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaabaaaaaaaaapeGae8xhHi1d amaaCaaaleqabaWdbiaad6gaaaaaaa@419A@  and F n×k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H MmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaabaaaaaaaaapeGae8xHWB0d amaaBaaaleaapeGaamOBaiabgEna0kaadUgaa8aabeaaaaa@45DA@  as stated, with S n + MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H MmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=jj8tnaaDaaaleaacaWG Ubaabaaeaaaaaaaaa8qacqGHRaWkaaaaaa@43A2@  as the symmetric, positive definite matrices of order ( n×n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqadaqaaiaad6 gacqGHxdaTcaWGUbaacaGLOaGaayzkaaaaaa@3D49@ . Vectors and matrices are in bold type, with { A   , A 1 ,tr( A ),and| A | } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aacmaapaqaaGqad8qacaWFbbWdamaaCaaaleqabaWdbiqabckapaGb auaaaaGcpeGaaiilaiaa=feapaWaaWbaaSqabeaapeGaeyOeI0IaaG ymaaaakiaacYcacaqG0bGaaeOCamaabmaapaqaa8qacaWFbbaacaGL OaGaayzkaaGaaiilaiaadggacaWGUbGaamizamaaemaapaqaa8qaca WFbbaacaGLhWUaayjcSdaacaGL7bGaayzFaaaaaa@4A50@  as the transpose, inverse, trace, and determinant of A MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieWaqaaaaaaaaa Wdbiaa=feaaaa@3671@ . The unit vector in n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H MmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaabaaaaaaaaapeGae8xhHi1d amaaCaaaleqabaWdbiaad6gaaaaaaa@419A@  is 1 n = [1,1,....1]   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aaigdapaWaaSbaaSqaa8qacaWGUbaapaqabaGcpeGaeyypa0Jaai4w aiaaigdacaGGSaGaaGymaiaacYcacaGGUaGaaiOlaiaac6cacaGGUa GaaGymaiaac2fapaWaaWbaaSqabeaapeGabeiOa8aagaqbaaaaaaa@426E@ ; I n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieWaqaaaaaaaaa Wdbiaa=LeapaWaaSbaaSqaa8qacaWGUbaapaqabaaaaa@37C6@  is the ( n×n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aabmaapaqaa8qacaWGUbGaey41aqRaamOBaaGaayjkaiaawMcaaaaa @3B48@  identity; J n = 1 n 1 n     MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieWaqaaaaaaaaa Wdbiaa=PeapaWaaSbaaSqaa8qacaWGUbaapaqabaGcpeGaeyypa0Ja aGyma8aadaWgaaWcbaWdbiaad6gaa8aabeaak8qacaaIXaWdamaaDa aaleaapeGaamOBaaWdaeaapeGaaeiOa8aadaahaaadbeqaa8qaceqG GcWdayaafaaaaaaaaaa@3FD0@ and Diag ( A 1  . . . , A k ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aabmaapaqaaGqad8qacaWFbbWdamaaBaaaleaapeGaaGymaaWdaeqa aOWdbiaabckacaGGUaGaaeiOaiaac6cacaqGGcGaaiOlaiaabckaca GGSaGaa8xqa8aadaWgaaWcbaWdbiaadUgaa8aabeaaaOWdbiaawIca caGLPaaaaaa@42C0@  is block–diagonal. Take Ch( A )=[ α 1 α n > 0 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=xjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aaboeacaqGObWaaeWaa8aabaacbmWdbiaa=feaaiaawIcacaGLPaaa cqGH9aqpdaWadaWdaeaapeGaeqySde2damaaBaaaleaapeGaaGymaa WdaeqaaOWdbiabgwMiZkabgAci8kabgwMiZkabeg7aH9aadaWgaaWc baWdbiaad6gaa8aabeaak8qacqGH+aGpcaqGGcGaaGimaaGaay5wai aaw2faaaaa@4D03@  to be the eigenvalues of A S n + MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=xjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieWaqaaaaaaaaa Wdbiaa=feacqGHiiIZtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0Hgi uD3BaGqbaiab+jj8t9aadaqhaaWcbaWdbiaad6gaa8aabaWdbiabgU caRaaaaaa@4880@ . The condition number of A S n + MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=xjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieWaqaaaaaaaaa Wdbiaa=feacqGHiiIZtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0Hgi uD3BaGqbaiab+jj8t9aadaqhaaWcbaWdbiaad6gaa8aabaWdbiabgU caRaaaaaa@4880@  is Cnd( A )= α 1 / α n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=xjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aaboeacaqGUbGaaeizamaabmaapaqaaGqad8qacaWFbbaacaGLOaGa ayzkaaGaeyypa0JaeqySde2damaaBaaaleaapeGaaGymaaWdaeqaaO Wdbiaac+cacqaHXoqypaWaaSbaaSqaa8qacaWGUbaapaqabaaaaa@4479@ . For A( n×n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=xjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieWaqaaaaaaaaa Wdbiaa=feadaqadaWdaeaapeGaamOBaiabgEna0kaad6gaaiaawIca caGLPaaaaaa@3E65@  and B( k×k ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=xjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieWaqaaaaaaaaa Wdbiaa=jeadaqadaWdaeaapeGaam4AaiabgEna0kaadUgaaiaawIca caGLPaaaaaa@3E60@ , their direct product is AB=[ a ij B ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=xjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieWaqaaaaaaaaa Wdbiaa=feacqGHxkcXcaWFcbGaeyypa0ZaamWaa8aabaWdbiaadgga paWaaSbaaSqaa8qacaWGPbGaamOAaaWdaeqaaOWdbiaa=jeaaiaawU facaGLDbaaaaa@429D@  of order ( nk×nk ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=xjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aabmaapaqaa8qacaWGUbGaam4AaiabgEna0kaad6gacaWGRbaacaGL OaGaayzkaaaaaa@3F77@ , and a g MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=xjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadEgaaaa@38DE@ –inverse of A F n×k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=xjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieWaqaaaaaaaaa Wdbiaa=feacqGHiiIZtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0Hgi uD3BaGqbaiab+vi8g9aadaWgaaWcbaWdbiaad6gacqGHxdaTcaWGRb aapaqabaaaaa@4A7A@  is A F k×n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=xjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieWaqaaaaaaaaa Wdbiaa=feapaWaaWbaaSqabeaapeGaeyOeI0caaOGaeyicI48efv3y SLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqGFfcVrpaWaaS baaSqaa8qacaWGRbGaey41aqRaamOBaaWdaeqaaaaa@4BBD@  such that A A A=A MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=xjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aahgeacaWHbbWdamaaCaaaleqabaWdbiabgkHiTaaakiaahgeacqGH 9aqpcaWHbbaaaa@3D63@ .

Random arrays

 Consider Y F n×k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=xjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aahMfacqGHiiIZtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3B aGqbaiab=vi8g9aadaWgaaWcbaWdbiaad6gacqGHxdaTcaWGRbaapa qabaaaaa@4A8F@  to be random, with { ( Y ),E( Y ),V( Y ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aacmaapaqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbac faWdbiab=jrimnaabmaapaqaa8qacaWHzbaacaGLOaGaayzkaaGaai ilaiaadweadaqadaWdaeaapeGaaCywaaGaayjkaiaawMcaaiaacYca caWGwbWaaeWaa8aabaWdbiaahMfaaiaawIcacaGLPaaaaiaawUhaca GL9baaaaa@4D24@  as its law of distribution, its expected values in F n×k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H MmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaabaaaaaaaaapeGae8xHWB0d amaaBaaaleaapeGaamOBaiabgEna0kaadUgaa8aabeaaaaa@45DA@ , and its dispersion matrix in S nk + MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H MmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaabaaaaaaaaapeGae8NKWp1d amaaDaaaleaapeGaamOBaiaadUgaa8aabaWdbiabgUcaRaaaaaa@44D0@  under moments of first and second orders. Moreover, for displaying the elements of V( Y )= X i ( nk×nk ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadAfadaqadaWdaeaapeGaaCywaaGaayjkaiaawMcaaiabg2da9iaa dIfapaWaaSbaaSqaa8qacaWGPbaapaqabaGcpeWaaeWaa8aabaWdbi aad6gacaWGRbGaey41aqRaamOBaiaadUgaaiaawIcacaGLPaaaaaa@43D2@ , the matrix Y=[ Y 1 , Y 2 . , Y n ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatCvAUfeBSn0BKv guHDwzZbqeg0uySDwDUbYrVrhAPngaiuqaqaaaaaaaaaWdbiaa=Lfa paGaaeypaiaabUfapeGaa8xwamaaBaaaleaacaaIXaaabeaak8aaca qGSaWdbiaa=LfadaWgaaWcbaGaaGOmaaqabaGcpaGaaeilaiaabcca caqGUaGaaeiiaiaab6cacaqGGaGaaeOlaiaabccacaqGSaWdbiaa=L fadaWgaaWcbaGaamOBaaqabaGcpaGaaeyxamaaCaaaleqabaWaaWba aWqabeaacWaGGBOmGikaaaaaaaa@5600@  of order ( n×k ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aabmaapaqaa8qacaWGUbGaey41aqRaam4AaaGaayjkaiaawMcaaaaa @3B45@  is taken row–wise through the mapping J( Y )=[ Y 1 ' , Y 2 ', Y n ' ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadQeadaqadaWdaeaapeGaaCywaaGaayjkaiaawMcaaiabg2da9maa dmaapaqaa8qacaWHzbWaa0baaSqaaiaaigdaaeaacaGGNaaaaOGaai ilaiaahMfapaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaai4jaiab gAci8kaacYcacaWHzbWdamaaBaaaleaapeGaamOBaaWdaeqaaOWdbi aacEcaaiaawUfacaGLDbaaaaa@4975@  of order ( nk×1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aabmaapaqaa8qacaWGUbGaam4AaiabgEna0kaaigdaaiaawIcacaGL Paaaaaa@3C20@  as in the following from Jensen DR, et al.4

Proposition 1 i. For ( nk×1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJb9YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aabmaapaqaa8qacaWGUbGaam4AaiabgEna0kaaigdaaiaawIcacaGL Paaaaaa@3C20@ , then V( Y ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadAfadaqadaWdaeaaieWapeGaa8xwaaGaayjkaiaawMcaaaaa@390C@  is arrayed as V( Y )= X i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadAfadaqadaWdaeaapeGaaCywaaGaayjkaiaawMcaaiabg2da9Gqa diaa=HfapaWaaSbaaSqaa8qacaWGPbaapaqabaaaaa@3C3B@ , often of the form X i =ΩΣ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieWaqaaaaaaaaa Wdbiaa=HfapaWaaSbaaSqaa8qacaWGPbaapaqabaGcpeGaeyypa0Ja euyQdCLaey4LIqSaeu4Odmfaaa@3E0B@  with elements {Ω( n×n ),Σ(k×k)} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aacUhacqqHPoWvdaqadaqaaiaad6gacqGHxdaTcaWGUbaacaGLOaGa ayzkaaGaaiilaiabfo6atjaacIcacaWGRbGaey41aqRaam4AaiaacM cacaGG9baaaa@463B@ ;

  1. Then for row Y i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aahMfapaWaaSbaaSqaa8qacaWGPbaapaqabaaaaa@37CD@ of Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aahMfaaaa@3685@  the element { V( Y i )= ω ii Σ } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aacmaapaqaa8qacaWGwbWaaeWaa8aabaWdbiaadMfapaWaaSbaaSqa a8qacaWGPbaapaqabaaak8qacaGLOaGaayzkaaGaeyypa0JaeqyYdC 3damaaBaaaleaapeGaamyAaiaadMgaa8aabeaaieqakiaa=n6aa8qa caGL7bGaayzFaaaaaa@454E@  is on the diagonal of X i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieWaqaaaaaaaaa Wdbiaa=HfapaWaaSbaaSqaa8qacaWGPbaapaqabaaaaa@37D0@ , and { Cov( Y i , Y j )= ω ij Σ } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aacmaapaqaa8qacaWGdbGaam4BaiaadAhadaqadaWdaeaapeGaamyw a8aadaWgaaWcbaWdbiaadMgaa8aabeaak8qacaGGSaGaamywa8aada WgaaWcbaWdbiaadQgaa8aabeaaaOWdbiaawIcacaGLPaaacqGH9aqp cqaHjpWDpaWaaSbaaSqaa8qacaWGPbGaamOAaaWdaeqaaGqabOGaa8 3OdaWdbiaawUhacaGL9baaaaa@4A1C@  is off the diagonal;

 iii. For  V( Z )=ΩΣ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aacckacaWGwbWaaeWaa8aabaWdbiaadQfaaiaawIcacaGLPaaacqGH 9aqpcqqHPoWvcqGHxkcXcqqHJoWuaaa@404A@  and fixed ( A,B ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aabmaapaqaaGqad8qacaWFbbGaaiilaiaa=jeaaiaawIcacaGLPaaa aaa@398C@ ,then V( A'ZB )=A'ΩAB'ΣB MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugababaaaaaaa aapeGaamOvaOWaaeWaa8aabaWdbiaadgeacaGGNaGaaiOwaiaadkea aiaawIcacaGLPaaacqGH9aqpcaWGbbGaai4jaiabfM6axjaadgeacq GHxkcXcaWGcbGaai4jaiabfo6atjaackeaaaa@4889@ .

Exchangeable arrays trace to Johnson3 as noted, and since have a rich history. Any mixture of independent, identically distributed (iid) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aacIcacaWGPbGaamyAaiaadsgacaGGPaaaaa@39C1@  variables in n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H MmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaabaaaaaaaaapeGae8xhHi1d amaaCaaaleqabaWdbiaad6gaaaaaaa@419A@  is exchangeable; a converse of Finetti B5 is that elements of { Y 1 , Y 2 , Y 3 , } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aacmaapaqaa8qacaWGzbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWd biaacYcacaWGzbWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiaacY cacaWGzbWdamaaBaaaleaapeGaaG4maaWdaeqaaOWdbiaacYcacqGH MacVaiaawUhacaGL9baaaaa@41BB@  if exchangeable, are conditionally iid MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadMgacaWGPbGaamizaaaa@3868@  given some Z 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadQfacqGHiiIZtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3B aGqbaiab=1ris9aadaahaaWcbeqaa8qacaaIXaaaaaaa@43C5@ . Matrix arrays are considered next; refer also to Aldous.6

Definition 1

  1. The distribution of Y F n×k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieWaqaaaaaaaaa Wdbiaa=LfacqGHiiIZtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0Hgi uD3BaGqbaiab+vi8g9aadaWgaaWcbaWdbiaad6gacqGHxdaTcaWGRb aapaqabaaaaa@4A87@ is said to be left–exchangeable provided that ( Y )=( P n Y ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaabaaaaaaaaapeGae8NeHW0a aeWaa8aabaacbmWdbiaa+LfaaiaawIcacaGLPaaacqGH9aqpcqWFse ctdaqadaWdaeaapeGaamiua8aadaWgaaWcbaWdbiaad6gaa8aabeaa kmaaCaaaleqabaGccWaGGBOmGikaa8qacaGFzbaacaGLOaGaayzkaa aaaa@4CA4@  for every P n n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aahcfapaWaaSbaaSqaa8qacaqGUbaapaqabaGcpeGaeyicI48efv3y SLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFzecupaWaaS baaSqaa8qacaqGUbaapaqabaaaaa@4562@ ;
  2. ( Y ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaabaaaaaaaaapeGae8NeHW0a aeWaa8aabaacbmWdbiaa+LfaaiaawIcacaGLPaaaaaa@42BE@ is right–exchangeable provided that ( Y )=( Y Q k ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaabaaaaaaaaapeGae8NeHW0a aeWaa8aabaWdbiaahMfaaiaawIcacaGLPaaacqGH9aqpcqWFsectda qadaWdaeaapeGaaCywaGqadiaa+ffapaWaaSbaaSqaa8qacaWGRbaa paqabaaak8qacaGLOaGaayzkaaaaaa@4990@ for every Q k k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieWaqaaaaaaaaa Wdbiaa=ffapaWaaSbaaSqaa8qacaWGRbaapaqabaGcpeGaeyicI48e fv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqGFzecupa WaaSbaaSqaa8qacaWGRbaapaqabaaaaa@4564@ .

Essential properties may be listed as follow.

Lemma 1 Take y n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieWaqaaaaaaaaa Wdbiaa=LhacqGHiiIZtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0Hgi uD3BaGqbaiab+1ris9aadaahaaWcbeqaa8qacaWGUbaaaaaa@4423@  with V( y )=Ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadAfadaqadaWdaeaacaWG5baapeGaayjkaiaawMcaaiabg2da9iab fM6axbaa@3BB8@ , and Y F n×k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieWaqaaaaaaaaa Wdbiaa=LfacqGHiiIZtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0Hgi uD3BaGqbaiab+vi8g9aadaWgaaWcbaWdbiaad6gacqGHxdaTcaWGRb aapaqabaaaaa@4843@  with V( Υ )=ΩΣ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadAfadaqadaWdaeaapeGaeuyPdufacaGLOaGaayzkaaGaeyypa0Ja euyQdCLaey4LIqSaeu4Odmfaaa@3FCF@ .

