Submit manuscript...
eISSN: 2378-315X

Biometrics & Biostatistics International Journal

Research Article Volume 10 Issue 3

Gumbel - Pareto distribution and it’s applications in modeling COVID data

Jeena Joseph,1 KK Jose2

1Department of Statistics, St. Thomas’ College, Thrissur, India
2School of Mathematics and Statistics and Data Analytics, Mahatma Gandhi University, India

Correspondence: KK Jose, School of Mathematics and Statistics and Data Analytics, Mahatma Gandhi University, Kottayam, Kerala, India

Received: September 15, 2021 | Published: September 30, 2021

Citation: Joseph J, Jose KK. Gumbel - Pareto distribution and it’s applications in modeling COVID data. Biom Biostat Int J. 2021;10(3):125-128. DOI: 10.15406/bbij.2021.10.00338

Download PDF

Abstract

A new distribution namely Gumbel- Pareto from Gumbel -X family1 is introduced. Some properties including moments and order statistics are studied. A reliability measure for stress - strength analysis is derived. The method of maximum likelihood is proposed for estimating the distribution parameters.The flexibility of the new model is illustrated using two examples including Covid data.

Keywords: Gumbel distribution, gumbel - X family, gumbel – Pareto, order statistics, pareto distribution, stress - strength reliabilty, T - X family

Introduction

Statistical distributions play an important role in parametric inference and are commonly applied to model real life data. In practical situations, existing standard distributions do not provide good fit to all types of real data sets. Hence statisticians are developing many new distributions which are flexible than standard distributions for the analysis of real data. New distributions are developed either by combining two or more existing distributions or by adding extra parameters to the existing distributions.

The beta generated family of distributions and Kumaraswamy generated family of distributions are generated by using distributions with support between 0 and 1 as the generator. As an extension, Alzaatreh et al.2 proposed a general method by replacing the beta pdf with any non - negative continuous random variable T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGubaaaa@36F0@ as the generator and another function U( F( x ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyvamaabmaapaqaa8qacaWGgbWaaeWaa8aabaWdbiaadIhaaiaa wIcacaGLPaaaaiaawIcacaGLPaaaaaa@3D21@ which satisfies the following conditions:

  1. U( F( x ) )[ a,b ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyvamaabmaapaqaa8qacaWGgbWaaeWaa8aabaWdbiaadIhaaiaa wIcacaGLPaaaaiaawIcacaGLPaaacqGHiiIZdaWadaWdaeaapeGaam yyaiaacYcacaWGIbaacaGLBbGaayzxaaaaaa@4333@
  2. U( F( x ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyvamaabmaapaqaa8qacaWGgbWaaeWaa8aabaWdbiaadIhaaiaa wIcacaGLPaaaaiaawIcacaGLPaaaaaa@3D21@ is differentiable and monotonically non - decreasing.
  3. U( F( x ) )a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyvamaabmaapaqaa8qacaWGgbWaaeWaa8aabaWdbiaadIhaaiaa wIcacaGLPaaaaiaawIcacaGLPaaacqGHsgIRcaWGHbaaaa@3FF4@ as x and U( F( x ) )b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEaiabgkziUkabgkHiTiabg6HiLkaacckacaqGHbGaaeOBaiaa bsgacaGGGcGaamyvamaabmaapaqaa8qacaWGgbWaaeWaa8aabaWdbi aadIhaaiaawIcacaGLPaaaaiaawIcacaGLPaaacqGHsgIRcaWGIbaa aa@4A40@ as x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEaiabgkziUkabg6HiLcaa@3B8A@

 The new class of distributions is defined by

G( x )= a U( F( x ) ) r( t )dt=R[ U( F( x ) ) ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ramaabmaapaqaa8qacaWG4baacaGLOaGaayzkaaGaeyypa0Za a8qmaeaacaWGYbWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaaca WGKbGaamiDaiabg2da9iaadkfadaWadaWdaeaapeGaamyvamaabmaa paqaa8qacaWGgbWaaeWaa8aabaWdbiaadIhaaiaawIcacaGLPaaaai aawIcacaGLPaaaaiaawUfacaGLDbaaaSqaaiaadggaaeaacaWGvbWa aeWaa8aabaWdbiaadAeadaqadaWdaeaapeGaamiEaaGaayjkaiaawM caaaGaayjkaiaawMcaaaqdcqGHRiI8aOGaaeydGaaa@54BB@ (1.1)

 where R( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOuamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaaaaa@3AA7@ is the cdf and r( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOCamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaaaaa@3AC7@ is the pdf of the random variable T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamivaaaa@3808@ . Here, the cdf in (1.1) is a composite function of ( R,U,F )( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiaadkfacaGGSaGaamyvaiaacYcacaWGgbaacaGL OaGaayzkaaWaaeWaa8aabaWdbiaadIhaaiaawIcacaGLPaaaaaa@3F57@ . The corresponding pdf is

g( x )={ d dx U( F( x ) ) }r{ U( F( x ) ) } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4zamaabmaapaqaa8qacaWG4baacaGLOaGaayzkaaGaeyypa0Za aiWaa8aabaWdbmaalaaapaqaa8qacaWGKbaapaqaa8qacaWGKbGaam iEaaaacaWGvbWaaeWaa8aabaWdbiaadAeadaqadaWdaeaapeGaamiE aaGaayjkaiaawMcaaaGaayjkaiaawMcaaaGaay5Eaiaaw2haaiaadk hadaGadaWdaeaapeGaamyvamaabmaapaqaa8qacaWGgbWaaeWaa8aa baWdbiaadIhaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaiaawUhaca GL9baaaaa@505E@ (1.2)