  1. Let ( y ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaabaaaaaaaaapeGae8NeHW0a aeWaa8aabaacbmWdbiaa+LhaaiaawIcacaGLPaaaaaa@42DE@ be exchangeable on n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H MmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaabaaaaaaaaapeGae8xhHi1d amaaCaaaleqabaWdbiaad6gaaaaaaa@419A@ ; then Ω= P n 'Ω P n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abfM6axjabg2da9iaadcfapaWaaSbaaSqaa8qacaWGUbaapaqabaGc peGaai4jaiabfM6axjaadcfapaWaaSbaaSqaa8qacaWGUbaapaqaba aaaa@3ECE@  for every P n n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieWaqaaaaaaaaa Wdbiaa=bfapaWaaSbaaSqaa8qacaqGUbaapaqabaGcpeGaeyicI48e fv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqGFzecupa WaaSbaaSqaa8qacaqGUbaapaqabaaaaa@4565@ ,i.e. Ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abfM6axbaa@3731@ is invariant under P n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieWaqaaaaaaaaa Wdbiaa=bfapaWaaSbaaSqaa8qacaqGUbaapaqabaaaaa@37CB@  acting by congruence;
  2. Let ( Y ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaabaaaaaaaaapeGae8NeHW0a aeWaa8aabaacbmWdbiaa+LfaaiaawIcacaGLPaaaaaa@42BE@ be left–exchangeable ; then Ω= P n 'Ω P n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abfM6axjabg2da9iaadcfapaWaaSbaaSqaa8qacaWGUbaapaqabaGc peGaai4jaiabfM6axjaadcfapaWaaSbaaSqaa8qacaWGUbaapaqaba aaaa@3ECE@  for every P n n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieWaqaaaaaaaaa Wdbiaa=bfapaWaaSbaaSqaa8qacaqGUbaapaqabaGcpeGaeyicI48e fv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqGFzecupa WaaSbaaSqaa8qacaqGUbaapaqabaaaaa@4565@ ;
  3. Let ( Y ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaabaaaaaaaaapeGae8NeHW0a aeWaa8aabaacbmWdbiaa+LfaaiaawIcacaGLPaaaaaa@42BE@ be right–exchangeable; then Σ= Q k 'Σ Q k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abfo6atjabg2da9iaadgfapaWaaSbaaSqaa8qacaWGRbaapaqabaGc peGaai4jaiabfo6atjaadgfapaWaaSbaaSqaa8qacaWGRbaapaqaba aaaa@3EB6@  for every Q k k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieWaqaaaaaaaaa Wdbiaa=ffapaWaaSbaaSqaa8qacaWGRbaapaqabaGcpeGaeyicI48e fv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqGFzecupa WaaSbaaSqaa8qacaWGRbaapaqabaaaaa@4564@ .

 Proof. Clearly ( y )=( P n 'y ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaabaaaaaaaaapeGae8NeHW0a aeWaa8aabaacbmWdbiaa+LhaaiaawIcacaGLPaaacqGH9aqpcqWFse ctdaqadaWdaeaapeGaa4hua8aadaWgaaWcbaWdbiaad6gaa8aabeaa k8qacaGGNaGaa4xEaaGaayjkaiaawMcaaaaa@4A6B@  implies Ω= P n 'Ω P n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abfM6axjabg2da9iaadcfapaWaaSbaaSqaa8qacaWGUbaapaqabaGc peGaai4jaiabfM6axjaadcfapaWaaSbaaSqaa8qacaWGUbaapaqaba aaaa@3ECE@  for every P n n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieWaqaaaaaaaaa Wdbiaa=bfapaWaaSbaaSqaa8qacaqGUbaapaqabaGcpeGaeyicI48e fv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqGFzecupa WaaSbaaSqaa8qacaqGUbaapaqabaaaaa@4565@ , to give conclusion (i). Conclusions (ii) and (iii) follow as in Definition 1(iii), namely, V( P n 'Y Q k )= P n 'Ω P n Q k 'Σ Q k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aabAfadaqadaWdaeaacaWGqbWaaSbaaSqaa8qacaWGUbaapaqabaGc peGaai4jaiaacMfacaGGrbWdamaaBaaaleaapeGaam4AaaWdaeqaaa GcpeGaayjkaiaawMcaaiabg2da9iaadcfapaWaaSbaaSqaa8qacaWG UbaapaqabaGcpeGaai4jaiabfM6axjaadcfapaWaaSbaaSqaa8qaca WGUbaapaqabaGcpeGaey4LIqSaamyua8aadaWgaaWcbaWdbiaadUga a8aabeaak8qacaGGNaGaeu4OdmLaamyua8aadaWgaaWcbaWdbiaadU gaa8aabeaaaaa@4E4B@ ; and applying Conclusion (i) in succession to  {Y P n Y} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aacckapaGaai4Ea8qacaWHzbGaeyOKH4kcbmGaa8huamaaBaaaleaa caWGUbaabeaakiabgkdiIkaahMfacaGG9baaaa@401D@  and { YY Q k } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aacmaapaqaa8qacaWHzbGaeyOKH4QaaCywaGqadiaa=ffapaWaaSba aSqaa8qacaWGRbaapaqabaaak8qacaGL7bGaayzFaaaaaa@3DE6@ .

Classes of exchangeable errors

 An early version having exchangeable rows on F n×k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H MmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=vi8gnaaBaaaleaacaWG UbGaey41aqRaam4Aaaqabaaaaa@47CC@  is

V( Y )=[ I   n ( ΓΣ )+ J   n Σ;[ ( ΓΣ ),Σ ] S k + MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadAfadaqadaWdaeaacaWGzbaapeGaayjkaiaawMcaaiabg2da9iaa cUfacaGGjbWdamaaBaaaleaapeGaaeiOa8aadaahaaadbeqaa8qaca WGUbaaaaWcpaqabaGcpeGaey4LIq8aaeWaa8aabaWdbiabfo5ahjab gkHiTiabfo6atbGaayjkaiaawMcaaiabgUcaRiaadQeapaWaaSbaaS qaa8qacaqGGcWdamaaCaaameqabaWdbiaad6gaaaaal8aabeaak8qa cqGHxkcXcqqHJoWucaGG7aWaamWaa8aabaWdbmaabmaapaqaa8qacq qHtoWrcqGHsislcqqHJoWuaiaawIcacaGLPaaacaGGSaGaeu4Odmfa caGLBbGaayzxaaGaeyicI48efv3ySLgznfgDOjdaryqr1ngBPrginf gDObcv39gaiuaacqWFsc=upaWaa0baaSqaa8qacaWGRbaapaqaa8qa cqGHRaWkaaaaaa@6885@ , identified in7 as an Exchangeable General Linear Model. This is a block–partitioned version of an equicorrelation matrix, but differing from matrices of type V( Υ )=ΩΣ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadAfadaqadaWdaeaapeGaeuyPdufacaGLOaGaayzkaaGaeyypa0Ja euyQdCLaey4LIqSaeu4Odmfaaa@3FCF@  as considered here and listed in Table 1.

Remark 1 Given Ω( γ,λ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abfM6axnaabmaapaqaa8qacqaHZoWzcaGGSaGaeq4UdWgacaGLOaGa ayzkaaaaaa@3CE4@ , then Ω( ρ )=[ ( 1ρ ) I   n +ρ J   n ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abfM6axnaabmaapaqaa8qacqaHbpGCaiaawIcacaGLPaaacqGH9aqp daWadaWdaeaapeWaaeWaa8aabaWdbiaaigdacqGHsislcqaHbpGCai aawIcacaGLPaaacaWGjbWdamaaBaaaleaapeGaaeiOa8aadaahaaad beqaa8qacaWGUbaaaaWcpaqabaGcpeGaey4kaSIaeqyWdiNaamOsa8 aadaWgaaWcbaWdbiaabckapaWaaWbaaWqabeaapeGaamOBaaaaaSWd aeqaaaGcpeGaay5waiaaw2faaaaa@4CC3@  follows on taking λ=θ 1 n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abeU7aSjabg2da9iabeI7aXjaaigdapaWaaSbaaSqaa8qacaWGUbaa paqabaaaaa@3C1B@ and { γ=( 1ρ ),2θ=ρ } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aacmaapaqaa8qacqaHZoWzcqGH9aqpdaqadaWdaeaapeGaaGymaiab gkHiTiabeg8aYbGaayjkaiaawMcaaiaacYcacaaIYaGaeqiUdeNaey ypa0JaeqyWdihacaGL7bGaayzFaaaaaa@4598@ .

 Essential properties may be summarized as follow.

Theorem 1 Consider the classes { C= n 1 , n 2 , n 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aacmaapaqaa8qacaWGdbGaeyypa0Zefv3ySLgznfgDOfdaryqr1ngB PrginfgDObYtUvgaiuaacqWFlecspaWaa0baaSqaa8qacaWGUbaapa qaa8qacaaIXaaaaOGaaiilaiab=Tqii9aadaqhaaWcbaWdbiaad6ga a8aabaWdbiaaikdaaaGccaGGSaGae83cHG0damaaDaaaleaapeGaam OBaaWdaeaapeGaaG4maaaaaOGaay5Eaiaaw2haaaaa@4E02@  of Table 1, together with conditions Φ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqqHMoGrdaWgaa Wcbaaeaaaaaaaaa8qacaWGPbaapaqabaaaaa@3846@  for Ω i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abfM6ax9aadaWgaaWcbaWdbiaadMgaa8aabeaaaaa@3879@  to be positive definite. Then

  1. The classes are closed under congruence by P n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieWaqaaaaaaaaa Wdbiaa=bfapaWaaSbaaSqaa8qacaWGUbaapaqabaaaaa@37CD@ , i.e. for Ω i H n 1 ( Ω i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abfM6ax9aadaWgaaWcbaWdbiaadMgaa8aabeaak8qacqGHiiIZcaWG ibWdamaaDaaaleaapeGaamOBaaWdaeaapeGaaGymaaaakiaacIcacq qHPoWvpaWaaSbaaSqaa8qacaWGPbaapaqabaGcpeGaaiykaaaa@4150@ , the matrices satisfy { P n ' Ω i P n n i ( Ω i ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aacmaapaqaaiaadcfadaWgaaWcbaWdbiaad6gaa8aabeaak8qacaGG NaGaeuyQdC1damaaBaaaleaapeGaamyAaaWdaeqaaOGaamiuamaaBa aaleaapeGaamOBaaWdaeqaaOWdbiabgIGioprr1ngBPrwtHrhAXaqe guuDJXwAKbstHrhAG8KBLbacfaGae83cHG0damaaDaaaleaapeGaam OBaaWdaeaapeGaamyAaaaakmaabmaapaqaa8qacqqHPoWvpaWaaSba aSqaa8qacaWGPbaapaqabaaak8qacaGLOaGaayzkaaaacaGL7bGaay zFaaaaaa@52BD@ , for each P n n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieWaqaaaaaaaaa Wdbiaa=bfapaWaaSbaaSqaa8qacaqGUbaapaqabaGcpeGaeyicI48e fv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqGFzecupa WaaSbaaSqaa8qacaqGUbaapaqabaaaaa@4565@ ;
  2. For each { n i ( Ω i ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aacmaapaqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbac faWdbiab=Tqii9aadaqhaaWcbaWdbiaad6gaa8aabaWdbiaadMgaaa GcdaqadaWdaeaapeGaeuyQdC1damaaBaaaleaapeGaamyAaaWdaeqa aaGcpeGaayjkaiaawMcaaaGaay5Eaiaaw2haaaaa@4964@ , the conditions Φ i ( ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abfA6ag9aadaWgaaWcbaWdbiaadMgaa8aabeaak8qadaqadaWdaeaa peGaeyyXICnacaGLOaGaayzkaaaaaa@3C71@  that Ω i n i ( Ω i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abfM6ax9aadaWgaaWcbaWdbiaadMgaa8aabeaak8qacqGHiiIZtuuD JXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=Tqii9aada qhaaWcbaWdbiaad6gaa8aabaWdbiaadMgaaaGcdaqadaWdaeaapeGa euyQdC1damaaBaaaleaapeGaamyAaaWdaeqaaaGcpeGaayjkaiaawM caaaaa@4B88@  be positive definite, are identical for all elements of the classes C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFce=q aaa@42BE@  
  3. Consider λ= λ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abeU7aSjabg2da9iabeU7aS9aadaWgaaWcbaWdbiaaicdaa8aabeaa aaa@3B25@ to be fixed as are τ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abes8a09aadaqhaaWcbaWdbiaaigdaa8aabaWdbiaaccciaaaaaa@3952@  and τ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abes8a09aadaqhaaWcbaWdbiaaikdaa8aabaWdbiaaccciaaaaaa@3953@ . Corresponding to n 2 ( Ω ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaabaaaaaaaaapeGae83cHG0d amaaDaaaleaapeGaamOBaaWdaeaapeGaaGOmaaaakmaabmaapaqaa8 qacqqHPoWvaiaawIcacaGLPaaaaaa@4580@  is an equivalent subclass, namely 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaabaaaaaaaaapeGae83cHG0d amaaDaaaleaapeGaaGOmaaWdaeaapeGaaiiiGaaaaaa@4211@ , as given by

  { 2 =[ γ I   n + 1     n λ 0 ' P n '+ P n λ 0 1     n ' ]; P n n } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aacmaapaqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbac faWdbiab=Tqii9aadaqhaaWcbaWdbiaaikdaa8aabaWdbiaaccciaa GccqGH9aqpdaWadaWdaeaapeGaeq4SdCMaamysa8aadaWgaaWcbaWd biaacckapaWaaWbaaWqabeaapeGaamOBaaaaaSWdaeqaaOWdbiabgU caRiaaigdapaWaaSbaaSqaa8qacaGGGcWdamaaBaaameaapeGaaiiO a8aadaahaaqabeaapeGaamOBaaaaa8aabeaaaSqabaGcpeGaeq4UdW 2damaaBaaaleaapeGaaGimaaWdaeqaaOWdbiaacEcacaWGqbWdamaa BaaaleaapeGaamOBaaWdaeqaaOWdbiaacEcacqGHRaWkcaWGqbWdam aaBaaaleaapeGaamOBaaWdaeqaaOWdbiabeU7aS9aadaWgaaWcbaWd biaaicdaa8aabeaak8qacaaIXaWdamaaBaaaleaapeGaaiiOa8aada WgaaadbaWdbiaacckapaWaaWbaaeqabaWdbiaad6gaaaaapaqabaaa leqaaOWdbiaacEcaaiaawUfacaGLDbaacaGG7aGaamiua8aadaWgaa WcbaWdbiaad6gaa8aabeaak8qacqGHiiIZtuuDJXwAK1uy0HMmaeXb fv3ySLgzG0uy0HgiuD3BaGGbaiab+Lriq9aadaWgaaWcbaWdbiaad6 gaa8aabeaaaOWdbiaawUhacaGL9baaaaa@7578@  ,

 having identical values for τ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abes8a09aadaqhaaWcbaWdbiaaigdaa8aabaWdbiaaccciaaaaaa@3952@  and τ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abes8a09aadaqhaaWcbaWdbiaaikdaa8aabaWdbiaaccciaaaaaa@3953@ , consisting in number as n! MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad6gacaGGHaaaaa@397B@  provided that elements of  are distinct.

Proof (i) The conditions Φ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abfA6ag9aadaWgaaWcbaGaaGymaaqabaaaaa@3813@  of Table 1 are from Theorem 2 of Jensen DR8; Φ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abfA6ag9aadaWgaaWcbaGaaGOmaaqabaaaaa@3814@ follows step–by–step on modifying that proof exclusive of λ ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaaqaaaaaaaaa Wdbiqa=T7agaqeaaaa@3943@ ; and Φ 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abfA6ag9aadaWgaaWcbaGaaG4maaqabaaaaa@3815@  is given in Halperin M.9 (ii) Closure properties for n 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaabaaaaaaaaapeGae83cHG0d amaaDaaaleaapeGaamOBaaWdaeaapeGaaGymaaaaaaa@447F@  and n 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaabaaaaaaaaapeGae83cHG0d amaaDaaaleaapeGaamOBaaWdaeaapeGaaGOmaaaaaaa@4480@  follow with A( λ )= 1     n λ'+λ 1     n ' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadgeadaqadaWdaeaapeGaeq4UdWgacaGLOaGaayzkaaGaeyypa0Ja aGyma8aadaWgaaWcbaWdbiaacckapaWaaSbaaWqaa8qacaGGGcWdam aaCaaabeqaa8qacaWGUbaaaaWdaeqaaaWcbeaak8qacqaH7oaBcaGG NaGaey4kaSIaeq4UdWMaaGyma8aadaWgaaWcbaWdbiaacckapaWaaS baaWqaa8qacaGGGcWdamaaCaaabeqaa8qacaWGUbaaaaWdaeqaaaWc beaak8qacaGGNaaaaa@4A6F@  since [ I   n +A( λ ) ][ I   n +A( θ ) ] n 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aadmaapaqaa8qacaWGjbWdamaaBaaaleaapeGaaiiOa8aadaahaaad beqaa8qacaWGUbaaaaWcpaqabaGcpeGaey4kaSIaamyqamaabmaapa qaa8qacqaH7oaBaiaawIcacaGLPaaaaiaawUfacaGLDbaacqGHsgIR daWadaWdaeaapeGaamysa8aadaWgaaWcbaWdbiaacckapaWaaWbaaW qabeaapeGaamOBaaaaaSWdaeqaaOWdbiabgUcaRiaadgeadaqadaWd aeaapeGaeqiUdehacaGLOaGaayzkaaaacaGLBbGaayzxaaGaeyicI4 8efv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFlecs paWaa0baaSqaa8qacaWGUbaapaqaa8qacaaIXaaaaaaa@5B3E@  and

[ γ I   n +A( λ ) ][ γ I   n +A( θ ) ] n 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aadmaapaqaa8qacqaHZoWzcaWGjbWdamaaBaaaleaapeGaaiiOa8aa daahaaadbeqaa8qacaWGUbaaaaWcpaqabaGcpeGaey4kaSIaamyqam aabmaapaqaa8qacqaH7oaBaiaawIcacaGLPaaaaiaawUfacaGLDbaa cqGHsgIRdaWadaWdaeaapeGaeq4SdCMaamysa8aadaWgaaWcbaWdbi aacckapaWaaWbaaWqabeaapeGaamOBaaaaaSWdaeqaaOWdbiabgUca RiaadgeadaqadaWdaeaapeGaeqiUdehacaGLOaGaayzkaaaacaGLBb GaayzxaaGaeyicI48efv3ySLgznfgDOfdaryqr1ngBPrginfgDObYt UvgaiuaacqWFlecspaWaa0baaSqaa8qacaWGUbaapaqaa8qacaaIYa aaaaaa@5E8D@ with θ= P n 'λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abeI7aXjabg2da9iaadcfapaWaaSbaaSqaa8qacaWGUbaapaqabaGc peGaai4jaiabeU7aSbaa@3CFA@ , and similarly n 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaabaaaaaaaaapeGae83cHG0d amaaDaaaleaapeGaamOBaaWdaeaacaaIZaaaaaaa@4471@  reproduces itself. Conclusion (iii) holds for H n 2 (Ω) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadIeapaWaa0baaSqaa8qacaWGUbaapaqaa8qacaaIYaaaaOGaaiik aiabfM6axjaacMcaaaa@3B7B@  since τ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abes8a09aadaqhaaWcbaWdbiaaigdaa8aabaWdbiaaccciaaaaaa@3952@  and τ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abes8a09aadaqhaaWcbaWdbiaaikdaa8aabaWdbiaaccciaaaaaa@3953@  are invariant under permutations of λ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abeU7aS9aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@386B@ , and the members of 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaabaaaaaaaaapeGae83cHG0a a0baaSqaaiaaikdaaeaacaGGGacaaaaa@4413@  clearly are generated from all n! MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad6gacaGGHaaaaa@397B@  permutations of the elements of λ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abeU7aS9aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@386B@  if distinct.