The p.d.f. r( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOCamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaaaaa@3AC7@ in (1.2) is “transformed" into a new pdf g( x ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4zamaabmaapaqaa8qacaWG4baacaGLOaGaayzkaaaaaa@3AC0@ through the function U( F( x ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyvamaabmaapaqaa8qacaWGgbWaaeWaa8aabaWdbiaadIhaaiaa wIcacaGLPaaaaiaawIcacaGLPaaaaaa@3D21@ , which acts as a “transformer". That is, a random variable X MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiwaaaa@380C@ , “the transformer", is used to transform another random variable T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamivaaaa@3808@ , “the transformed". The resulting family is known as “Transformed - Transformer" or "TX" MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeOiaiaadsfacqGHsislcaWGybGaaiOiaaaa@3B1D@ family of distributions. A large number of distributions, continuous and discrete, can be generated by applying any two existing univariate distributions based on this method. Alzaatreh et al.2 gave several choices of U( F( x ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyvamaabmaapaqaa8qacaWGgbWaaeWaa8aabaWdbiaadIhaaiaa wIcacaGLPaaaaiaawIcacaGLPaaaaaa@3D21@ depending upon the support of the random variable T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamivaaaa@3808@ .

When the support of T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamivaaaa@3808@ is bounded or support of T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamivaaaa@3808@ is [0,1]: In this case U( F( x ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyvamaabmaapaqaa8qacaWGgbWaaeWaa8aabaWdbiaadIhaaiaa wIcacaGLPaaaaiaawIcacaGLPaaaaaa@3D21@ can be taken as F( x ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOramaabmaapaqaa8qacaWG4baacaGLOaGaayzkaaaaaa@3A9F@ or F α ( x ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOra8aadaahaaWcbeqaa8qacqaHXoqyaaGcdaqadaWdaeaapeGa amiEaaGaayjkaiaawMcaaaaa@3C94@ . This leads to the beta - generated family of distributions.

When the support of [ 0, ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaKGea8aabaWdbiaaicdacaGGSaGaeyOhIukacaGLBbGaayzkaaaa aa@3BFC@ is [ 0, ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaKGea8aabaWdbiaaicdacaGGSaGaeyOhIukacaGLBbGaayzkaaaa aa@3BFC@ , a0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyyaiabgwMiZkaaicdaaaa@3A95@ : Without loss of generality, we assume a=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyyaiabg2da9iaaicdaaaa@39D5@ . Then U( F( x ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyvamaabmaapaqaa8qacaWGgbWaaeWaa8aabaWdbiaadIhaaiaa wIcacaGLPaaaaiaawIcacaGLPaaaaaa@3D21@ can be defined as log( 1F( x ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyOeI0IaamiBaiaad+gacaWGNbWaaeWaa8aabaWdbiaaigdacqGH sislcaWGgbWaaeWaa8aabaWdbiaadIhaaiaawIcacaGLPaaaaiaawI cacaGLPaaaaaa@41AD@ , log( 1 F α ( x ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyOeI0IaamiBaiaad+gacaWGNbWaaeWaa8aabaWdbiaaigdacqGH sislcaWGgbWdamaaCaaaleqabaWdbiabeg7aHbaakmaabmaapaqaa8 qacaWG4baacaGLOaGaayzkaaaacaGLOaGaayzkaaaaaa@43A2@ ,  and F α ( x )/( 1 F α ( x ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOra8aadaahaaWcbeqaa8qacqaHXoqyaaGcdaqadaWdaeaapeGa amiEaaGaayjkaiaawMcaaiaac+cadaqadaWdaeaapeGaaGymaiabgk HiTiaadAeapaWaaWbaaSqabeaapeGaeqySdegaaOWaaeWaa8aabaWd biaadIhaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@45FC@ , where α>0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySdeMaeyOpa4JaaGimaaaa@3A90@ .

When the support of T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamivaaaa@3808@ is ( , ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiabgkHiTiabg6HiLkaacYcacqGHEisPaiaawIca caGLPaaaaaa@3D56@ : Then U( F( x ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyvamaabmaapaqaa8qacaWGgbWaaeWaa8aabaWdbiaadIhaaiaa wIcacaGLPaaaaiaawIcacaGLPaaaaaa@3D21@ can be taken as log[ log( 1F( x ) ) ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiBaiaad+gacaWGNbWaamWaa8aabaWdbiabgkHiTiaadYgacaWG VbGaam4zamaabmaapaqaa8qacaaIXaGaeyOeI0IaamOramaabmaapa qaa8qacaWG4baacaGLOaGaayzkaaaacaGLOaGaayzkaaaacaGLBbGa ayzxaaaaaa@468F@ , log[ F( x )/( 1F( x ) ) ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiBaiaad+gacaWGNbWaamWaa8aabaWdbiaadAeadaqadaWdaeaa peGaamiEaaGaayjkaiaawMcaaiaac+cadaqadaWdaeaapeGaaGymai abgkHiTiaadAeadaqadaWdaeaapeGaamiEaaGaayjkaiaawMcaaaGa ayjkaiaawMcaaaGaay5waiaaw2faaaaa@46F4@ , log[ log( 1 F α ( x ) ) ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiBaiaad+gacaWGNbWaamWaa8aabaWdbiabgkHiTiaadYgacaWG VbGaam4zamaabmaapaqaa8qacaaIXaGaeyOeI0IaamOra8aadaahaa Wcbeqaa8qacqaHXoqyaaGcdaqadaWdaeaapeGaamiEaaGaayjkaiaa wMcaaaGaayjkaiaawMcaaaGaay5waiaaw2faaaaa@4884@ and log[ F α ( x )/( 1 F α ( x ) ) ]. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiBaiaad+gacaWGNbWaamWaa8aabaWdbiaadAeapaWaaWbaaSqa beaapeGaeqySdegaaOWaaeWaa8aabaWdbiaadIhaaiaawIcacaGLPa aacaGGVaWaaeWaa8aabaWdbiaaigdacqGHsislcaWGgbWdamaaCaaa leqabaWdbiabeg7aHbaakmaabmaapaqaa8qacaWG4baacaGLOaGaay zkaaaacaGLOaGaayzkaaaacaGLBbGaayzxaaGaaiOlaaaa@4B90@

In this paper, we are considering the third case, that is, the support of T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamivaaaa@3808@ is ( , ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiabgkHiTiabg6HiLkaacYcacqGHEisPaiaawIca caGLPaaaaaa@3D56@ . For that, we consider T as the most important extreme value Type I distribution known as Gumbel distribution. This distribution has many applications including, to describe extreme wind spreads, sea wave heights, floods,rainfall during droughts, electrical strength of materials, air pollution problems, geological problems, naval engineering etc. Recently, the Gumbel distribution is used for modelling covid 19 data4,5 also.

 Al-Aqtash1 proposed the Gumbel - X family by taking T as the Gumbel random variable

G( x )= e e μ σ ( F( x ) F ¯ ( x ) ) 1/σ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ramaabmaapaqaa8qacaWG4baacaGLOaGaayzkaaGaeyypa0Ja amyza8aadaahaaWcbeqaa8qacqGHsislcaWGLbWdamaaCaaameqaba Wdbmaalaaapaqaa8qacqaH8oqBa8aabaWdbiabeo8aZbaaaaWcdaqa daWdaeaapeWaaSaaa8aabaWdbiaadAeadaqadaWdaeaapeGaamiEaa GaayjkaiaawMcaaaWdaeaapeGabmOrayaaraWaaeWaa8aabaWdbiaa dIhaaiaawIcacaGLPaaaaaaacaGLOaGaayzkaaWdamaaCaaameqaba WdbiabgkHiTiaaigdacaGGVaGaeq4Wdmhaaaaaaaa@502B@ (1.3)

 By setting λ= e μ/σ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdWMaeyypa0Jaamyza8aadaahaaWcbeqaa8qacqaH8oqBcaGG VaGaeq4Wdmhaaaaa@3F4B@ the cdf reduces to

 

 

G( x )= e λ ( F( x ) F ¯ ( x ) ) 1/σ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ramaabmaapaqaa8qacaWG4baacaGLOaGaayzkaaGaeyypa0Ja amyza8aadaahaaWcbeqaa8qacqGHsislcqaH7oaBdaqadaWdaeaape WaaSaaa8aabaWdbiaadAeadaqadaWdaeaapeGaamiEaaGaayjkaiaa wMcaaaWdaeaapeGabmOrayaaraWaaeWaa8aabaWdbiaadIhaaiaawI cacaGLPaaaaaaacaGLOaGaayzkaaWdamaaCaaameqabaWdbiabgkHi TiaaigdacaGGVaGaeq4Wdmhaaaaaaaa@4CD6@ (1.4)

 and the pdf is

g( x )= λ σ f( x ) ( F( x ) ) 1 σ 1 ( F ¯ ( x ) ) 1 σ +1 e λ ( F( x ) F ¯ ( x ) ) 1/σ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4zamaabmaapaqaa8qacaWG4baacaGLOaGaayzkaaGaeyypa0Za aSaaa8aabaWdbiabeU7aSbWdaeaapeGaeq4WdmhaaiaadAgadaqada WdaeaapeGaamiEaaGaayjkaiaawMcaamaalaaapaqaa8qadaqadaWd aeaapeGaamOramaabmaapaqaa8qacaWG4baacaGLOaGaayzkaaaaca GLOaGaayzkaaWdamaaCaaaleqabaWdbiabgkHiTmaalaaapaqaa8qa caaIXaaapaqaa8qacqaHdpWCaaGaeyOeI0IaaGymaaaaaOWdaeaape WaaeWaa8aabaWdbiqadAeagaqeamaabmaapaqaa8qacaWG4baacaGL OaGaayzkaaaacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiabgkHiTm aalaaapaqaa8qacaaIXaaapaqaa8qacqaHdpWCaaGaey4kaSIaaGym aaaaaaGccaWGLbWdamaaCaaaleqabaWdbiabgkHiTiabeU7aSnaabm aapaqaa8qadaWcaaWdaeaapeGaamOramaabmaapaqaa8qacaWG4baa caGLOaGaayzkaaaapaqaa8qaceWGgbGbaebadaqadaWdaeaapeGaam iEaaGaayjkaiaawMcaaaaaaiaawIcacaGLPaaapaWaaWbaaWqabeaa peGaeyOeI0IaaGymaiaac+cacqaHdpWCaaaaaaaa@6A44@ (1.5)

 The support of the random variable associated with (1.5) and f(.) are the same.