Table 1 identifies additional parameters as required to achieve exchangeability. It is essential to examine the manner in which these may affect outcomes of the analysis, specifically, through the singular joint distribution of   [ μ ^ ,R ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aadmaapaqaa8qacuaH8oqBpaGbaKaapeGaaiilaiaadkfaaiaawUfa caGLDbaaaaa@3B20@  as

functions of Υ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abfw6avbaa@372B@ .

Repeated use is made of V( A'Y )=A'ΩA MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadAfadaqadaWdaeaapeGaamyqaiaacEcacaWGzbaacaGLOaGaayzk aaGaeyypa0JaamyqaiaacEcacqqHPoWvcaWGbbaaaa@3F40@  from Proposition 1(iii). In addition, P X 0 =[ I   n 1 n 1     n 1     n ' ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aahcfapaWaa0baaSqaaGqad8qacaWFybWdamaaBaaameaapeGaaGim aaWdaeqaaaWcbaWdbiabgwQiEbaakiabg2da9maadmaapaqaa8qaca WFjbWdamaaBaaaleaapeGaaeiOa8aadaahaaadbeqaa8qacaWGUbaa aaWcpaqabaGcpeGaeyOeI0YaaSaaa8aabaWdbiaaigdaa8aabaWdbi aad6gaaaGaaGyma8aadaWgaaWcbaWdbiaabckapaWaaSbaaWqaa8qa caqGGcWdamaaCaaabeqaa8qacaWGUbaaaaWdaeqaaaWcbeaak8qaca aIXaWdamaaBaaaleaapeGaaeiOa8aadaWgaaadbaWdbiaabckapaWa aWbaaeqabaWdbiaad6gaaaaapaqabaaaleqaaOWdbiaacEcaaiaawU facaGLDbaaaaa@4EEF@ is the idempotent projection operator onto the error span of the model MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaabaaaaaaaaapeGae83mH0ea aa@4053@ .

Theorem 2 Given ( Y ){ N n×k ( 1     n μ;ΩΣ ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaabaaaaaaaaapeGae8NeHW0a aeWaa8aabaWdbiaadMfaaiaawIcacaGLPaaacqGHiiIZdaGadaWdae aapeGaamOta8aadaWgaaWcbaWdbiaad6gacqGHxdaTcaWGRbaapaqa baGcpeWaaeWaa8aabaWdbiaaigdapaWaaSbaaSqaa8qacaGGGcWdam aaBaaameaapeGaaiiOa8aadaahaaqabeaapeGaamOBaaaaa8aabeaa aSqabaGcpeGaeqiVd0Maai4oaiabfM6axjabgEPielabfo6atbGaay jkaiaawMcaaaGaay5Eaiaaw2haaaaa@5C4A@ , consider  under the classes C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaabaaaaaaaaapeGae8NaXpea aa@432C@ of Table 1. Then

  1. E[ μ ^ ,R ]=[ μ,0 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadweadaWadaWdaeaapeGafqiVd02dayaajaWdbiaacYcacaWGsbaa caGLBbGaayzxaaGaeyypa0ZaamWaa8aabaWdbiabeY7aTjaacYcaca aIWaaacaGLBbGaayzxaaaaaa@4465@ for each n i C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaabaaaaaaaaapeGae83cHG0d amaaDaaaleaapeGaamOBaaWdaeaapeGaamyAaaaakiabgIGiolab=j q8dbaa@45BB@ ;
  2. The joint dispersion matrices V( μ ^ ,R ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadAfadaqadaWdaeaapeGafqiVd02dayaajaWdbiaacYcacaWGsbaa caGLOaGaayzkaaaaaa@3B92@ of order ( n+1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aabmaabaGaamOBaiabgUcaRiaaigdaaiaawIcacaGLPaaaaaa@3BFC@  under the Table 1 classes are given respectively by

             Ψ( λ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abfI6aznaabmaapaqaa8qacqaH7oaBaiaawIcacaGLPaaaaaa@3CD2@                     Ψ( γ,λ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abfI6aznaabmaapaqaa8qacqaHZoWzcaGGSaGaeq4UdWgacaGLOaGa ayzkaaaaaa@3F29@                              Ψ( ρ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abfI6aznaabmaapaqaa8qacqaHbpGCaiaawIcacaGLPaaaaaa@3CDE@  

[ 1 n + λ ¯ λ' P X 0 P X 0 λ P X 0 ];[ γ n +2 λ ¯ λ' P X 0 P X 0 λ γ P X 0 ][ 1+( n1 )ρ n 0 0 ( 1ρ ) P X 0 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aadmaapaqaauaabaqaciaaaeaapeWaaSaaa8aabaWdbiaaigdaa8aa baWdbiaad6gaaaGaey4kaSIafq4UdW2dayaaraaabaWdbiabeU7aSj aacEcacaWGqbWdamaaDaaaleaapeGaamiwa8aadaWgaaadbaWdbiaa icdaa8aabeaaaSqaa8qacqGHLkIxaaaak8aabaWdbiaadcfapaWaa0 baaSqaa8qacaWGybWdamaaBaaameaapeGaaGimaaWdaeqaaaWcbaWd biabgwQiEbaakiabeU7aSbWdaeaapeGaamiua8aadaqhaaWcbaWdbi aadIfapaWaaSbaaWqaa8qacaaIWaaapaqabaaaleaapeGaeyyPI4fa aaaaaOGaay5waiaaw2faaiaacUdadaWadaWdaeaafaqaaeGacaaaba Wdbmaalaaapaqaa8qacqaHZoWza8aabaWdbiaad6gaaaGaey4kaSIa aGOmaiqbeU7aS9aagaqeaaqaa8qacqaH7oaBcaGGNaGaamiua8aada qhaaWcbaWdbiaadIfapaWaaSbaaWqaa8qacaaIWaaapaqabaaaleaa peGaeyyPI4faaaGcpaqaa8qacaWGqbWdamaaDaaaleaapeGaamiwa8 aadaWgaaadbaWdbiaaicdaa8aabeaaaSqaa8qacqGHLkIxaaGccqaH 7oaBa8aabaWdbiabeo7aNjaadcfapaWaa0baaSqaa8qacaWGybWdam aaBaaameaapeGaaGimaaWdaeqaaaWcbaWdbiabgwQiEbaaaaaakiaa wUfacaGLDbaadaWadaWdaeaafaqaaeGacaaabaWdbmaalaaapaqaa8 qacaaIXaGaey4kaSYaaeWaa8aabaWdbiaad6gacqGHsislcaaIXaaa caGLOaGaayzkaaGaeqyWdihapaqaa8qacaWGUbaaaaWdaeaapeGaaG imaaWdaeaapeGaaGimaaWdaeaapeWaaeWaa8aabaWdbiaaigdacqGH sislcqaHbpGCaiaawIcacaGLPaaacaWGqbWdamaaDaaaleaapeGaam iwa8aadaWgaaadbaWdbiaaicdaa8aabeaaaSqaa8qacqGHLkIxaaaa aaGccaGLBbGaayzxaaaaaa@8466@   (1)

Proof Conclusion (i) follows from E( μ ^ )= 1 n 1     n 'E( Y )= 1 n 1     n '[ 1     n μ ]=μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadweadaqadaWdaeaapeGafqiVd02dayaajaaapeGaayjkaiaawMca aiabg2da9maalaaapaqaa8qacaaIXaaapaqaa8qacaWGUbaaaiaaig dapaWaaSbaaSqaa8qacaGGGcWdamaaBaaameaapeGaaiiOa8aadaah aaqabeaapeGaamOBaaaaa8aabeaaaSqabaGcpeGaai4jaiaadweada qadaWdaeaapeGaamywaaGaayjkaiaawMcaaiabg2da9maalaaapaqa a8qacaaIXaaapaqaa8qacaWGUbaaaiaaigdapaWaaSbaaSqaa8qaca GGGcWdamaaBaaameaapeGaaiiOa8aadaahaaqabeaapeGaamOBaaaa a8aabeaaaSqabaGcpeGaai4jamaadmaapaqaa8qacaaIXaWdamaaBa aaleaapeGaaiiOa8aadaWgaaadbaWdbiaacckapaWaaWbaaeqabaWd biaad6gaaaaapaqabaaaleqaaOWdbiabeY7aTbGaay5waiaaw2faai abg2da9iabeY7aTbaa@5A2D@ , and E( R )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aabweadaqadaWdaeaaieWapeGaa8NuaaGaayjkaiaawMcaaiabg2da 9iaaicdaaaa@3AB2@  by parallel arguments. Next let L'=[ L 1 ' , L 2 ' ] = [ 1 n 1     n ', P X 0 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadYeacaGGNaGaeyypa0ZaamWaa8aabaacbmWdbiaa=XeapaWaaSba aSqaa8qacaaIXaaapaqabaGcdaahaaWcbeqaa8qacaGGNaaaaOGaai ilaiaa=XeapaWaaSbaaSqaa8qacaaIYaaapaqabaGcdaahaaWcbeqa a8qacaGGNaaaaOWaaKWia8aabaWdbiabg2da9aGaayzxaiaawUfaam aalaaapaqaa8qacaaIXaaapaqaa8qacaWGUbaaaiaaigdapaWaaSba aSqaa8qacaqGGcWdamaaBaaameaapeGaaeiOa8aadaahaaqabeaape GaamOBaaaaa8aabeaaaSqabaGcpeGaai4jaiaacYcacaWHqbWdamaa DaaaleaapeGaa8hwa8aadaWgaaadbaWdbiaaicdaa8aabeaaaSqaa8 qacqGHLkIxaaaakiaawUfacaGLDbaaaaa@512C@ , so that L'Y=[ μ ^ ,R ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadYeacaGGNaGaamywaiabg2da9maadmaapaqaa8qacuaH8oqBpaGb aKaapeGaaiilaiaadkfaaiaawUfacaGLDbaaaaa@3E80@  and { V( L'Y )=L' Ω i LΣ }( ** ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aacmaapaqaa8qacaWGwbWaaeWaa8aabaWdbiaadYeacaGGNaGaamyw aaGaayjkaiaawMcaaiabg2da9iaadYeacaGGNaGaeuyQdC1damaaBa aaleaapeGaamyAaaWdaeqaaOWdbiaadYeacqGHxkcXcqqHJoWuaiaa wUhacaGL9baadaqadaWdaeaapeGaaiOkaiaacQcaaiaawIcacaGLPa aaaaa@49A4@  with Ω i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abfM6axnaaBaaaleaacaWGPbaabeaaaaa@384B@  as in Table 1. Substituting these in succession into expression ( ** ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aabmaapaqaa8qacaqGQaGaaeOkaaGaayjkaiaawMcaaaaa@38A5@  gives the displayed matrices (1) for the classes { n 1 , n 2 , n 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aacUhatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab =Tqii9aadaqhaaWcbaWdbiaad6gaa8aabaWdbiaaigdaaaGccaGGSa Gae83cHG0damaaDaaaleaapeGaamOBaaWdaeaapeGaaGOmaaaakiaa cYcacqWFlecspaWaa0baaSqaa8qacaWGUbaapaqaa8qacaaIZaaaaO GaaiyFaaaa@4E24@ , respectively.

Class

Ω i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzaeGaeuyQdC LcdaWgaaWcbaqcLbqacaWGPbaaleqaaaaa@3AF4@  

Φ i () MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzaeaeaaaaaa aaa8qacqqHMoGrk8aadaWgaaWcbaqcLbqapeGaamyAaaWcpaqabaqc LbqapeGaaiikaiabgwSixlaacMcaaaa@3F50@  

 Source

n 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFlecs paWaa0baaSqaa8qacaWGUbaapaqaa8qacaaIXaaaaaaa@4415@  

Ω(λ)=[ I n + 1 n λ+λ 1 n λ ¯ J n ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzaeaeaaaaaa aaa8qacqqHPoWvcaGGOaGaeq4UdWMaaiykaiabg2da9iaacUfacaWG jbGcdaWgaaWcbaGcpaWaaWbaaWqabeaajugabiaad6gaaaaal8qabe aajugabiabgUcaRiaaigdakmaaBaaaleaakmaaBaaameaak8aadaah aaadbeqaaKqzaeGaamOBaaaaaWWdbeqaaaWcbeaajugab8aacqaH7o aBpeGaeyOmGiQaey4kaSYdaiabeU7aS9qacaaIXaGcdaWgaaWcbaGc daWgaaadbaGcpaWaaWbaaWqabeaajugabiaad6gaaaaam8qabeaaaS qabaqcLbqacqGHYaIOcqGHsislpaGafq4UdWMbaebacaWGkbGcdaWg aaWcbaqcLbqacaWGUbaaleqaaKqzaeWdbiaac2faaaa@5771@  

{ τ 1 >n τ 2 1} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzaeaeaaaaaa aaa8qacaGG7bGaeqiXdqNcdaWgaaWcbaqcLbqacaaIXaaaleqaaKqz aeGaeyOpa4JaamOBaiabes8a0PWdamaaBaaaleaajugab8qacaaIYa aal8aabeaajugabiabgkHiTiaaigdacaGG9baaaa@44F8@  

 Jensen8

n 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFlecs paWaa0baaSqaa8qacaWGUbaapaqaa8qacaaIYaaaaaaa@4416@  

Ω(γ,λ)=[γ I n + 1 n λ+λ 1 n )] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzaeaeaaaaaa aaa8qacqqHPoWvcaGGOaGaeq4SdCMaaiilaiabeU7aSjaacMcacqGH 9aqpcaGGBbGaeq4SdCMaamysaOWaaSbaaSqaaOWdamaaCaaameqaba qcLbqacaWGUbaaaaWcpeqabaqcLbqacqGHRaWkcaaIXaGcdaWgaaWc baGcdaWgaaadbaGcpaWaaWbaaWqabeaajugabiaad6gaaaaam8qabe aaaSqabaqcLbqapaGaeq4UdW2dbiabgkdiIkabgUcaR8aacqaH7oaB peGaaGymaOWaaSbaaSqaaOWaaSbaaWqaaOWdamaaCaaameqabaqcLb qacaWGUbaaaaadpeqabaaaleqaaKqzaeGaeyOmGiQaaiykaiaac2fa aaa@5663@  

{γ>[ (nλλ) 1 2 τ 1 ]} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzaeaeaaaaaa aaa8qacaGG7bGaeq4SdCMaeyOpa4Jaai4waiaacIcacaWGUbWdaiab eU7aS9qacqGHYaIOpaGaeq4UdW2dbiaacMcakmaaCaaaleqabaGcda WcaaWcbaqcLbqacaaIXaaaleaajugabiaaikdaaaaaaiabgkHiTiab es8a0PWaaSbaaSqaaKqzaeGaaGymaaWcbeaajugabiaac2facaGG9b aaaa@4D11@  

 Baldessari10

n 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFlecs paWaa0baaSqaa8qacaWGUbaapaqaa8qacaaIZaaaaaaa@4417@  