 

The paper is designed as follows. In section 2, we define the Gumbel-Pareto distribution. Some structural properties including moments, quantile function and order statistics are discussed in section 3.The maximum likelihood estimation of the model parameters is discussed in section 4.The application of this distribution to two real data sets are presented in section 5. In section 6, stress - strength analysis is discussed. Finally section 7 offers some concluding remarks.

Gumbel- Pareto distribution

Pareto distribution is a well known distribution for its capability in modeling heavy tailed data sets especially income and wealth data. Kochanczyk and Lipniack6 has conducted a Pareto based evaluation of national responses to Covid - 19.

If the parent distribution is Pareto with parameters k and θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiUdehaaa@38E5@ , with pdf

f( x )= k θ ( x θ ) k1 ,x>θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOzamaabmaapaqaa8qacaWG4baacaGLOaGaayzkaaGaeyypa0Za aSaaa8aabaWdbiaadUgaa8aabaWdbiabeI7aXbaacaGGOaWaaSaaa8 aabaWdbiaadIhaa8aabaWdbiabeI7aXbaacaGGPaWdamaaCaaaleqa baWdbiabgkHiTiaadUgacqGHsislcaaIXaaaaOGaaiilaiaadIhacq GH+aGpcqaH4oqCaaa@4B59@ (2.1)

then the cdf of the four parameter Gumbel - Pareto distribution, denoted by GuP( x;λ,σ,k,θ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4raiaadwhacaWGqbWaaeWaa8aabaWdbiaadIhacaGG7aGaeq4U dWMaaiilaiabeo8aZjaacYcacaWGRbGaaiilaiabeI7aXbGaayjkai aawMcaaaaa@455B@ is given by

G GuP ( x;λ,σ,k,θ )= e λ [ ( x θ ) k 1] 1/σ , x>θ. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ra8aadaWgaaWcbaWdbiaadEeacaWG1bGaamiuaaWdaeqaaOWd bmaabmaapaqaa8qacaWG4bGaai4oaiabeU7aSjaacYcacqaHdpWCca GGSaGaam4AaiaacYcacqaH4oqCaiaawIcacaGLPaaacqGH9aqpcaWG LbWdamaaCaaaleqabaWdbiabgkHiTiabeU7aSjaacUfacaGGOaWaaS aaa8aabaWdbiaadIhaa8aabaWdbiabeI7aXbaacaGGPaWdamaaCaaa meqabaWdbiaadUgaaaWccqGHsislcaaIXaGaaiyxa8aadaahaaadbe qaa8qacqGHsislcaaIXaGaai4laiabeo8aZbaaaaGccaGGSaGaaeiO aiaadIhacqGH+aGpcqaH4oqCcaGGUaaaaa@5F37@ (2.2)

The corresponding pdf is given by

g GuP ( x;λ,σ,k,θ )= λk σθ e λ [ ( x θ ) k 1] 1/σ [ ( x θ ) k 1] 1/σ1 ( x θ ) k1 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4za8aadaWgaaWcbaWdbiaadEeacaWG1bGaamiuaaWdaeqaaOWd bmaabmaapaqaa8qacaWG4bGaai4oaiabeU7aSjaacYcacqaHdpWCca GGSaGaam4AaiaacYcacqaH4oqCaiaawIcacaGLPaaacqGH9aqpdaWc aaWdaeaapeGaeq4UdWMaam4AaaWdaeaapeGaeq4WdmNaeqiUdehaai aadwgapaWaaWbaaSqabeaapeGaeyOeI0Iaeq4UdWMaai4waiaacIca daWcaaWdaeaapeGaamiEaaWdaeaapeGaeqiUdehaaiaacMcapaWaaW baaWqabeaapeGaam4AaaaaliabgkHiTiaaigdacaGGDbWdamaaCaaa meqabaWdbiabgkHiTiaaigdacaGGVaGaeq4WdmhaaaaakiaacUfaca GGOaWaaSaaa8aabaWdbiaadIhaa8aabaWdbiabeI7aXbaacaGGPaWd amaaCaaaleqabaWdbiaadUgaaaGccqGHsislcaaIXaGaaiyxa8aada ahaaWcbeqaa8qacqGHsislcaaIXaGaai4laiabeo8aZjabgkHiTiaa igdaaaGccaGGOaWaaSaaa8aabaWdbiaadIhaa8aabaWdbiabeI7aXb aacaGGPaWdamaaCaaaleqabaWaaWbaaWqabeaadaahaaqabeaapeGa am4AaiabgkHiTiaaigdaaaaaaaaakiaac6caaaa@76F0@ (2.3)

 

The hazard function (hf) is obtained as

h( x;λ,σ,k,θ )= λk σθ e λ [ ( x θ ) k 1] 1/σ [ ( x θ ) k 1] 1/σ1 ( x θ ) k1 1 e λ [ ( x θ ) k 1] 1/σ , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiAamaabmaapaqaa8qacaWG4bGaai4oaiabeU7aSjaacYcacqaH dpWCcaGGSaGaam4AaiaacYcacqaH4oqCaiaawIcacaGLPaaacqGH9a qpdaWcaaWdaeaapeWaaSaaa8aabaWdbiabeU7aSjaadUgaa8aabaWd biabeo8aZjabeI7aXbaacaWGLbWdamaaCaaaleqabaWdbiabgkHiTi abeU7aSjaacUfacaGGOaWaaSaaa8aabaWdbiaadIhaa8aabaWdbiab eI7aXbaacaGGPaWdamaaCaaameqabaWdbiaadUgaaaWccqGHsislca aIXaGaaiyxa8aadaahaaadbeqaa8qacqGHsislcaaIXaGaai4laiab eo8aZbaaaaGccaGGBbGaaiikamaalaaapaqaa8qacaWG4baapaqaa8 qacqaH4oqCaaGaaiyka8aadaahaaWcbeqaa8qacaWGRbaaaOGaeyOe I0IaaGymaiaac2fapaWaaWbaaSqabeaapeGaeyOeI0IaaGymaiaac+ cacqaHdpWCcqGHsislcaaIXaaaaOGaaiikamaalaaapaqaa8qacaWG 4baapaqaa8qacqaH4oqCaaGaaiyka8aadaahaaWcbeqaamaaCaaame qabaWaaWbaaeqabaWdbiaadUgacqGHsislcaaIXaaaaaaaaaaak8aa baWdbiaaigdacqGHsislcaWGLbWdamaaCaaaleqabaWdbiabgkHiTi abeU7aSjaacUfacaGGOaWaaSaaa8aabaWdbiaadIhaa8aabaWdbiab eI7aXbaacaGGPaWdamaaCaaameqabaWdbiaadUgaaaWccqGHsislca aIXaGaaiyxa8aadaahaaadbeqaa8qacqGHsislcaaIXaGaai4laiab eo8aZbaaaaaaaOGaaiilaaaa@872C@ (2.4)

 

6cm 6cm

Some structural properties

Transformation

Lemma 3.1: If YGu( μ,σ ) then X=θ ( e Y +1) 1/k Gu P distribution MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamywaiabgYJi+jaadEeacaWG1bWaaeWaa8aabaWdbiabeY7aTjaa cYcacqaHdpWCaiaawIcacaGLPaaacaqGGcGaamiDaiaadIgacaWGLb GaamOBaiaabckacaWGybGaeyypa0JaeqiUdeNaaiikaiaadwgapaWa aWbaaSqabeaapeGaamywaaaakiabgUcaRiaaigdacaGGPaWdamaaCa aaleqabaWdbiaaigdacaGGVaGaam4AaaaakiabgYJi+jaadEeacaWG 1bGaaeiOaiaadcfacaqGGcGaamizaiaadMgacaWGZbGaamiDaiaadk hacaWGPbGaamOyaiaadwhacaWG0bGaamyAaiaad+gacaWGUbaaaa@641B@

The proof is done by using transformation technique.

Quantile function and simulation

The quantile function of Gumbel-Pareto is obtained by inverting (2.2) as x=Q( u )=θ [1+ ( 1 λ log u) σ ] 1/k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEaiabg2da9iaadgfadaqadaWdaeaapeGaamyDaaGaayjkaiaa wMcaaiabg2da9iabeI7aXjaacUfacaaIXaGaey4kaSIaaiikaiabgk HiTmaalaaapaqaa8qacaaIXaaapaqaa8qacqaH7oaBaaGaamiBaiaa d+gacaWGNbGaaiiOaiaadwhacaGGPaWdamaaCaaaleqabaWdbiabgk HiTiabeo8aZbaakiaac2fapaWaaWbaaSqabeaapeGaaGymaiaac+ca caWGRbaaaaaa@5265@

 If uU( 0,1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyDaiabgYJi+jaadwfadaqadaWdaeaapeGaaGimaiaacYcacaaI XaaacaGLOaGaayzkaaaaaa@3E38@ , then X=Q(u) has pdf g(x).

By using Q(u), one can obtain the Galton skewness and Moor’s Kurtosis which is defined as S= Q( 6/8 )2Q( 4/8 )+Q( 2/8 ) Q( 6/8 )Q( 2/8 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4uaiabg2da9maalaaapaqaa8qacaWGrbWaaeWaa8aabaWdbiaa iAdacaGGVaGaaGioaaGaayjkaiaawMcaaiabgkHiTiaaikdacaWGrb WaaeWaa8aabaWdbiaaisdacaGGVaGaaGioaaGaayjkaiaawMcaaiab gUcaRiaadgfadaqadaWdaeaapeGaaGOmaiaac+cacaaI4aaacaGLOa Gaayzkaaaapaqaa8qacaWGrbWaaeWaa8aabaWdbiaaiAdacaGGVaGa aGioaaGaayjkaiaawMcaaiabgkHiTiaadgfadaqadaWdaeaapeGaaG Omaiaac+cacaaI4aaacaGLOaGaayzkaaaaaaaa@5448@ K= Q( 7/8 )Q( 5/8 )+Q( 3/8 )Q( 1/8 ) Q( 6/8 )Q( 2/8 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4saiabg2da9maalaaapaqaa8qacaWGrbWaaeWaa8aabaWdbiaa iEdacaGGVaGaaGioaaGaayjkaiaawMcaaiabgkHiTiaadgfadaqada WdaeaapeGaaGynaiaac+cacaaI4aaacaGLOaGaayzkaaGaey4kaSIa amyuamaabmaapaqaa8qacaaIZaGaai4laiaaiIdaaiaawIcacaGLPa aacqGHsislcaWGrbWaaeWaa8aabaWdbiaaigdacaGGVaGaaGioaaGa ayjkaiaawMcaaaWdaeaapeGaamyuamaabmaapaqaa8qacaaI2aGaai 4laiaaiIdaaiaawIcacaGLPaaacqGHsislcaWGrbWaaeWaa8aabaWd biaaikdacaGGVaGaaGioaaGaayjkaiaawMcaaaaaaaa@5922@