Ω(ρ)=[(1ρ) I n +ρ 1 n 1 n )] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzaeaeaaaaaa aaa8qacqqHPoWvcaGGOaGaeqyWdiNaaiykaiabg2da9iaacUfacaGG OaGaaGymaiabgkHiTiabeg8aYjaacMcacaWGjbGcdaWgaaWcbaGcpa WaaWbaaWqabeaajugabiaad6gaaaaal8qabeaajugabiabgUcaRiab eg8aYjaaigdakmaaBaaaleaakmaaBaaameaak8aadaahaaadbeqaaK qzaeGaamOBaaaaaWWdbeqaaaWcbeaajugabiaaigdakmaaBaaaleaa kmaaBaaameaak8aadaahaaadbeqaaKqzaeGaamOBaaaaaWWdbeqaaa WcbeaajugabiabgkdiIkaacMcacaGGDbaaaa@52EA@  

{ 1 (n+1) ρ1 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaiWaaeaadaWcaaqaaKqzaeGaeyOeI0IaaGymaaGcbaqcLbqacaGG OaGaamOBaiabgUcaRiaaigdacaGGPaaaaiabgsMiJkabeg8aYjabgs MiJkaaigdaaOGaay5Eaiaaw2haaaaa@4622@  

 Halperin9

Table 1 Classes of matrices n i ( Ω i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaqcLbqaqaaaaaaaaaWdbiab =TqiiPWdamaaDaaaleaajugab8qacaWGUbaal8aabaqcLbqapeGaam yAaaaacaGGOaGaeuyQdCLcpaWaaSbaaSqaaKqzaeWdbiaadMgaaSWd aeqaaKqzaeWdbiaacMcaaaa@4ADC@  for Y i F n×k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzaeaeaaaaaa aaa8qacaWHzbGcpaWaaSbaaSqaaKqzaeWdbiaadMgaaSWdaeqaaKqz aeGaeyicI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiu aacqWFfcVrkmaaBaaaleaajugabiaad6gacqGHxdaTcaWGRbaaleqa aaaa@4D16@  as factors of V( Y i )= Ω i Σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzaeaeaaaaaa aaa8qacaWGwbGaaiikaiaadMfak8aadaWgaaWcbaqcLbqapeGaamyA aaWcpaqabaqcLbqapeGaaiykaiabg2da98aacqqHPoWvkmaaBaaale aajugabiaadMgaaSqabaqcLbqacqGHxkcXpeGaeu4Odmfaaa@4592@  having exchangeable rows, together with conditions Φ i () MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzaeaeaaaaaa aaa8qacqqHMoGrk8aadaWgaaWcbaqcLbqapeGaamyAaaWcpaqabaqc LbqapeGaaiikaiabgwSixlaacMcaaaa@3F50@  for Ω i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzaeGaeuyQdC LcdaWgaaWcbaqcLbqacaWGPbaaleqaaaaa@3AF4@  to be positive definite, where λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzaeaeaaaaaa aaa8qacqaH7oaBaaa@399C@  is of order ( n×1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaaeaajugabiaad6gacqGHxdaTcaaIXaaakiaawIcacaGLPaaa aaa@3D40@ , τ 1 = λ 1 ++ λ n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzaeaeaaaaaa aaa8qacqaHepaDkmaaBaaaleaajugabiaaigdaaSqabaqcLbqacqGH 9aqpcqaH7oaBk8aadaWgaaWcbaqcLbqapeGaaGymaaWcpaqabaqcLb qapeGaey4kaSIaeyOjGWRaey4kaSIaeq4UdWMcpaWaaSbaaSqaaKqz aeWdbiaad6gaaSWdaeqaaaaa@4730@  and τ 2 = Σ i=1 n ( λ i λ ¯ ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzaeaeaaaaaa aaa8qacqaHepaDk8aadaWgaaWcbaGaaGOmaaqabaqcLbqapeGaeyyp a0Jaeu4OdmLcdaqhaaWcbaqcLbqacaWGPbGaeyypa0JaaGymaaWcba qcLbqacaWGUbaaaOWaaeWaaeaajugabiabeU7aSPWdamaaBaaaleaa jugab8qacaWGPbaal8aabeaajugab8qacqGHsislcuaH7oaBgaqeaa GccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaaa@4C26@

In short, Theorem 2 catalogs the essentials of requiring that errors on F n×k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H MmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=vi8gnaaBaaaleaacaWG UbGaey41aqRaam4Aaaqabaaaaa@47CC@  be exchangeable as in Table 1. Both ( μ ^ ,S ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaalabaaaaaaaaape WaaeWaaOWdaeaaieWajugab8qaceWF8oWdayaajaWdbiaacYcacaWF tbaakiaawIcacaGLPaaaaaa@3AD8@  are affected in having properties discordant with those of the conventional ( Y )= N n×k ( μ, I   n Σ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaKqzaeaeaaaaaaaaa8qacqWF sectlmaabmaak8aabaqcLbqapeGaaCywaaGccaGLOaGaayzkaaqcLb qacqGH9aqpcaWGobWcpaWaaSbaaeaajugab8qacaWGUbGaey41aqRa am4AaaWcpaqabaWdbmaabmaak8aabaacbmqcLbqapeGaa4hVdiaacY cacaGFjbWcpaWaaSbaaeaajugab8qacaqGGcWcpaWaaWbaaWqabeaa jugab8qacaWGUbaaaaWcpaqabaqcLbqapeGaey4LIqSaaC4OdaGcca GLOaGaayzkaaaaaa@5735@ . Specifically, requiring that errors be exchangeable may serve to compromise the evidence contained in  with regard to, to be examined subsequently. Details are collected in the following Table 2 as excerpted from Theorem 2.

Scale–invariance

 This concept is central to establishing properties under independence as they may carry over to include exchangeable dependence. To these ends, associate with the classes C={ n 1 , n 2 , n 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaabaaaaaaaaapeGae8NaXpKa eyypa0Jaai4Eaiab=Tqii9aadaqhaaWcbaWdbiaad6gaa8aabaWdbi aaigdaaaGccaGGSaGae83cHG0damaaDaaaleaapeGaamOBaaWdaeaa peGaaGOmaaaakiaacYcacqWFlecspaWaa0baaSqaa8qacaWGUbaapa qaa8qacaaIZaaaaOGaaiyFaaaa@50E5@  the values κ[ 1,γ,( 1ρ ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abeQ7aRjabgIGiopaadmaapaqaa8qacaaIXaGaaiilaiabeo7aNjaa cYcadaqadaWdaeaapeGaaGymaiabgkHiTiabeg8aYbGaayjkaiaawM caaaGaay5waiaaw2faaaaa@43BC@  from the final row of Table 2.

Lemma 2 Let T( S ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aabsfadaqadaWdaeaapeGaaC4uaaGaayjkaiaawMcaaaaa@38FE@  be scale invariant, i.e. T( S )=T( cS ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aabsfadaqadaWdaeaapeGaaC4uaaGaayjkaiaawMcaaiabg2da9iaa bsfadaqadaWdaeaapeGaae4yaiaahofaaiaawIcacaGLPaaaaaa@3E45@ for c0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaaqaaaaaaaaa Wdbiaa=ngacqGHGjsUcaWFWaaaaa@3B48@ ;and consider these as they may apply in the exchangeable classes C={ n 1 , n 2 , n 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaabaaaaaaaaapeGae8NaXpKa eyypa0Jaai4Eaiab=Tqii9aadaqhaaWcbaWdbiaad6gaa8aabaWdbi aaigdaaaGccaGGSaGae83cHG0damaaDaaaleaapeGaamOBaaWdaeaa peGaaGOmaaaakiaacYcacqWFlecspaWaa0baaSqaa8qacaWGUbaapa qaa8qacaaIZaaaaOGaaiyFaaaa@50E5@  of Table 1.

  1. The scale parameters of ( νS ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaabaaaaaaaaapeGae8NeHW0a aeWaa8aabaWdbiabe27aUjaahofaaiaawIcacaGLPaaaaaa@46B1@ are respectively {κΣ;κ[1,γ,( 1ρ )} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aacUhacqaH6oWAcaWHJoGaai4oaiabeQ7aRjaaygW7cqGHiiIZcaaM b8Uaai4waiaaigdacaGGSaGaeq4SdCMaaiilamaabmaapaqaa8qaca aIXaGaaGzaVlabgkHiTiaaygW7cqaHbpGCaiaawIcacaGLPaaacaGG 9baaaa@5096@  for the classes of Table 1;
  2. Properties of T( S ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aabsfadaqadaWdaeaapeGaaC4uaaGaayjkaiaawMcaaaaa@38FE@ are identical to those for {( Y ){ N n×k ( 1     n μ; I n Σ)} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzaeaeaaaaaa aaa8qacaGG7bWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvga iuaacqWFsectlmaabmaak8aabaqcLbqapeGaamywaaGccaGLOaGaay zkaaqcLbqacqGHiiIZcaGG7bGaamOtaSWdamaaBaaabaqcLbqapeGa amOBaiabgEna0kaadUgaaSWdaeqaaiaacIcajugab8qacaaIXaWcpa WaaSbaaeaajugab8qacaGGGcWcpaWaaSbaaWqaaKqzaeWdbiaaccka l8aadaahaaadbeqaaKqzaeWdbiaad6gaaaaam8aabeaaaSqabaqcLb qapeGaeqiVd0Maai4oaiaadMeal8aadaWgaaqaaKqzaeWdbiaad6ga aSWdaeqaaKqzaeWdbiabgEPielabfo6atjaacMcacaGG9baaaa@61ED@ , for each of the exchangeable classes C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadoeaaaa@366B@ .

Proof. Conclusion (i) is from Table 2 as noted. The proof for (ii) hinges on scaling properties of Wishart matrices, namely, that R'R=νS MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugababaaaaaaa aapeGaaCOuaiaacEcacaWHsbGaeyypa0JaeqyVd4MaaC4uaaaa@3C0D@ , so that if ( νS )= W k ( ν,κΣ,0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaqcLbqaqaaaaaaaaaWdbiab =jrimTWaaeWaaOWdaeaajugab8qacqaH9oGBcaWGtbaakiaawIcaca GLPaaajugabiabg2da9iaadEfal8aadaWgaaqaaKqzaeWdbiaadUga aSWdaeqaa8qadaqadaGcpaqaaKqzaeWdbiabe27aUjaacYcacqaH6o WAcqqHJoWucaGGSaGaaGimaaGccaGLOaGaayzkaaaaaa@5494@  as in Table 2, then ( νS/κ )= W k ( ν,Σ,0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaKqzaeaeaaaaaaaaa8qacqWF sectlmaabmaak8aabaqcLbqapeGaeqyVd4MaaC4uaiaac+cacqaH6o WAaOGaayjkaiaawMcaaKqzaeGaeyypa0JaaC4vaSWdamaaBaaabaqc LbqapeGaam4AaaWcpaqabaWdbmaabmaak8aabaqcLbqapeGaeqyVd4 Maaiilaiaaho6acaGGSaGaaGimaaGccaGLOaGaayzkaaaaaa@5324@ , the default state. Accordingly, infer that T( S ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aabsfadaqadaWdaeaapeGaaC4uaaGaayjkaiaawMcaaaaa@38FE@  behaves as if from ( νS )= W k ( ν,κΣ,0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaqcLbqaqaaaaaaaaaWdbiab =jrimTWaaeWaaOWdaeaajugab8qacqaH9oGBcaWGtbaakiaawIcaca GLPaaajugabiabg2da9iaadEfal8aadaWgaaqaaKqzaeWdbiaadUga aSWdaeqaa8qadaqadaGcpaqaaKqzaeWdbiabe27aUjaacYcacqaH6o WAcqqHJoWucaGGSaGaaGimaaGccaGLOaGaayzkaaaaaa@5494@  in the third row of Table 2, and T( S/κ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aabsfadaqadaWdaeaapeGaaC4uaiaac+cacqaH6oWAaiaawIcacaGL Paaaaaa@3B63@  behaves as if from (νS/κ)= W k (ν,Σ,0) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFsect caGGOaGaeqyVd4Maam4uaiaac+cacqaH6oWAcaGGPaGaeyypa0Jaam 4va8aadaWgaaWcbaWdbiaadUgaa8aabeaak8qacaGGOaGaeqyVd4Ma aiilaiabfo6atjaacYcacaaIWaGaaiykaaaa@524A@ . But T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaaqaaaaaaaaa Wdbiaa=rfaaaa@38C1@  is scale–invariant, so that T( S )=T( S/κ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aabsfadaqadaWdaeaapeGaaC4uaaGaayjkaiaawMcaaiabg2da9iaa bsfadaqadaWdaeaapeGaaC4uaiaac+cacqaH6oWAaiaawIcacaGLPa aaaaa@3FC4@ , as if from {( Y ){ N n×k ( 1     n μ; I n Σ)} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzaeaeaaaaaa aaa8qacaGG7bWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvga iuaacqWFsectlmaabmaak8aabaqcLbqapeGaamywaaGccaGLOaGaay zkaaqcLbqacqGHiiIZcaGG7bGaamOtaSWdamaaBaaabaqcLbqapeGa amOBaiabgEna0kaadUgaaSWdaeqaaiaacIcajugab8qacaaIXaWcpa WaaSbaaeaajugab8qacaGGGcWcpaWaaSbaaWqaaKqzaeWdbiaaccka l8aadaahaaadbeqaaKqzaeWdbiaad6gaaaaam8aabeaaaSqabaqcLb qapeGaeqiVd0Maai4oaiaadMeal8aadaWgaaqaaKqzaeWdbiaad6ga aSWdaeqaaKqzaeWdbiabgEPielabfo6atjaacMcacaGG9baaaa@61ED@ to complete a proof.

Tests for μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aabY7aaaa@36E5@

 A complement to estimation is hypothesis testing under exchangeable errors. First consider μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTbaa@390F@ .

For V( Y )= I n Σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOvamaabmaapaqaa8qacaWGzbaacaGLOaGaayzkaaGaeyypa0Ja amysa8aadaWgaaWcbaWdbiaad6gaa8aabeaak8qacqGHxkcXcqqHJo Wuaaa@41A2@ , recall that

  1. V( μ ^ )= 1 n Σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugababaaaaaaa aapeGaamOvaSWaaeWaaOWdaeaajugab8qacuaH8oqBpaGbaKaaaOWd biaawIcacaGLPaaajugabiabg2da9OWaaSaaaeaacaaIXaaabaGaam OBaaaaieqajugabiaa=n6aaaa@4229@ ;
  2. [ μ ^ ,S ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaSaeaaaaaaaaa8 qadaWadaGcpaqaaKqzaeWdbiqbeY7aT9aagaqca8qacaGGSaGaam4u aaGccaGLBbGaayzxaaaaaa@3D85@ are mutually independent; and
  3. Hotelling’s11 test for Η 0 :μ= μ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzaeaeaaaaaa aaa8qacqqHxoasl8aadaWgaaqaaKqzaeWdbiaaicdaaSWdaeqaaKqz aeWdbiaacQdacqaH8oqBcqGH9aqpcqaH8oqBl8aadaWgaaqaaKqzae WdbiaaicdaaSWdaeqaaaaa@4220@ vs Η 1 :μ μ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzaeaeaaaaaa aaa8qacqqHxoasl8aadaWgaaqaaKqzaeWdbiaaigdaaSWdaeqaaKqz aeWdbiaacQdacqaH8oqBcqGHGjsUcqaH8oqBl8aadaWgaaqaaKqzae WdbiaaicdaaSWdaeqaaaaa@42E2@  utilizes the statistic

T 2 =n( μ ^ μ 0 ) S 1 ( μ ^ μ 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzaeaeaaaaaa aaa8qacaWGubWcpaWaaWbaaeqabaqcLbqapeGaaGOmaaaacqGH9aqp caWGUbGaaiikaSWaaecaaOWdaeaajugab8qacqaH8oqBaOGaayPada qcLbqacqGHsislcqaH8oqBlmaaBaaabaqcLbqacaaIWaaaleqaaKqz aeGaaiykaiaadofalmaaCaaabeqaaKqzaeGaeyOeI0IaaGymaaaaca GGOaWcdaqiaaGcpaqaaKqzaeWdbiabeY7aTbGccaGLcmaajugabiab gkHiTiabeY7aTTWaaSbaaeaajugabiaaicdaaSqabaqcLbqaceGGPa Gbauaaaaa@5217@   (2)

with distribution ( T 2 )=   T k 2 ( ν,θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaqcLbqaqaaaaaaaaaWdbiab =jrimTWaaeWaaOWdaeaajugab8qacaWGubWcpaWaaWbaaeqabaqcLb qapeGaaGOmaaaaaOGaayjkaiaawMcaaKqzaeGaeyypa0JaaiiOaiaa cckacaWGubWcpaWaa0baaeaajugab8qacaWGRbaal8aabaqcLbqape GaaGOmaaaalmaabmaak8aabaqcLbqapeGaeqyVd4MaaiilaiabeI7a XbGccaGLOaGaayzkaaaaaa@54E6@ of order k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Aaaaa@3869@ having ν=( n1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abe27aUjabg2da9maabmaapaqaa8qacaqGUbGaeyOeI0IaaGymaaGa ayjkaiaawMcaaaaa@3CA2@ degrees of freedom and noncentrality parameter θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzaeaeaaaaaa aaa8qacqaH4oqCaaa@399E@ . Under the error classes of Table 1, the principal negative finding of this study is the following.