Moments

Theorem 3.1 The K= Q( 7/8 )Q( 5/8 )+Q( 3/8 )Q( 1/8 ) Q( 6/8 )Q( 2/8 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4saiabg2da9maalaaapaqaa8qacaWGrbWaaeWaa8aabaWdbiaa iEdacaGGVaGaaGioaaGaayjkaiaawMcaaiabgkHiTiaadgfadaqada WdaeaapeGaaGynaiaac+cacaaI4aaacaGLOaGaayzkaaGaey4kaSIa amyuamaabmaapaqaa8qacaaIZaGaai4laiaaiIdaaiaawIcacaGLPa aacqGHsislcaWGrbWaaeWaa8aabaWdbiaaigdacaGGVaGaaGioaaGa ayjkaiaawMcaaaWdaeaapeGaamyuamaabmaapaqaa8qacaaI2aGaai 4laiaaiIdaaiaawIcacaGLPaaacqGHsislcaWGrbWaaeWaa8aabaWd biaaikdacaGGVaGaaGioaaGaayjkaiaawMcaaaaaaaa@5922@ raw moment of Gumbel Pareto distribution is μ r ' = θ r i=0 λ iσ ( r/k i )Γ( 1iσ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiVd02damaaDaaaleaapeGaamOCaaWdaeaapeGaae4jaaaakiab g2da9iabeI7aX9aadaahaaWcbeqaa8qacaWGYbaaaOWdamaaqadaba WdbiabeU7aS9aadaahaaWcbeqaa8qacaWGPbGaeq4WdmhaaaWdaeaa peGaamyAaiabg2da9iaaicdaa8aabaWdbiabg6HiLcqdpaGaeyyeIu oak8qadaqadaWdaeaafaqaaeGabaaabaWdbiaadkhacaGGVaGaam4A aaWdaeaapeGaamyAaaaaaiaawIcacaGLPaaacqqHtoWrdaqadaWdae aapeGaaGymaiabgkHiTiaadMgacqaHdpWCaiaawIcacaGLPaaaaaa@5715@

 where Γ( a )= 0 t a1 e t dt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaae4Kdmaabmaapaqaa8qacaWGHbaacaGLOaGaayzkaaGaeyypa0Za a8qCaeaacaWG0bWdamaaCaaaleqabaWdbiaadggacqGHsislcaaIXa aaaOGaamyza8aadaahaaWcbeqaa8qacqGHsislcaWG0baaaOGaamiz aiaadshaaSqaaiaaicdaaeaacqGHEisPa0Gaey4kIipaaaa@4955@ is the gamma function.

The skewness and kurtosis can also be calculated from ordinary moments using well-known relationships.

Order Statistics

Order statistics deals with the properties and applications of ordered random samples and their functions. Suppose X 1 , X 2 ,.... X n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiwa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGGSaGaamiw a8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacaGGSaGaaiOlaiaac6 cacaGGUaGaaiOlaiaadIfapaWaaSbaaSqaa8qacaWGUbaapaqabaaa aa@419A@ be a random sample from Gumbel Pareto distribution. Let X r:n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiwa8aadaWgaaWcbaWdbiaadkhacaGG6aGaamOBaaWdaeqaaaaa @3B0E@ denote the r th MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOCa8aadaahaaWcbeqaa8qacaWG0bGaamiAaaaaaaa@3A58@ order statistic. Then the pdf of X r:n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiwa8aadaWgaaWcbaWdbiaadkhacaGG6aGaamOBaaWdaeqaaaaa @3B0E@ can be expressed as

g r:n ( x )= n! ( r1 )!( nr )! j=0 nr ( 1 ) j ( nr j )g( x )G (x) j+r1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4za8aadaWgaaWcbaWdbiaadkhacaGG6aGaamOBaaWdaeqaaOWd bmaabmaapaqaa8qacaWG4baacaGLOaGaayzkaaGaeyypa0ZaaSaaa8 aabaWdbiaad6gacaGGHaaapaqaa8qadaqadaWdaeaapeGaamOCaiab gkHiTiaaigdaaiaawIcacaGLPaaacaGGHaWaaeWaa8aabaWdbiaad6 gacqGHsislcaWGYbaacaGLOaGaayzkaaGaaiyiaaaadaaeWbqaamaa bmaabaGaeyOeI0IaaGymaaGaayjkaiaawMcaaaWcbaGaamOAaiabg2 da9iaaicdaaeaacaWGUbGaeyOeI0IaamOCaaqdcqGHris5aOWdamaa CaaaleqabaWdbiaadQgaaaGcdaqadaWdaeaafaqaaeGabaaabaWdbi aad6gacqGHsislcaWGYbaapaqaa8qacaWGQbaaaaGaayjkaiaawMca aiaadEgadaqadaWdaeaapeGaamiEaaGaayjkaiaawMcaaiaadEeaca GGOaGaamiEaiaacMcapaWaaWbaaSqabeaapeGaamOAaiabgUcaRiaa dkhacqGHsislcaaIXaaaaaaa@6828@ (3.1)