Lemma 3 Consider μ ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzaeaeaaaaaa aaa8qacuaH8oqBpaGbaKaaaaa@39BD@  in the classes C={ n 1 , n 2 , n 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaabaaaaaaaaapeGae8NaXpKa eyypa0ZaaiWaa8aabaWdbiab=Tqii9aadaqhaaWcbaWdbiaad6gaa8 aabaWdbiaaigdaaaGccaGGSaGae83cHG0damaaDaaaleaapeGaamOB aaWdaeaapeGaaGOmaaaakiaacYcacqWFlecspaWaa0baaSqaa8qaca WGUbaapaqaa8qacaaIZaaaaaGccaGL7bGaayzFaaaaaa@4EF5@ , together with T 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aabsfapaWaaWbaaSqabeaapeGaaGOmaaaaaaa@3782@  for testing Η 0 :μ= μ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzaeaeaaaaaa aaa8qacqqHxoasl8aadaWgaaqaaKqzaeWdbiaaicdaaSWdaeqaaKqz aeWdbiaacQdacqaH8oqBcqGH9aqpcqaH8oqBl8aadaWgaaqaaKqzae WdbiaaicdaaSWdaeqaaaaa@4220@ vs Η 0 :μ= μ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzaeaeaaaaaa aaa8qacqqHxoasl8aadaWgaaqaaKqzaeWdbiaaicdaaSWdaeqaaKqz aeWdbiaacQdacqaH8oqBcqGH9aqpcqaH8oqBl8aadaWgaaqaaKqzae WdbiaaicdaaSWdaeqaaaaa@4220@ .

  1. That ( μ ^ ,S ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaSaeaaaaaaaaa8 qadaqadaGcpaqaaKqzaeWdbiqbeY7aT9aagaqca8qacaGGSaGaam4u aaGccaGLOaGaayzkaaaaaa@3D1C@ are independent is met only in the class n 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaabaaaaaaaaapeGae83cHG0d amaaDaaaleaapeGaamOBaaWdaeaapeGaaG4maaaaaaa@4241@ ;
  2. Replacing n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeOBaaaa@386A@ in Equation (2) are reciprocals of ( 1 n + λ ¯ ),( γ n +2 λ ¯ ),( 1+( n1 )ρ n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaSaeaaaaaaaaa8 qadaqadaGcpaqaaSWdbmaalaaak8aabaqcLbqapeGaaGymaaGcpaqa aKqzaeWdbiaad6gaaaGaey4kaSIafq4UdW2dayaaraaak8qacaGLOa GaayzkaaqcLbqacaGGSaWcdaqadaGcpaqaaSWdbmaalaaak8aabaqc LbqapeGaeq4SdCgak8aabaqcLbqapeGaamOBaaaacqGHRaWkcaaIYa Gafq4UdW2dayaaraaak8qacaGLOaGaayzkaaqcLbqacaGGSaWcdaqa daGcpaqaaSWdbmaalaaak8aabaqcLbqapeGaaGymaiabgUcaRSWaae WaaOWdaeaajugab8qacaWGUbGaeyOeI0IaaGymaaGccaGLOaGaayzk aaqcLbqacqaHbpGCaOWdaeaajugab8qacaWGUbaaaaGccaGLOaGaay zkaaaaaa@571B@ , and these typically are unknown;
  3. In short, the classical tests for μ ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzaeaeaaaaaa aaa8qacuaH8oqBpaGbaKaaaaa@39BD@ are unsupported in the exchangeable error classes C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaabaaaaaaaaapeGae8NaXpea aa@4328@ .

 Proof. (i) The independence of ( μ ^ ,S ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaSaeaaaaaaaaa8 qadaqadaGcpaqaaKqzaeWdbiqbeY7aT9aagaqca8qacaGGSaGaam4u aaGccaGLOaGaayzkaaaaaa@3D1C@ , namely Cov( μ ^ ,R )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzaeaeaaaaaa aaa8qacaWGdbGaam4BaiaadAhalmaabmaak8aabaqcLbqapeGafqiV d02dayaajaWdbiaacYcacaWGsbaakiaawIcacaGLPaaajugabiabg2 da9iaaicdaaaa@4270@ , is met only in the class n 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaabaaaaaaaaapeGae83cHG0d amaaDaaaleaapeGaamOBaaWdaeaapeGaaG4maaaaaaa@4241@  in Theorem 2, unless λ S pn ( X 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzaeaeaaaaaa aaa8qacqaH7oaBcqGHiiIZcaWGtbWcpaWaaSbaaeaajugab8qacaWG WbGaamOBaaWcpaqabaWdbmaabmaak8aabaqcLbqapeGaamiwaSWdam aaBaaabaqcLbqapeGaaGimaaWcpaqabaaak8qacaGLOaGaayzkaaaa aa@436A@  for both n 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFlecs paWaa0baaSqaa8qacaWGUbaapaqaa8qacaaIXaaaaaaa@4415@  and n 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFlecs paWaa0baaSqaa8qacaWGUbaapaqaa8qacaaIYaaaaaaa@4416@  in Equation (1), in which case λ' P X 0 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzaeaeaaaaaa aaa8qacqaH7oaBcaGGNaGaamiuaSWdamaaDaaabaqcLbqapeGaamiw aSWdamaaBaaameaajugab8qacaaIWaaam8aabeaaaSqaaKqzaeWdbi abgwQiEbaacqGH9aqpcaaIWaaaaa@424A@ . Conclusion (ii) follows from Theorem 2 and Table 2, and Conclusion (iii) follows in summary.

Item

n 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFlecs paWaa0baaSqaa8qacaWGUbaapaqaa8qacaaIXaaaaaaa@4415@  

n 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFlecs paWaa0baaSqaa8qacaWGUbaapaqaa8qacaaIYaaaaaaa@4416@  

n 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFlecs paWaa0baaSqaa8qacaWGUbaapaqaa8qacaaIZaaaaaaa@4417@  

( μ ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaqcLbqaqaaaaaaaaaWdbiab =jrimjaacIcakmaaHaaapaqaaKqzaeGaeqiVd0gak8qacaGLcmaaju gabiaacMcaaaa@4758@   N 1×k (μ,( 1 n + λ ¯ )Σ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzaeaeaaaaaa aaa8qacaWGobGcdaWgaaWcbaqcLbqacaaIXaGaey41aqRaam4AaaWc beaajugabiaacIcacqaH8oqBcaGGSaGaaiikaOWaaSaaaeaajugabi aaigdaaOqaaKqzaeGaamOBaaaacqGHRaWkcuaH7oaBgaqeaiaacMca cqqHJoWucaGGPaaaaa@4996@   N 1×k (μ,( γ n +2 λ ¯ )Σ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzaeaeaaaaaa aaa8qacaWGobGcdaWgaaWcbaqcLbqacaaIXaGaey41aqRaam4AaaWc beaajugabiaacIcacqaH8oqBcaGGSaGaaiikaOWaaSaaaeaajugabi abeo7aNbGcbaqcLbqacaWGUbaaaiabgUcaRiaaikdacuaH7oaBgaqe aiaacMcacqqHJoWucaGGPaaaaa@4B3E@   N 1×k (μ,( 1+(n1) n ρ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzaeaeaaaaaa aaa8qacaWGobGcdaWgaaWcbaqcLbqacaaIXaGaey41aqRaam4AaaWc beaajugabiaacIcacqaH8oqBcaGGSaGaaiikaOWaaSaaaeaajugabi aaigdacqGHRaWkcaGGOaGaamOBaiabgkHiTiaaigdacaGGPaaakeaa jugabiaad6gaaaGaeqyWdiNaaiykaaaa@4B4D@  
(R) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaqcLbqaqaaaaaaaaaWdbiab =jrimjaacIcacaWGsbGaaiykaaaa@44A6@   N n×k (0, P X 0 Σ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzaeaeaaaaaa aaa8qacaWGobGcdaWgaaWcbaqcLbqacaWGUbGaey41aqRaam4AaaWc beaajugabiaacIcacaaIWaGaaiilaiaadcfakmaaDaaaleaajugabi aadIfakmaaBaaameaajugabiaaicdaaWqabaaaleaajugabiabgwQi EbaacqGHxkcXcqqHJoWucaGGPaaaaa@4A13@   N n×k (0, P X 0 γΣ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzaeaeaaaaaa aaa8qacaWGobGcdaWgaaWcbaqcLbqacaWGUbGaey41aqRaam4AaaWc beaajugabiaacIcacaaIWaGaaiilaiaadcfakmaaDaaaleaajugabi aadIfakmaaBaaameaajugabiaaicdaaWqabaaaleaajugabiabgwQi EbaacqGHxkcXcqaHZoWzcqqHJoWucaGGPaaaaa@4BBA@   N n×k (0, P X 0 (1ρ)Σ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzaeaeaaaaaa aaa8qacaWGobGcdaWgaaWcbaqcLbqacaWGUbGaey41aqRaam4AaaWc beaajugabiaacIcacaaIWaGaaiilaiaadcfakmaaDaaaleaajugabi aadIfakmaaBaaameaajugabiaaicdaaWqabaaaleaajugabiabgwQi EbaacqGHxkcXcaGGOaGaaGymaiabgkHiTiabeg8aYjaacMcacqqHJo WucaGGPaaaaa@4ED4@  
(νS) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFsect caGGOaGaeqyVd4gcbmGaa43uaiaacMcaaaa@45F7@   W k (ν,Σ,0) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzaeaeaaaaaa aaa8qacaWGxbGcpaWaaSbaaSqaaKqzaeWdbiaadUgaaSWdaeqaaKqz aeWdbiaacIcacqaH9oGBcaGGSaGaeu4OdmLaaiilaiaaicdacaGGPa aaaa@41C0@   W k (ν,γΣ,0) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzaeaeaaaaaa aaa8qacaWGxbGcpaWaaSbaaSqaaKqzaeWdbiaadUgaaSWdaeqaaKqz aeWdbiaacIcacqaH9oGBcaGGSaGaeq4SdCMaeu4OdmLaaiilaiaaic dacaGGPaaaaa@4367@   W k (ν,(1ρ),Σ,0) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzaeaeaaaaaa aaa8qacaWGxbGcpaWaaSbaaSqaaKqzaeWdbiaadUgaaSWdaeqaaKqz aeWdbiaacIcacqaH9oGBcaGGSaGaaiikaiaaigdacqGHsislcqaHbp GCcaGGPaGaaiilaiabfo6atjaacYcacaaIWaGaaiykaaaa@4731@  
E(S) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyraiaacIcaieWacaWFtbGaaiykaaaa@3A7C@   Σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzaeaeaaaaaa aaa8qacqqHJoWuaaa@396C@   γΣ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzaeaeaaaaaa aaa8qacqaHZoWzcqqHJoWuaaa@3B13@   (1ρ)Σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzaeaeaaaaaa aaa8qacaGGOaGaaGymaiabgkHiTiabeg8aYjaacMcacqqHJoWuaaa@3E2D@  

Table 2 Properties of R= P X 0 Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadKqzaeaeaa aaaaaaa8qacaWFsbGaeyypa0dcbeGaa4huaOWaa0baaSqaaKqzaeGa a8hwaOWaaSbaaWqaaiaaicdaaeqaaaWcbaqcLbqacqGHLkIxaaGaaC ywaaaa@4024@  and, νS= R R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzaeaeaaaaaa aaa8qacqaH9oGBieWacaWFtbGaeyypa0Jab8NuayaafaGaa8Nuaaaa @3D38@ where P X 0 =[ I n 1 n 1 n 1 n ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqabKqzaeaeaa aaaaaaa8qacaWFqbGcdaqhaaWcbaacbmqcLbqacaGFybGcdaWgaaad baqcLbqacaaIWaaameqaaaWcbaqcLbqacqGHLkIxaaGaeyypa0Jcda WadaqaaKqzaeGaa4xsaOWaaSbaaSqaaOWdamaaCaaameqabaqcLbqa caWGUbaaaaWcpeqabaqcLbqacqGHsislkmaalaaabaqcLbqacaaIXa aakeaajugabiaad6gaaaGaa8xmaOWaaSbaaSqaaOWaaSbaaWqaaOWd amaaCaaameqabaqcLbqacaWGUbaaaaadpeqabaaaleqaaKqzaeGaa8 xmaOWaaSbaaSqaaOWaaSbaaWqaaOWdamaaCaaameqabaqcLbqacaWG UbaaaaadpeqabaaaleqaaKqzaeGaeyOmGikakiaawUfacaGLDbaaaa a@506A@ ; moreover, the distribution W k (ν,Σ,0) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4va8aadaWgaaWcbaWdbiaadUgaa8aabeaak8qacaGGOaGaeqyV d4Maaiilaiabfo6atjaacYcacaaIWaGaaiykaaaa@4068@  is central Wishart of order k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Aaaaa@3869@ , having ν=(n1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyVd4Maeyypa0Jaaiikaiaad6gacqGHsislcaaIXaGaaiykaaaa @3E2B@  degrees of freedom and scale parameters Σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzaeaeaaaaaa aaa8qacqqHJoWuaaa@396C@

Inferences for Σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aabo6aaaa@36CC@

Estimation

The dispersion matrix { V( Y i )= ω   i i Σ } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaSaeaaaaaaaaa8 qadaGadaGcpaqaaKqzaeWdbiaadAfalmaabmaak8aabaqcLbqapeGa amywaSWdamaaBaaabaqcLbqapeGaamyAaaWcpaqabaaak8qacaGLOa GaayzkaaqcLbqacqGH9aqpcqaHjpWDl8aadaWgaaqaaKqzaeWdbiaa cckal8aadaWgaaadbaqcLbqapeGaamyAaaadpaqabaWcdaWgaaadba qcLbqapeGaamyAaaadpaqabaaaleqaaKqzaeWdbiabfo6atbGccaGL 7bGaayzFaaaaaa@4AD5@  within the rows of Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aahMfaaaa@3685@ , and the cross–covariances { Cov( Y i , Y j )= ω   ij Σ } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaalabaaaaaaaaape WaaiWaaOWdaeaajugab8qacaWGdbGaam4BaiaadAhalmaabmaak8aa baqcLbqapeGaamywaSWdamaaBaaabaqcLbqapeGaamyAaaWcpaqaba qcLbqapeGaaiilaiaadMfal8aadaWgaaqaaKqzaeWdbiaadQgaaSWd aeqaaaGcpeGaayjkaiaawMcaaKqzaeGaeyypa0dcbaGccaWFjpWcpa WaaSbaaeaajugab8qacaGGGcGcdaWgaaWcbaGaamyAaiaadQgaaeqa aaWdaeqaaKqzaeWdbiabfo6atbGccaGL7bGaayzFaaaaaa@4F0A@  between rows, all depend on Σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aabo6aaaa@36CC@ . In addition to properties of S=R'R/( n1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugababaaaaaaa aapeGaaC4uaiabg2da9iaahkfacaGGNaGaaCOuaiaac+calmaabmaa k8aabaqcLbqapeGaamOBaiabgkHiTiaaigdaaOGaayjkaiaawMcaaa aa@3FD9@  as reported in Theorem 2 and Table 2, let [ S 1 , S 2 , S 3 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaalabaaaaaaaaape WaamWaaOWdaeaajugab8qacaWHtbWcpaWaaSbaaeaajugab8qacaaI Xaaal8aabeaajugab8qacaGGSaGaaC4uaSWdamaaBaaabaqcLbqape GaaGOmaaWcpaqabaqcLbqapeGaaiilaiaahofal8aadaWgaaqaaKqz aeWdbiaaiodaaSWdaeqaaaGcpeGaay5waiaaw2faaaaa@41F4@  be the error mean squares for the classes C={ n 1 , n 2 , n 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaabaaaaaaaaapeGae8NaXpKa eyypa0ZaaiWaa8aabaWdbiab=Tqii9aadaqhaaWcbaWdbiaad6gaa8 aabaWdbiaaigdaaaGccaGGSaGae83cHG0damaaDaaaleaapeGaamOB aaWdaeaapeGaaGOmaaaakiaacYcacqWFlecspaWaa0baaSqaa8qaca WGUbaapaqaa8qacaaIZaaaaaGccaGL7bGaayzFaaaaaa@4EF5@ . Essential features are that { ( ν, S i )= W k ( ν, κ i Σ,0 ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaSaeaaaaaaaaa8 qadaGadaGcpaqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KB LbacfaqcLbqapeGae8NeHW0cdaqadaGcpaqaaKqzaeWdbiabe27aUj aacYcacaWGtbWcpaWaaSbaaeaajugab8qacaWGPbaal8aabeaaaOWd biaawIcacaGLPaaajugabiabg2da9iaadEfal8aadaWgaaqaaKqzae WdbiaadUgaaSWdaeqaa8qadaqadaGcpaqaaKqzaeWdbiabe27aUjaa cYcacqaH6oWAl8aadaWgaaqaaKqzaeWdbiaadMgaaSWdaeqaaKqzae Wdbiabfo6atjaacYcacaaIWaaakiaawIcacaGLPaaaaiaawUhacaGL 9baaaaa@5BBC@  for ν=( n1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abe27aUjabg2da9maabmaapaqaa8qacaqGUbGaeyOeI0IaaGymaaGa ayjkaiaawMcaaaaa@3CA2@  and κ i [ 1,γ,( 1ρ ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzaeaeaaaaaa aaa8qacqaH6oWAl8aadaWgaaqaaKqzaeWdbiaadMgaaSWdaeqaaKqz aeWdbiabgIGioVWaamWaaOWdaeaajugab8qacaaIXaGaaiilaiabeo 7aNjaacYcalmaabmaak8aabaqcLbqapeGaaGymaiabgkHiTiabeg8a YbGccaGLOaGaayzkaaaacaGLBbGaayzxaaaaaa@4954@  for the classes C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaabaaaaaaaaapeGae8NaXpea aa@40E8@ . Thus S 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aahofapaWaaSbaaSqaa8qacaaIXaaapaqabaaaaa@3794@  is unbiased for Σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzaeaeaaaaaa aaa8qacqqHJoWuaaa@396C@ , whereas ( S 2 , S 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaalabaaaaaaaaape WaaeWaaOWdaeaajugab8qacaWHtbWcpaWaaSbaaeaajugab8qacaaI Yaaal8aabeaajugab8qacaGGSaGaaC4uaSWdamaaBaaabaqcLbqape GaaG4maaWcpaqabaaak8qacaGLOaGaayzkaaaaaa@3DF1@  are biased by the factors [ γ,( 1ρ ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaSaeaaaaaaaaa8 qadaWadaGcpaqaaKqzaeWdbiabeo7aNjaacYcalmaabmaak8aabaqc LbqapeGaaGymaiabgkHiTiabeg8aYbGccaGLOaGaayzkaaaacaGLBb Gaayzxaaaaaa@4203@ . Moreover, as measures of scatter, the generalized variances are related as | S 2 |= γ k | S 1 | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaSaeaaaaaaaaa8 qadaabdaGcpaqaaKqzaeWdbiaadofal8aadaWgaaqaaKqzaeWdbiaa ikdaaSWdaeqaaaGcpeGaay5bSlaawIa7aKqzaeGaeyypa0Jaeq4SdC 2cpaWaaWbaaeqabaqcLbqapeGaam4Aaaaalmaaemaak8aabaqcLbqa peGaam4uaSWdamaaBaaabaqcLbqapeGaaGymaaWcpaqabaaak8qaca GLhWUaayjcSdaaaa@48CD@ and | S 3 |= (1ρ) k | S 1 | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaSaeaaaaaaaaa8 qadaabdaGcpaqaaKqzaeWdbiaadofal8aadaWgaaqaaKqzaeWdbiaa iodaaSWdaeqaaaGcpeGaay5bSlaawIa7aKqzaeGaeyypa0Jaaiikai aaigdacqGHsislcqaHbpGCcaGGPaWcpaWaaWbaaeqabaqcLbqapeGa am4Aaaaalmaaemaak8aabaqcLbqapeGaam4uaSWdamaaBaaabaqcLb qapeGaaGymaaWcpaqabaaak8qacaGLhWUaayjcSdaaaa@4BE8@ , whereas the condition numbers { Cnd( S i );i=1,2,3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aacmaapaqaa8qacaqGdbGaaeOBaiaabsgadaqadaWdaeaapeGaaC4u a8aadaWgaaWcbaWdbiaabMgaa8aabeaaaOWdbiaawIcacaGLPaaaca GG7aGaaeyAaiabg2da9iaaigdacaGGSaGaaGOmaiaacYcacaaIZaaa caGL7bGaayzFaaaaaa@44BA@  are identical.

Hypothesis tests

 Five tests, historically devised and subsequently used under {( Y ){ N n×k ( 1     n μ; I n Σ ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzaeaeaaaaaa aaa8qacaGG7bWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvga iuaacqWFsectlmaabmaak8aabaqcLbqapeGaamywaaGccaGLOaGaay zkaaqcLbqacqGHiiIZlmaacmaak8aabaqcLbqapeGaamOtaSWdamaa BaaabaqcLbqapeGaamOBaiabgEna0kaadUgaaSWdaeqaa8qadaqada GcpaqaaKqzaeWdbiaaigdal8aadaWgaaqaaKqzaeWdbiaacckal8aa daWgaaadbaqcLbqapeGaaiiOaSWdamaaCaaameqabaqcLbqapeGaam OBaaaaaWWdaeqaaaWcbeaajugab8qacqaH8oqBcaGG7aGaamysaSWd amaaBaaabaqcLbqapeGaamOBaaWcpaqabaqcLbqapeGaey4LIqSaeu 4OdmfakiaawIcacaGLPaaaaiaawUhacaGL9baaaaa@6324@  are listed in Table 3, to include statements of hypotheses, commonly used test statistics, and references.

As to exchangeable dependence, it remains to identify those of Table 3 that remain viable in the exchangeable classes of Table 1.

Theorem 3 Consider the tests for Σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzaeaeaaaaaa aaa8qacqqHJoWuaaa@396C@  as in Table 3 for the classes C={ n 1 , n 2 , n 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFce=q cqGH9aqpcaGG7bGae83cHG0damaaDaaaleaapeGaamOBaaWdaeaape GaaGymaaaakiaacYcacqWFlecspaWaa0baaSqaa8qacaWGUbaapaqa a8qacaaIYaaaaOGaaiilaiab=Tqii9aadaqhaaWcbaWdbiaad6gaa8 aabaWdbiaaiodaaaGccaGG9baaaa@502E@  of Table 1, in lieu of the conventional {( Y ){ N n×k ( 1     n μ, I n Σ ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzaeaeaaaaaa aaa8qacaGG7bWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvga iuaacqWFsectlmaabmaak8aabaqcLbqapeGaamywaaGccaGLOaGaay zkaaqcLbqacqGHiiIZlmaacmaak8aabaqcLbqapeGaamOtaSWdamaa BaaabaqcLbqapeGaamOBaiabgEna0kaadUgaaSWdaeqaa8qadaqada GcpaqaaKqzaeWdbiaaigdal8aadaWgaaqaaKqzaeWdbiaacckal8aa daWgaaadbaqcLbqapeGaaiiOaSWdamaaCaaameqabaqcLbqapeGaam OBaaaaaWWdaeqaaaWcbeaajugab8qacqaH8oqBcaGGSaGaamysaSWd amaaBaaabaqcLbqapeGaamOBaaWcpaqabaqcLbqapeGaey4LIqSaeu 4OdmfakiaawIcacaGLPaaaaiaawUhacaGL9baaaaa@6315@ .

(i) All statistics of Table 3 are scale–invariant;

(ii) For the classes C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFce=q aaa@4271@ , properties of the tests of Table 3 are identical to those for {( Y ){ N n×k ( 1     n μ, I n Σ ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzaeaeaaaaaa aaa8qacaGG7bWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvga iuaacqWFsectlmaabmaak8aabaqcLbqapeGaamywaaGccaGLOaGaay zkaaqcLbqacqGHiiIZlmaacmaak8aabaqcLbqapeGaamOtaSWdamaa BaaabaqcLbqapeGaamOBaiabgEna0kaadUgaaSWdaeqaa8qadaqada GcpaqaaKqzaeWdbiaaigdal8aadaWgaaqaaKqzaeWdbiaacckal8aa daWgaaadbaqcLbqapeGaaiiOaSWdamaaCaaameqabaqcLbqapeGaam OBaaaaaWWdaeqaaaWcbeaajugab8qacqaH8oqBcaGGSaGaamysaSWd amaaBaaabaqcLbqapeGaamOBaaWcpaqabaqcLbqapeGaey4LIqSaeu 4OdmfakiaawIcacaGLPaaaaiaawUhacaGL9baaaaa@6315@ , independently of κ[ 1,γ,(1ρ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzaeaeaaaaaa aaa8qacqaH6oWAcqGHiiIZlmaadmaakeaajugabiaaigdacaGGSaGa eq4SdCMaaiilaiaacIcacaaIXaGaeyOeI0IaeqyWdiNaaiykaaGcca GLBbGaayzxaaaaaa@4621@ .

 Proof As before κ[ 1,γ,(1ρ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzaeaeaaaaaa aaa8qacqaH6oWAcqGHiiIZlmaadmaakeaajugabiaaigdacaGGSaGa eq4SdCMaaiilaiaacIcacaaIXaGaeyOeI0IaeqyWdiNaaiykaaGcca GLBbGaayzxaaaaaa@4621@ , are the scale parameters for S MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaC4uaaaa@3808@  in { n 1 , n 2 , n 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaai4Eamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGa e83cHG0damaaDaaaleaapeGaamOBaaWdaeaapeGaaGymaaaakiaacY cacqWFlecspaWaa0baaSqaa8qacaWGUbaapaqaa8qacaaIYaaaaOGa aiilaiab=Tqii9aadaqhaaWcbaWdbiaad6gaa8aabaWdbiaaiodaaa GccaGG9baaaa@4D6D@ . Conclusion (i) is apparent, where for H 5 : S 0 =S Σ 0 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzaeaeaaaaaa aaa8qacaWGibWcdaWgaaqaaKqzaeGaaGynaaWcbeaajugabiaacQda caWGtbWcdaWgaaqaaKqzaeGaaGimaaWcbeaajugabiabg2da9iaado facqqHJoWulmaaBaaabaqcLbqacaaIWaaaleqaamaaCaaabeqaaKqz aeGaeyOeI0IaaGymaaaaaaa@44E9@ , we find on rescaling ΥκΥ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzaeaeaaaaaa aaa8qacqqHLoqvcqGHsgIRcqaH6oWAcqqHLoqvaaa@3E97@  that S κ 2 S MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadKqzaeaeaa aaaaaaa8qacaWFtbGaeyOKH4QaeqOUdS2cdaahaaqabeaacaaIYaaa aKqzaeGaa83uaaaa@3E93@  and Σ 0 κ 2 Σ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzaeaeaaaaaa aaa8qacqqHJoWulmaaBaaabaqcLbmacaaIWaaaleqaaKqzaeGaeyOK H4QaeqOUdS2cdaahaaqabeaajugWaiaaikdaaaqcLbqacqqHJoWulm aaBaaabaGaaGimaaqabaaaaa@4489@ , leaving S 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGaa83uamaaBaaaleaacaaIWaaabeaaaaa@38F2@  to be scale–invariant. Conclusion (ii) follows on applying conclusion (i) in order to verify the scale–invariance and applicability of Lemma 2.

Remark 2 These tests accordingly exhibit genuinely nonparametric features, in that each applies for structured distributions in the classes { n 1 , n 2 , n 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaai4Eamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGa e83cHG0damaaDaaaleaapeGaamOBaaWdaeaapeGaaGymaaaakiaacY cacqWFlecspaWaa0baaSqaa8qacaWGUbaapaqaa8qacaaIYaaaaOGa aiilaiab=Tqii9aadaqhaaWcbaWdbiaad6gaa8aabaWdbiaaiodaaa GccaGG9baaaa@4D6D@  beyond that of the conventional {( Y ){ N n×k ( 1     n μ, I n Σ ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzaeaeaaaaaa aaa8qacaGG7bWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvga iuaacqWFsectlmaabmaak8aabaqcLbqapeGaamywaaGccaGLOaGaay zkaaqcLbqacqGHiiIZlmaacmaak8aabaqcLbqapeGaamOtaSWdamaa BaaabaqcLbqapeGaamOBaiabgEna0kaadUgaaSWdaeqaa8qadaqada GcpaqaaKqzaeWdbiaaigdal8aadaWgaaqaaKqzaeWdbiaacckal8aa daWgaaadbaqcLbqapeGaaiiOaSWdamaaCaaameqabaqcLbqapeGaam OBaaaaaWWdaeqaaaWcbeaajugab8qacqaH8oqBcaGGSaGaamysaSWd amaaBaaabaqcLbqapeGaamOBaaWcpaqabaqcLbqapeGaey4LIqSaeu 4OdmfakiaawIcacaGLPaaaaiaawUhacaGL9baaaaa@6315@ .

Exact distributions of the Table 3 statistics { u i } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaai4EaGqaciaa=vhadaWgaaWcbaGaamyAaaqabaGccaGG9baaaa@3B51@  rarely are known, supported instead by approximations, namely, { u i u i = c i ϕ( u i );ϕ[ u i ,ln u i ]} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaai4EaGqaciaa=vhadaWgaaWcbaGaamyAaaqabaGccqGHsgIRcaWF 1bWaaSbaaSqaaiaadMgaaeqaaOGaeyOmGiQaeyypa0Jaa83yamaaBa aaleaacaWFPbaabeaakiabew9aMjaacIcacaWF1bWaaSbaaSqaaiaa dMgaaeqaaOGaaiykaiaacUdacqaHvpGzcqGHiiIZdaWadaqaaiaa=v hadaWgaaWcbaGaamyAaaqabaGccaGGSaGaa8hBaiaa=5gacaWF1bWa aSbaaSqaaiaadMgaaeqaaaGccaGLBbGaayzxaaGaaiyFaaaa@55DA@ , such that ( u i ) χ 2 ν i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFsect caGGOaacbiGaa4xDamaaBaaaleaacaWGPbaabeaakiabgkdiIkaacM cacqGHijYUcqaHhpWydaahaaWcbeqaaiaaikdaaaGcdaWgaaWcbaGa eqyVd42aaSbaaWqaaiaa+LgaaeqaaaWcbeaaaaa@4E17@ , namely, approximately chi–squared having ν i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaH9oGBpaWaaSbaaSqaa8qacaWGPbaapaqabaaaaa@3917@  degrees of freedom. Details are found in Sections 7.2.1 and 7.2.2 of Rencher12 and 7.3 of Morrison.13 These details are omitted here in the interests of brevity, but suffice to say, those approximations all apply in the exchangeable error classes of this study.

Item

H 0 :Σ= MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamisamaaBaaaleaacaaIWaaabeaakiaacQdacqqHJoWucqGH9aqp aaa@3C7E@  

 Test statistic ( u i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaiikaiaacwhadaWgaaWcbaGaamyAaaqabaGccaGGPaaaaa@3AEF@

 Reference

H 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamisamaaBaaaleaacaaIXaaabeaaaaa@392D@  

σ 2 [(1ρ) I k +ρ J k ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3damaaCaaaleqabaWdbiaaikdaaaGccaGGBbGaaiikaiaa igdacqGHsislcqaHbpGCcaGGPaacbmGaa8xsamaaBaaaleaapaWaaW baaWqabeaacaWGRbaaaaWcpeqabaGccqGHRaWkcqaHbpGCpaGaa8Ns amaaBaaaleaacaWGRbaabeaak8qacaGGDbaaaa@47D5@  

[ |S| | s 2 [( 1r ) I k +r J k ] | ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaamWaa8aabaWdbmaalaaapaqaa8qacaGG8bacbmGaa83uaiaacYha a8aabaWaaqWaaeaacaWGZbWaaWbaaSqabeaacaaIYaaaaOGaai4wam aabmaabaGaaGymaiabgkHiTiaadkhaaiaawIcacaGLPaaapeGaa8xs amaaBaaaleaapaWaaWbaaWqabeaacaWGRbaaaaWcpeqabaGccqGHRa WkcaWGYbWdaiaa=PeadaWgaaWcbaGaam4AaaqabaGccaGGDbaacaGL hWUaayjcSdaaaaWdbiaawUfacaGLDbaaaaa@4DDE@  

R7.2.2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8Nuaiaa=zlacaaI3aGaaiOlaiaaikdacaGGUaGaaGOmaaaa @3D2A@  

H 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamisamaaBaaaleaacaaIYaaabeaaaaa@392E@  

σ 2 [(1ρ) I k +ρ J k ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3damaaCaaaleqabaWdbiaaikdaaaGccaGGBbGaaiikaiaa igdacqGHsislcqaHbpGCcaGGPaacbmGaa8xsamaaBaaaleaapaWaaW baaWqabeaacaWGRbaaaaWcpeqabaGccqGHRaWkcqaHbpGCpaGaa8Ns amaaBaaaleaacaWGRbaabeaak8qacaGGDbaaaa@47D5@  

[ |S| | s 2 [( 1r ) I k +r J k ] | ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaamWaa8aabaWdbmaalaaapaqaa8qacaGG8bacbmGaa83uaiaacYha a8aabaWaaqWaaeaacaWGZbWaaWbaaSqabeaacaaIYaaaaOGaai4wam aabmaabaGaaGymaiabgkHiTiaadkhaaiaawIcacaGLPaaapeGaa8xs amaaBaaaleaapaWaaWbaaWqabeaacaWGRbaaaaWcpeqabaGccqGHRa WkcaWGYbWdaiaa=PeadaWgaaWcbaGaam4AaaqabaGccaGGDbaacaGL hWUaayjcSdaaaaWdbiaawUfacaGLDbaaaaa@4DDE@  

R7.2.3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8Nuaiaa=zlacaaI3aGaaiOlaiaaikdacaGGUaGaaG4maaaa @3D2B@  
H 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamisamaaBaaaleaacaaIZaaabeaaaaa@392F@  

[ I k + 1 k λ+λ 1 k λ ¯ J k ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzaeaeaaaaaa aaa8qacaGGBbGaamysaOWaaSbaaSqaaOWdamaaCaaameqabaqcLbqa caWGRbaaaaWcpeqabaqcLbqacqGHRaWkcaaIXaGcpaWaaSbaaSqaaK qzaeWdbiaadUgaaSWdaeqaaKqzaeGaeq4UdW2dbiabgkdiIkabgUca R8aacqaH7oaBpeGaaGymaOWdamaaBaaaleaajugab8qacaWGRbaal8 aabeaakmaaCaaaleqabaqcLbqacWaGiBOmGikaa8qacqGHsislpaGa fq4UdWMbaebacaWGkbGcdaWgaaWcbaqcLbqacaWGRbaaleqaaKqzae Wdbiaac2faaaa@5274@  