 Inserting g( x ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4zamaabmaapaqaa8qacaWG4baacaGLOaGaayzkaaaaaa@3AC0@ and G( x ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ramaabmaapaqaa8qacaWG4baacaGLOaGaayzkaaaaaa@3AA0@ in (3.1)and after some algebra we get, g r:n ( x )= j=0 nr [ (1) j n! ( r1 )!( nr )! ( nr j ) λk σθ [ ( x θ ) k 1 ] 1/σ1 ( x θ ) k1 exp{ ( r+j )(λ[( ( x θ ) k 1 ] 1/σ ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4za8aadaWgaaWcbaWdbiaadkhacaGG6aGaamOBaaWdaeqaaOWd bmaabmaapaqaa8qacaWG4baacaGLOaGaayzkaaGaeyypa0ZaaybCae qal8aabaWdbiaadQgacqGH9aqpcaaIWaaapaqaa8qacaWGUbGaeyOe I0IaamOCaaqdpaqaa8qacqGHris5aaGcdaWadaqaamaalaaabaGaai ikaiabgkHiTiaaigdacaGGPaWdamaaCaaaleqabaWdbiaadQgaaaGc caWGUbGaaiyiaaqaamaabmaapaqaa8qacaWGYbGaeyOeI0IaaGymaa GaayjkaiaawMcaaiaacgcadaqadaWdaeaapeGaamOBaiabgkHiTiaa dkhaaiaawIcacaGLPaaacaGGHaaaamaabmaapaqaauaabaqaceaaae aapeGaamOBaiabgkHiTiaadkhaa8aabaWdbiaadQgaaaaacaGLOaGa ayzkaaWaaSaaa8aabaWdbiabeU7aSjaadUgaa8aabaWdbiabeo8aZj abeI7aXbaacaGGBbWaaeWaaeaadaWcaaWdaeaapeGaamiEaaWdaeaa peGaeqiUdehaaaGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaWGRb aaaOWdaiabgkHiTiaaigdaa8qacaGLBbGaayzxaaWdamaaCaaaleqa baWdbiabgkHiTiaaigdacaGGVaGaeq4WdmNaeyOeI0IaaGymaaaakm aabmaabaWaaSaaa8aabaWdbiaadIhaa8aabaWdbiabeI7aXbaaaiaa wIcacaGLPaaapaWaaWbaaSqabeaapeGaam4AaiabgkHiTiaaigdaaa GccaWGLbGaamiEaiaadchadaGadaqaaiabgkHiTmaabmaapaqaa8qa caWGYbGaey4kaSIaamOAaaGaayjkaiaawMcaaiaacIcacqaH7oaBca GGBbWaaeWaa8aabaWdbmaabmaabaWaaSaaa8aabaWdbiaadIhaa8aa baWdbiabeI7aXbaaaiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaam 4AaaaakiabgkHiTiaaigdacaGGDbWdamaaCaaaleqabaWdbiabgkHi TiaaigdacaGGVaGaeq4WdmhaaaGccaGLOaGaayzkaaaacaGL7bGaay zFaaaaaa@9734@

= j=0 nr ξ j g( x;λ,σ,k,θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeyypa0ZaaybCaeqal8aabaWdbiaadQgacqGH9aqpcaaIWaaapaqa a8qacaWGUbGaeyOeI0IaamOCaaqdpaqaa8qacqGHris5aaGccqaH+o aEpaWaaSbaaSqaa8qacaWGQbaapaqabaGcpeGaam4zamaabmaabaGa amiEaiaacUdacqaH7oaBcaGGSaGaeq4WdmNaaiilaiaadUgacaGGSa GaeqiUdehacaGLOaGaayzkaaaaaa@4FEF@ (3.2)

 where ξ j = (1) j n! ( r1 )!( nr )! ( nr j ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOVdG3damaaBaaaleaapeGaamOAaaWdaeqaaOWdbiabg2da9maa laaapaqaa8qacaGGOaGaeyOeI0IaaGymaiaacMcapaWaaWbaaSqabe aapeGaamOAaaaakiaad6gacaGGHaaapaqaa8qadaqadaWdaeaapeGa amOCaiabgkHiTiaaigdaaiaawIcacaGLPaaacaGGHaWaaeWaa8aaba Wdbiaad6gacqGHsislcaWGYbaacaGLOaGaayzkaaGaaiyiaaaadaqa daWdaeaafaqaaeGabaaabaWdbiaad6gacqGHsislcaWGYbaapaqaa8 qacaWGQbaaaaGaayjkaiaawMcaaaaa@512F@ and g( x;λ,σ,k,θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaai4zamaabmaabaGaamiEaiaacUdacqaH7oaBcaGGSaGaeq4WdmNa aiilaiaadUgacaGGSaGaeqiUdehacaGLOaGaayzkaaaaaa@438B@ is the Gumbel Pareto density function with parameters λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdWgaaa@38E2@ , σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdmhaaa@38F1@ , k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Aaaaa@381E@ and θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiUdehaaa@38E4@ .

It reveals that the pdf of Gumbel Pareto order statistics is the mixture of Gumbel Pareto densities.