(κ) κ |CSC| (trCSC) κ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiaacIcacqaH6oWAcaGGPaWdamaaCaaaleqabaWd biabeQ7aRbaakiaacYhaieWacaWFdbGaeyOmGiQaa83uaiaa=neaca GG8baapaqaa8qacaGGOaGaamiDaiaadkhacaWFdbGaeyOmGiQaa83u aiaa=neacaGGPaWdamaaCaaaleqabaWdbiabeQ7aRbaaaaaaaa@4BE5@  

M7.3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8xtaiaa=zlacaaI3aGaaiOlaiaaiodaaaa@3BB8@  

H 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamisamaaBaaaleaacaaI0aaabeaaaaa@3930@  

Diag( Σ 11 ,, Σ rr ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzaeaeaaaaaa aaa8qacaWGebGaamyAaiaadggacaWGNbGaaiikaiabfo6atPWdamaa Baaaleaajugab8qacaaIXaGaaGymaaWcpaqabaqcLbqapeGaaiilai abgAci8kaacYcacqqHJoWuk8aadaWgaaWcbaqcLbqapeGaamOCaiaa dkhaaSWdaeqaaKqzaeWdbiaacMcaaaa@48DE@  

|S| | S 11 || S 22 || S rr | . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiaacYhaieWacaWFtbGaaiiFaaWdaeaapeGaaiiF aiaa=nfapaWaaSbaaSqaa8qacaaIXaGaaGymaaWdaeqaaOWdbiaacY hacaGG8bGaa83ua8aadaWgaaWcbaWdbiaaikdacaaIYaaapaqabaGc peGaaiiFaiabl+UimjaacYhacaWFtbWdamaaBaaaleaapeGaamOCai aadkhaa8aabeaak8qacaGG8baaaiaac6caaaa@4BFB@  

R7.4.2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8Nuaiaa=zlacaaI3aGaaiOlaiaaisdacaGGUaGaaGOmaaaa @3D2C@  

H 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamisamaaBaaaleaacaaI1aaabeaaaaa@3931@  

Σ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4Odm1damaaBaaabaWdbiaaicdaa8aabeaaaaa@3A06@  

ν[ln|S Σ 0 1 |+tr(S Σ 0 1 )k] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzaeaeaaaaaa aaa8qacqaH9oGBcaGGBbGaeyOeI0IaciiBaiaac6gacaGG8bGaam4u aiabfo6atPWdamaaBaaaleaajugab8qacaaIWaaal8aabeaakmaaCa aaleqabaqcLbqapeGaeyOeI0IaaGymaaaacaGG8bGaey4kaSIaamiD aiaadkhacaGGOaGaam4uaiabfo6atPWdamaaBaaaleaajugab8qaca aIWaaal8aabeaakmaaCaaaleqabaqcLbqacqGHsislcaaIXaaaa8qa caGGPaGaeyOeI0Iaam4Aaiaac2faaaa@52DD@  

R7.2.1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8Nuaiaa=zlacaaI3aGaaiOlaiaaikdacaGGUaGaaGymaaaa @3D29@  

Table 3 Selected hypotheses regarding Σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4Odmfaaa@38FD@ ; commonly used test statistics; references R to Rencher12 and M to Morrison13
Legend κ=( k1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzaeaeaaaaaa aaa8qacqaH6oWAcqGH9aqplmaabmaak8aabaqcLbqapeGaam4Aaiab gkHiTiaaigdaaOGaayjkaiaawMcaaaaa@3F6E@ ; S=[ s ij ]{ s 2 = 1 k i=1 k ;r=[ 1 k( k1 ) ij s ij ]/ s 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzaeaeaaaaaa aaa8qacaWGtbGaeyypa0ZcdaWadaGcpaqaaKqzaeWdbiaadohal8aa daWgaaqaaKqzaeWdbiaadMgacaWGQbaal8aabeaaaOWdbiaawUfaca GLDbaajugabiabgkziUkaacUhacaWGZbWcpaWaaWbaaeqabaqcLbqa peGaaGOmaaaacqGH9aqplmaalaaak8aabaqcLbqapeGaaGymaaGcpa qaaKqzaeWdbiaadUgaaaWcdaGfWbGcbeWcpaqaaKqzaeWdbiaadMga cqGH9aqpcaaIXaaal8aabaqcLbqapeGaam4AaaqdpaqaaKqzaeWdbi abggHiLdaacaGG7aGaamOCaiabg2da9SWaamWaaOWdaeaal8qadaWc aaGcpaqaaKqzaeWdbiaaigdaaOWdaeaajugab8qacaWGRbWcdaqada GcpaqaaKqzaeWdbiaadUgacqGHsislcaaIXaaakiaawIcacaGLPaaa aaWcpaWaaubiaOqabSqabeaajugabiaaygW7a0qaaKqzaeWdbiabgg HiLdaal8aadaWgaaqaaKqzaeWdbiaadMgacqGHGjsUcaWGQbaal8aa beaajugab8qacaWGZbWcpaWaaSbaaeaajugab8qacaWGPbGaamOAaa Wcpaqabaaak8qacaGLBbGaayzxaaqcLbqacaGGVaGaam4CaSWdamaa CaaabeqaaKqzaeWdbiaaikdaaaaaaa@6F1E@  and C'[ κ×k ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzaeaeaaaaaa aaa8qacaWGdbGaai4jaSWaamWaaOWdaeaajugab8qacqaH6oWAcqGH xdaTcaWGRbaakiaawUfacaGLDbaaaaa@40B3@  consists of κ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzaeaeaaaaaa aaa8qacqaH6oWAaaa@399A@  linear contrasts.

Correlation analyses

Here sample entities depend on S=[ s ij ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieWajugababaaa aaaaaapeGaa83uaiabg2da9SWaamWaaOWdaeaajugab8qacaqGZbWc paWaaSbaaeaajugab8qacaWGPbGaamOAaaWcpaqabaaak8qacaGLBb Gaayzxaaaaaa@3E4E@ , corresponding parameters are identical functions of Σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzaeaeaaaaaa aaa8qacqqHJoWuaaa@396C@ . To these ends take Y=[ Y 1 , Y 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieWajugababaaa aaaaaapeGaa8xwaiabg2da9SWaamWaaOWdaeaajugab8qacaWFzbWc paWaaSbaaeaajugab8qacaaIXaaal8aabeaajugab8qacaGGSaGaa8 xwaSWdamaaBaaabaqcLbqapeGaaGOmaaWcpaqabaaak8qacaGLBbGa ayzxaaaaaa@40AF@  of orders {( n×s ),( n×t );st} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaai4EamaabmaabaacbiGaa8NBaiabgEna0kaa=nhaaiaawIcacaGL PaaacaGGSaWaaeWaaeaacaWFUbGaey41aqRaa8hDaaGaayjkaiaawM caaiaacUdacaWFZbGaeyizImQaa8hDaiaac2haaaa@494B@ , and partition S( k×k ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGaa83uamaabmaabaacbiGaa43AaiabgEna0kaa+TgaaiaawIca caGLPaaaaaa@3D8D@  as

S=[ S 11 S 12 S 21 S 22 ][ I s G G' I t ];G= S 11 1 2 S 12 S 22 1 2 ( s×t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aahofacaaMb8Uaeyypa0JaaGzaVpaadmaapaqaauaabeqaciaaaeaa peGaaC4ua8aadaWgaaWcbaWdbiaaigdacaaIXaaapaqabaaakeaape GaaC4ua8aadaWgaaWcbaWdbiaaigdacaaIYaaapaqabaaakeaapeGa aC4ua8aadaWgaaWcbaWdbiaaikdacaaIXaaapaqabaaakeaapeGaaC 4ua8aadaWgaaWcbaWdbiaaikdacaaIYaaapaqabaaaaaGcpeGaay5w aiaaw2faaiabgkziUoaadmaapaqaauaabeqaciaaaeaapeGaaCysa8 aadaWgaaWcbaWdbiaadohaa8aabeaaaOqaa8qacaWHhbaapaqaa8qa caWHhbGaae4jaaWdaeaapeGaaCysa8aadaWgaaWcbaWdbiaadshaa8 aabeaaaaaak8qacaGLBbGaayzxaaGaai4oaiaahEeacqGH9aqpcaWH tbWaa0baaSqaaiaaigdacaaIXaaabaGaeyOeI0YaaSaaaeaacaaIXa aabaGaaGOmaaaaaaGccaWHtbWaaSbaaSqaaiaaigdacaaIYaaabeaa kiaahofadaqhaaWcbaGaaGOmaiaaikdaaeaacqGHsisldaWcaaqaai aaigdaaeaacaaIYaaaaaaakmaabmaapaqaa8qacaWGZbGaaGzaVlab gEna0kaadshaaiaawIcacaGLPaaaaaa@6B81@    (3)

 Then { r ij = s ij / s ii 1 2 s jj 1 2 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaiWaaeaaieGacaWFYbWaaSbaaSqaaiaa=LgacaWFQbaabeaakiab g2da9maalyaabaGaa83CamaaBaaaleaacaWFPbGaa8NAaaqabaaake aacaWFZbWaaSbaaSqaaiaa=LgacaWFPbaabeaakmaaCaaaleqabaWa aSaaaeaacaaIXaaabaGaaGOmaaaaaaGccaWFZbWaaSbaaSqaaiaa=P gacaWFQbaabeaakmaaCaaaleqabaWaaSaaaeaacaaIXaaabaGaaGOm aaaaaaaaaaGccaGL7bGaayzFaaaaaa@49FB@  are simple correlations; the singular values σ( G ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzaeaeaaaaaa aaa8qacqaHdpWClmaabmaakeaajugabiaadEeaaOGaayjkaiaawMca aaaa@3C8E@  are the canonical correlations ϱ=[ ϱ 1 , ϱ 2 ,... ϱ s ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFXpq8 cqGH9aqpcaGGBbGae8x8de=aaSbaaSqaaiaaigdaaeqaaOGaaiilai ab=f=aXpaaBaaaleaacaaIYaaabeaakiaacYcacaGGUaGaaiOlaiaa c6cacqWFXpq8daWgaaWcbaGaam4CaaqabaGccaGGDbaaaa@53AB@  and the multiple correlations are defined at s=1. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadohacaaMb8Uaeyypa0JaaGzaVlaaigdacaGGUaaaaa@3C22@ Again note that these were derived historically and subsequently used under the independence model {( Y ){ N n×k ( 1     n μ, I n Σ ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzaeaeaaaaaa aaa8qacaGG7bWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvga iuaacqWFsectlmaabmaak8aabaqcLbqapeGaamywaaGccaGLOaGaay zkaaqcLbqacqGHiiIZlmaacmaak8aabaqcLbqapeGaamOtaSWdamaa BaaabaqcLbqapeGaamOBaiabgEna0kaadUgaaSWdaeqaa8qadaqada GcpaqaaKqzaeWdbiaaigdal8aadaWgaaqaaKqzaeWdbiaacckal8aa daWgaaadbaqcLbqapeGaaiiOaSWdamaaCaaameqabaqcLbqapeGaam OBaaaaaWWdaeqaaaWcbeaajugab8qacqaH8oqBcaGGSaGaamysaSWd amaaBaaabaqcLbqapeGaamOBaaWcpaqabaqcLbqapeGaey4LIqSaeu 4OdmfakiaawIcacaGLPaaaaiaawUhacaGL9baaaaa@6315@ . The question again arises as to whether exchangeable errors may have compromised correlative evidence in S MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieWajugababaaa aaaaaapeGaa83uaaaa@36F2@ regarding Σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieWajugababaaa aaaaaapeGaa83Odaaa@3745@ .Results to the contrary are the substance of the following.

Theorem 4 Given ( Y ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaabaaaaaaaaapeGae8NeHW0a aeWaa8aabaacbmWdbiaa+LfaaiaawIcacaGLPaaaaaa@42BE@ in the exchangeable classes C={ n 1 , n 2 , n 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaabaaaaaaaaapeGae8NaXpKa eyypa0ZaaiWaa8aabaWdbiab=Tqii9aadaqhaaWcbaWdbiaad6gaa8 aabaWdbiaaigdaaaGccaGGSaGae83cHG0damaaDaaaleaapeGaamOB aaWdaeaapeGaaGOmaaaakiaacYcacqWFlecspaWaa0baaSqaa8qaca WGUbaapaqaa8qacaaIZaaaaaGccaGL7bGaayzFaaaaaa@4EF5@ ; consider effects on correlation analyses as prescribed under ( Y * )= N n×k ( 1     n μ, I   n Σ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaqcLbqaqaaaaaaaaaWdbiab =jrimTWaaeWaaOWdaeaajugab8qacaWGzbWcpaWaaWbaaeqabaqcLb qapeGaaiOkaaaaaOGaayjkaiaawMcaaKqzaeGaeyypa0JaamOtaSWd amaaBaaabaqcLbqapeGaamOBaiabgEna0kaadUgaaSWdaeqaa8qada qadaGcpaqaaKqzaeWdbiaaigdal8aadaWgaaqaaKqzaeWdbiaaccka l8aadaWgaaadbaqcLbqapeGaaiiOaSWdamaaCaaameqabaqcLbqape GaamOBaaaaaWWdaeqaaaWcbeaajugab8qacqaH8oqBcaGGSaGaamys aSWdamaaBaaabaqcLbqapeGaaiiOaSWdamaaCaaameqabaqcLbqape GaamOBaaaaaSWdaeqaaKqzaeWdbiabgEPielabfo6atbGccaGLOaGa ayzkaaaaaa@6218@ .

(i) Then for all ( Y )C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaabaaaaaaaaapeGae8NeHW0a aeWaa8aabaacbmWdbiaa+LfaaiaawIcacaGLPaaacqGHiiIZcqWFce =qaaa@45FD@ , the entities { r ij } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaai4EaiaadkhadaWgaaWcbaGaamyAaiaadQgaaeqaaOGaaiyFaaaa @3C83@  and their properties are identical to those for ( Y * ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaabaaaaaaaaapeGae8NeHW0a aeWaa8aabaacbmWdbiaa+LfapaWaaWbaaSqabeaapeGaaiOkaaaaaO GaayjkaiaawMcaaaaa@43C2@ ;

(ii) In like manner, for all ( Y )C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaabaaaaaaaaapeGae8NeHW0a aeWaa8aabaacbmWdbiaa+LfaaiaawIcacaGLPaaacqGHiiIZcqWFce =qaaa@45FD@ , properties of multiple and canonical correlations are identical to those for ( Y * ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaabaaaaaaaaapeGae8NeHW0a aeWaa8aabaacbmWdbiaa+LfapaWaaWbaaSqabeaapeGaaiOkaaaaaO GaayjkaiaawMcaaaaa@43C2@ ;

(iii) In short, conventional correlation analyses are preserved despite requiring that errors be exchangeable in C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFce=q aaa@4271@ .

 Proof. The claims again rest on the fact that sample correlations are scale–invariant functions of Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aahMfaaaa@3685@ and S MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aahofaaaa@367F@ . Conclusions (i), (ii) and (iii) now follow from Lemma 2.

Factor analyses ( FA's ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiaabAeacaqGbbGaae4jaiaabohaaiaawIcacaGL Paaaaaa@3C4E@

Within the scope of psychometric, sociometric, and humanistic endeavors, the FA MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaGqaciaa=zeaca WFbbaaaa@38A0@  paradigm postulates that Σ=Λ'Λ+Ψ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzaeaeaaaaaa aaa8qacqqHJoWucqGH9aqpcqqHBoatcaGGNaGaeu4MdWKaey4kaSIa euiQdKfaaa@4078@  such that elements of {Λ( s×k );s<k} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzaeaeaaaaaa aaa8qacaGG7bGaeu4MdW0cdaqadaGcpaqaaKqzaeWdbiaadohacqGH xdaTcaWGRbaakiaawIcacaGLPaaajugabiaacUdacaWGZbGaeyipaW Jaam4Aaiaac2haaaa@45AC@  comprise the factor loadings, and Ψ=Diag( ψ 1 ,..., ψ k ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzaeaeaaaaaa aaa8qacqqHOoqwcqGH9aqpcaWGebGaamyAaiaadggacaWGNbWcdaqa daGcpaqaaKqzaeWdbiabeI8a5TWdamaaBaaabaqcLbqapeGaaGymaa WcpaqabaqcLbqapeGaaiilaiaac6cacaGGUaGaaiOlaiaacYcacqaH ipqEl8aadaWgaaqaaKqzaeWdbiaadUgaaSWdaeqaaaGcpeGaayjkai aawMcaaaaa@4B30@  the unique variances. In particular, the diagonal elements of Σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzaeaeaaaaaa aaa8qacqqHJoWuaaa@396C@  are { σ ii = h i 2 + ψ i ;i=1,...,k} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aacUhacqaHdpWCpaWaaSbaaSqaa8qacaWGPbGaamyAaaWdaeqaaOWd biabg2da9Gqaciaa=HgadaqhaaWcbaGaa8xAaaqaaiaaikdaaaGccq GHRaWkcqaHipqEdaWgaaWcbaGaa8xAaaqabaGccaGG7aGaa8xAaiab g2da9iaaigdacaGGSaGaaiOlaiaac6cacaGGUaGaaiilaiaa=Tgaca GG9baaaa@4B29@  where

  { h i 2 = λ i1 2 + λ i2 2 +...+ λ is 2 ;i=1,...,k} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aacUhaieGacaWFObWaa0baaSqaaiaa=LgaaeaacaaIYaaaaOGaeyyp a0Jaeq4UdW2aa0baaSqaaiaa=LgacaWFXaaabaGaaGOmaaaakiabgU caRiabeU7aSnaaDaaaleaacaWFPbGaa8NmaaqaaiaaikdaaaGccqGH RaWkcaGGUaGaaiOlaiaac6cacqGHRaWkcqaH7oaBdaqhaaWcbaGaa8 xAaiaa=nhaaeaacaaIYaaaaOGaai4oaiaa=LgacqGH9aqpcaaIXaGa aiilaiaac6cacaGGUaGaaiOlaiaacYcacaWFRbGaaiyFaaaa@550E@  

 are the communalities. The analysis begins with S= Λ' ^ Λ ^ +Ψ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzaeaeaaaaaa aaa8qacaWGtbGaeyypa0ZcpaWaaecaaOqaaKqzaeWdbiabfU5amjaa cEcaaOWdaiaawkWaaKqzaeWdbiqbfU5am9aagaqca8qacqGHRaWkcq qHOoqwaaa@41F8@ , typically utilizing maximum likelihood estimation as in Chapter 13 of Rencher.12 An initial solution Λ ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzaeaeaaaaaa aaa8qacuqHBoatpaGbaKaaaaa@397C@  eventually is rotated so as to achieve further desirable properties, since the loadings Λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4MdWeaaa@38EE@  are non–unique.

For the case that {( Y ){ N n×k ( 1 n μ, I n Σ ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzaeaeaaaaaa aaa8qacaGG7bWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvga iuaacqWFsectlmaabmaak8aabaqcLbqapeGaamywaaGccaGLOaGaay zkaaqcLbqacqGHiiIZlmaacmaak8aabaqcLbqapeGaamOtaSWdamaa BaaabaqcLbqapeGaamOBaiabgEna0kaadUgaaSWdaeqaa8qadaqada GcpaqaaKqzaeWdbiaaigdal8aadaWgaaqaaKqzaeWdbiaad6gaaSWd aeqaaKqzaeWdbiabeY7aTjaacYcacaWGjbWcpaWaaSbaaeaajugab8 qacaWGUbaal8aabeaajugab8qacqGHxkcXcqqHJoWuaOGaayjkaiaa wMcaaaGaay5Eaiaaw2haaaaa@5F34@ , the normal–theory likelihood ratio for testing H 0 :Σ=Λ'Λ+Ψ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzaeaeaaaaaa aaa8qacaWGibWcpaWaaSbaaeaajugab8qacaaIWaaal8aabeaajuga b8qacaGG6aGaeu4OdmLaeyypa0Jaeu4MdWKaai4jaiabfU5amjabgU caRiabfI6azbaa@4410@  vs H 1 :ΣΛ'Λ+Ψ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzaeaeaaaaaa aaa8qacaWGibWcpaWaaSbaaeaajugab8qacaaIXaaal8aabeaajuga b8qacaGG6aGaeu4OdmLaeyiyIKRaeu4MdWKaai4jaiabfU5amjabgU caRiabfI6azbaa@44D2@  is

[ n 2k+4s+11 6 ]ln[ Λ' ^ Λ ^ + Ψ ^ | | S | ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaSaeaaaaaaaaa8 qadaWadaGcpaqaaKqzaeWdbiaad6gacqGHsisllmaalaaak8aabaqc LbqapeGaaGOmaiaadUgacqGHRaWkcaaI0aGaam4CaiabgUcaRiaaig dacaaIXaaak8aabaqcLbqapeGaaGOnaaaaaOGaay5waiaaw2faaKqz aeGaciiBaiaac6galmaadmaak8aabaWcpeWaaSaaaOWdaeaalmaaHa aakeaajugab8qacqqHBoatcaGGNaaak8aacaGLcmaajugab8qacuqH BoatpaGbaKaapeGaey4kaSYcdaabcaGcpaqaaKqzaeWdbiqbfI6az9 aagaqcaaGcpeGaayjcSdaapaqaaSWdbmaaemaak8aabaqcLbqapeGa am4uaaGccaGLhWUaayjcSdaaaaGaay5waiaaw2faaaaa@58A7@   (4)

 and referred to upper critical values of the approximating distribution, namely, χ v 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Xdm2aa0baaSqaaGqaciaa=zhaaeaacaaIYaaaaaaa@3B1B@ with v=[ ( ks ) 2 ks/2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaGqacabaaaaaaa aapeGaa8NDaiabg2da9maadmaabaWaaSGbaeaadaqadaqaaiaa=Tga cqGHsislcaWFZbaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaO GaeyOeI0Iaa83AaiabgkHiTiaa=nhaaeaacaaIYaaaaaGaay5waiaa w2faaaaa@44FB@  as in expression (13.47) of Rencher.12 These were derived historically and used subsequently for the case that {( Y ){ N n×k ( 1 n μ, I n Σ ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzaeaeaaaaaa aaa8qacaGG7bWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvga iuaacqWFsectlmaabmaak8aabaqcLbqapeGaamywaaGccaGLOaGaay zkaaqcLbqacqGHiiIZlmaacmaak8aabaqcLbqapeGaamOtaSWdamaa BaaabaqcLbqapeGaamOBaiabgEna0kaadUgaaSWdaeqaa8qadaqada GcpaqaaKqzaeWdbiaaigdal8aadaWgaaqaaKqzaeWdbiaad6gaaSWd aeqaaKqzaeWdbiabeY7aTjaacYcacaWGjbWcpaWaaSbaaeaajugab8 qacaWGUbaal8aabeaajugab8qacqGHxkcXcqqHJoWuaOGaayjkaiaa wMcaaaGaay5Eaiaaw2haaaaa@5F34@ .

The extent to which the foregoing algorithm may be applied more generally, to encompass exchangeable errors, is examined in the following.

Theorem 5 Consider the statistic (4) for testing the FA MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaGqaciaa=zeaca WFbbaaaa@38A0@  model in the classes C={ n 1 , n 2 , n 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFce=q cqGH9aqpcaGG7bGae83cHG0damaaDaaaleaapeGaamOBaaWdaeaape GaaGymaaaakiaacYcacqWFlecspaWaa0baaSqaa8qacaWGUbaapaqa a8qacaaIYaaaaOGaaiilaiab=Tqii9aadaqhaaWcbaWdbiaad6gaa8 aabaWdbiaaiodaaaGccaGG9baaaa@502E@ , as developed and prescribed for ( Y * )= N n×k ( 1     n μ, I   n Σ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaqcLbqaqaaaaaaaaaWdbiab =jrimTWaaeWaaOWdaeaajugab8qacaWGzbWcpaWaaWbaaeqabaqcLb qapeGaaiOkaaaaaOGaayjkaiaawMcaaKqzaeGaeyypa0JaamOtaSWd amaaBaaabaqcLbqapeGaamOBaiabgEna0kaadUgaaSWdaeqaa8qada qadaGcpaqaaKqzaeWdbiaaigdal8aadaWgaaqaaKqzaeWdbiaaccka l8aadaWgaaadbaqcLbqapeGaaiiOaSWdamaaCaaameqabaqcLbqape GaamOBaaaaaWWdaeqaaaWcbeaajugab8qacqaH8oqBcaGGSaGaamys aSWdamaaBaaabaqcLbqapeGaaiiOaSWdamaaCaaameqabaqcLbqape GaamOBaaaaaSWdaeqaaKqzaeWdbiabgEPielabfo6atbGccaGLOaGa ayzkaaaaaa@6218@ . Then

(i) For each distribution ( Y )C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaabaaaaaaaaapeGae8NeHW0a aeWaa8aabaacbmWdbiaa+LfaaiaawIcacaGLPaaacqGHiiIZcqWFce =qaaa@45FD@ , properties of tests using (4) are identical to those under ( Y * ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaabaaaaaaaaapeGae8NeHW0a aeWaa8aabaacbmWdbiaa+LfapaWaaWbaaSqabeaapeGaaiOkaaaaaO GaayjkaiaawMcaaaaa@43C2@ .

 Proof. As the statistic (4) is scale–invariant, the conclusion again follows from Lemma 2.

Conclusion

In retrospect, taking the conventional V( Y )= I n Σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzaeaeaaaaaa aaa8qacaWGwbWcdaqadaGcpaqaaKqzaeWdbiaadMfaaOGaayjkaiaa wMcaaKqzaeGaeyypa0JaamysaSWdamaaBaaabaqcLbqapeGaamOBaa WcpaqabaqcLbqapeGaey4LIqSaeu4Odmfaaa@43ED@  remains an enduring artefact of statistical practice. Exchangeable dependence, where V( Y )=ΩΣ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzaeaeaaaaaa aaa8qacaWGwbWcdaqadaGcpaqaaKqzaeWdbiaadMfaaOGaayjkaiaa wMcaaKqzaeGaeyypa0JaeuyQdCLaey4LIqSaeu4Odmfaaa@4267@ , is a radical departure, albeit on occasion as being itself fundamental to correct statistical practice. Foundations trace to Johnson3; extensions encompass matrices in F n×k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H MmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaKqzaeaeaaaaaaaaa8qacqWF fcVrl8aadaWgaaqaaKqzaeWdbiaad6gacqGHxdaTcaWGRbaal8aabe aaaaa@46C3@  and stochastic sequences in various domains. Representations for two–way arrays include (i) functions of iid MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMgacaWGPb Gaamizaaaa@3A1F@ scalars as in Aldous DJ6 and the related studies14,15; and (ii) as limits of finite exchangeable sequences as in Ivanoff BG.16 for rectangular arrays. Marshall & Olkin17 demonstrated that Schur–concave joint density functions on n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H MmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaabaaaaaaaaapeGae8xhHi1d amaaCaaaleqabaWdbiaad6gaaaaaaa@419A@  are exchangeable; Shaked & Tong18 superimposed partial orderings on exchangeable arrays; and Seneta19 sought to approximate joint probabilities of equicorrelated vectors in n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H MmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaabaaaaaaaaapeGae8xhHi1d amaaCaaaleqabaWdbiaad6gaaaaaaa@419A@  in terms of marginal probabilities and the correlation parameter ρ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg8aYbaa@391A@ .Functional limit theorems for row and column arrays were studied in Ivanoff BG.16 Kallenberg20 examined ergodic properties of exchangeable arrays generated as multivariate samples from a stationary process. In reliability studies, an exchangeable array is considered in Spizzichino F, et al.21 as deriving from a hierarchical model having multivariate negative aging. In addition, a multivariate lognormal frailty model for exchangeable failure time data, having marginal Weibull lifetime distributions, is considered in Stefanescu C.22

Alternative to our studies is equation (1) of Arnold7 having the linear structure of our model MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaabaaaaaaaaapeGae83mH0ea aa@4053@  but differing in dispersion. Arnold’s approach differs in reducing his model to a canonical form. Nonetheless, Arnold’s assessment of μ ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzaeaeaaaaaa aaa8qacuaH8oqBpaGbaKaaaaa@39BD@ serves to confirm our findings in Lemma 3. On the other hand, our examination of, its sample version S MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieWajugababaaa aaaaaapeGaa83uaaaa@36F2@ , and other second–moment properties, find no parallel in Arnold’s studies. In continuation of those studies, Roy & Fonseca23 sought to extend equation (1), considered as a two–level array, to encompass three levels.

Antecedents to the present study include Ω( γ,λ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzaeaeaaaaaa aaa8qacqqHPoWvlmaabmaak8aabaqcLbqapeGaeq4SdCMaaiilaiab eU7aSbGccaGLOaGaayzkaaaaaa@3FB7@ in Table 1 from Baldessari10 in lieu of σ 2 I n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzaeaeaaaaaa aaa8qacqaHdpWCl8aadaahaaqabeaacaaIYaaaaKqzaeWdbiaahMea l8aadaWgaaqaaiaad6gaaeqaaaaa@3D22@  in the Analysis of Variance; and characterized in24–26 as the class of all within-subject dispersion matrices preserving the validity of conventional F MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeOraaaa@3842@ –tests in the analysis of repeated measurements. Moreover, structured matrices of an earlier vintage include the Euclidean distance matrices of Gower,27 namely D( λ )=[ D+ 1   n λ'+λ 1   n ' ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzaeaeaaaaaa aaa8qacaWGebWcdaqadaGcpaqaaKqzaeWdbiabeU7aSbGccaGLOaGa ayzkaaqcLbqacqGH9aqplmaadmaak8aabaqcLbqapeGaamiraiabgU caRiaaigdal8aadaWgaaqaaKqzaeWdbiaacckal8aadaWgaaadbaqc LbqapeGaamOBaaadpaqabaaaleqaaKqzaeWdbiabeU7aSjaacEcacq GHRaWkcqaH7oaBcaaIXaWcpaWaaSbaaeaajugab8qacaGGGcWcpaWa aSbaaWqaaKqzaeWdbiaad6gaaWWdaeqaaaWcbeaadaahaaqabeaaju gab8qacaGGNaaaaaGccaGLBbGaayzxaaaaaa@520A@ , with D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0dXdbbf91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzaeaeaaaaaa aaa8qacaWGebaaaa@38B1@  diagonal, having applications to linear inference as found in Farebrother.28

In summary, our studies have sought to cover a diversity of topics in multivariate statistical inference from a further perspective, namely, that of exchangeable errors. But at the same time, to acknowledge and to pursue the prospects that requiring exchangeability may serve to compromised the meanings attributed to sample evidence. Specifically, references abound for the vast array of multivariate normal procedures described here as classical, including those amenable to selected exchangeable distributions as shown here. Of the many topics not covered, interested readers are encouraged to undertake further investigations using and adding to the analytical principles demonstrated here.

Acknowledgments

None.

Conflicts of interest

The author declare that there is no conflicts of interest.

Funding

None.

References

  1. Jensen DR, Ramirez DE. Anomalies in the analysis of calibrated data. J Statist Computat Simul. 2009;79:299–314.
  2. Jensen DR, Ramirez DE. Irregularities in X(Y) from Y(X) in linear regression. J Statist Computat Simul. 2012;83(10):1807–1828.
  3. Johnson W. Logic, Part III: The Logical Foundations of Science. Cambridge UK: Cambridge University Press; 1924.
  4. Jensen DR, Good IJ. Invariant distributions associated with matrix laws under structural symmetry. J Royal Statist Soc B. 1981;43(3):327–332.
  5. Finetti B. Forecasting: its logical laws, its subjective sources. Annals of the Henri Poincaré Institute. 1937;7(1):1–68.
  6. Aldous DJ. Representations for partially exchangeable arrays of random variables. J Multivariate Anal. 1981;11(4):581–598.
  7. Arnold S. Linear models with exchangeably distributed errors. J Amer Statist Assoc. 1979;74(365):194–199.
  8. Jensen DR. Structured dispersion and validity in linear inference. Linear Algebra Applic. 1996;249:189–196.
  9. Halperin M. Normal regression theory in the presence of intra-class correlation. Ann Math Statist. 1951;22:573–580.
  10. Baldessari B. Analysis of variance of dependent data. Statistica (Bologna). 1966;26:895–903.
  11. Hotelling H. The generalization of Student’s ratio. Ann Math Statist. 1931;2:360–378.
  12. Rencher A. Methods of Multivariate Analysis. 2nd ed. New York: Wiley; 2002.
  13. Morrison DF. Multivariate Statistical Methods. 3rd ed. New York: McGraw–Hill; 1990.
  14. Kallenberg O. On the representation theorem for exchangeable arrays. J Multivariate Anal. 1989;30:137–154.
  15. Lynch J. Canonical row–column–exchangeable arrays. J Multivariate Anal. 1984;15:135–140.
  16. Ivanoff BG, Weber NC. Functional limit theorems for row and column exchangeable arrays. J Multivariate Anal. 1995;55:133–148.
  17. Marshall AW, Olkin I. Majorization in multivariate distributions. Ann Statist. 1974;2:1189–1200.
  18. Shaked M, Tong YL. Some partial orderings of exchangeable random variables by positive dependence. J Multivariate Anal. 1985;17:333–349.
  19. Seneta E. Multivariate probability in terms of marginal probability and correlation coefficient. Biometrical J. 1987;29:375–380.
  20. Kallenberg O. Multivariate sampling and the estimation problem for exchangeable arrays. J Theor Probab. 1999;12:859–883.
  21. Spizzichino F, Torrisi G. Multivariate negative aging in an exchangeable model of heterogeneity. Statist Probab Letters. 2001;55:71–82.
  22. Stefanescu C, Turnbull B. Multivariate frailty models for exchangeable survival data with covariates. Technometrics. 2006;48:411–417.
  23. Roy A, Fonseca M. Linear models with doubly exchangeable distributed errors. Commun. Statist: Theory and Methods. 2012;41;2545–2569.
  24. Bock R. Multivariate analysis of variance of repeated measurements. In: Harris CW, editor. Problems of Measuring Change. Madison: Wisconsin: University of Wisconsin Press; 1963:85–103.
  25. Huynh H, Feldt L. Conditions under which mean square ratios in repeated measurements designs have exact F–distributions. J Amer Statist Assoc. 1970;65:1582–1589.
  26. Rouanet H, Lépine D. Comparison between treatments in a repeated–measurement design: ANOVA and multivariate methods, British J Math Statist Psychol. 1970;23:147–163.
  27. Gower J. Euclidean distance geometry. Math Sci. 1982;7:1–14.
  28. Farebrother R. Linear unbiased approximators of the disturbances in the standard linear model. Linear Algebra Applic. 1985;67:259–274.
Creative Commons Attribution License

©2023 Jensen. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.