Maximum likelihood estimation

The maximum likelihood method is applied for estimating the parameters of Gumbel-Pareto distribution. Let X 1 , X 2 ,.... X n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiwa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGGSaGaamiw a8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacaGGSaGaaiOlaiaac6 cacaGGUaGaaiOlaiaadIfapaWaaSbaaSqaa8qacaWGUbaapaqabaaa aa@4199@ be a random sample from Gumbel Pareto(GuP) distribution. Also let Θ=( λ,σ,k,θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeiMdiabg2da9maabmaapaqaa8qacqaH7oaBcaGGSaGaeq4WdmNa aiilaiaadUgacaGGSaGaeqiUdehacaGLOaGaayzkaaaaaa@4327@ The likelihood function for the GuP distribution is given by L( Θ )= ( λk σθ ) n exp{ { λ i=1 n [ ( x θ ) k 1 ] 1/σ } i=1 n [ ( x θ ) k 1 ] } 1/σ1 ( x θ ) i=1 n k1 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamitamaabmaabaGaeuiMdefacaGLOaGaayzkaaGaeyypa0ZaaeWa aeaadaWcaaWdaeaapeGaeq4UdWMaam4AaaWdaeaapeGaeq4WdmNaeq iUdehaaaGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaWGUbaaaOGa amyzaiaadIhacaWGWbWaaiWaaeaadaGadaqaaiabgkHiTiabeU7aSn aaqadabaWaamWaaeaapaWaaiGaaeaapeWaamGaaeaadaqadaqaamaa laaapaqaa8qacaWG4baapaqaa8qacqaH4oqCaaaacaGLOaGaayzkaa WdamaaCaaaleqabaWdbiaadUgaaaGccqGHsislcaaIXaaacaGLDbaa paWaaWbaaSqabeaapeGaeyOeI0IaaGymaiaac+cacqaHdpWCaaaak8 aacaGL9baadaqeWaqaamaadeaabaWaaeWaaeaadaWcaaqaa8qacaWG 4baapaqaa8qacqaH4oqCaaaapaGaayjkaiaawMcaamaaCaaaleqaba Gaam4Aaaaak8qacqGHsislcaaIXaaapaGaay5waaaaleaacaWGPbGa eyypa0JaaGymaaqaaiaad6gaa0Gaey4dIunaaOWdbiaawUfacaGLDb aaaSqaaiaadMgacqGH9aqpcaaIXaaabaGaamOBaaqdcqGHris5aaGc caGL7bGaayzFaaWaaWbaaSqabeaacqGHsislcaaIXaGaai4laiabeo 8aZjabgkHiTiaaigdaaaGcdaqhbaWcbaGaamyAaiabg2da9iaaigda aeaacaWGUbaaaOWaaeWaaeaadaWcaaWdaeaapeGaamiEaaWdaeaape GaeqiUdehaaaGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaWGRbGa eyOeI0IaaGymaaaaaOGaay5Eaiaaw2haaaaa@8465@

 The components of the score vector U( Θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyvamaabmaapaqaa8qacaqGyoaacaGLOaGaayzkaaaaaa@3ACE@ are given by

U λ = n λ i=1 n [ ( x i θ ) k 1] 1/σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyva8aadaWgaaWcbaWdbiabeU7aSbWdaeqaaOWdbiabg2da9maa laaapaqaa8qacaWGUbaapaqaa8qacqaH7oaBaaGaeyOeI0Yaaabmae aacaGGBbGaaiikamaalaaapaqaa8qacaWG4bWdamaaBaaaleaapeGa amyAaaWdaeqaaaGcbaWdbiabeI7aXbaacaGGPaWdamaaCaaaleqaba WdbiaadUgaaaGccqGHsislcaaIXaGaaiyxa8aadaahaaWcbeqaa8qa cqGHsislcaaIXaGaai4laiabeo8aZbaaaeaacaWGPbGaeyypa0JaaG ymaaqaaiaad6gaa0GaeyyeIuoaaaa@5366@

U σ = n σ λ i=1 n { [ ( x i θ ) k 1 ] 1/σ log[ ( x i θ ) k 1 ] } + 1 σ 2 i=1 n log [ ( x i θ ) k 1 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyva8aadaWgaaWcbaWdbiabeo8aZbWdaeqaaOWdbiabg2da9iab gkHiTmaalaaapaqaa8qacaWGUbaapaqaa8qacqaHdpWCaaGaeyOeI0 Iaeq4UdW2aaabmaeaadaGadaqaamaadmaabaWaaeWaaeaadaWcaaWd aeaapeGaamiEa8aadaWgaaWcbaWdbiaadMgaa8aabeaaaOqaa8qacq aH4oqCaaaacaGLOaGaayzkaaWaaWbaaSqabeaacaWGRbaaaOGaeyOe I0IaaGymaaGaay5waiaaw2faamaaCaaaleqabaGaeyOeI0IaaGymai aac+cacqaHdpWCaaGcciGGSbGaai4BaiaacEgadaWadaqaamaabmaa baWaaSaaa8aabaWdbiaadIhapaWaaSbaaSqaa8qacaWGPbaapaqaba aakeaapeGaeqiUdehaaaGaayjkaiaawMcaamaaCaaaleqabaGaam4A aaaakiabgkHiTiaaigdaaiaawUfacaGLDbaaaiaawUhacaGL9baaaS qaaiaadMgacqGH9aqpcaaIXaaabaGaamOBaaqdcqGHris5aOGaey4k aSYaaSaaa8aabaWdbiaaigdaa8aabaWdbiabeo8aZ9aadaahaaWcbe qaa8qacaaIYaaaaaaakmaaqadabaGaciiBaiaac+gacaGGNbaaleaa caWGPbGaeyypa0JaaGymaaqaaiaad6gaa0GaeyyeIuoakmaadmaaba WaaeWaaeaadaWcaaWdaeaapeGaamiEa8aadaWgaaWcbaWdbiaadMga a8aabeaaaOqaa8qacqaH4oqCaaaacaGLOaGaayzkaaWaaWbaaSqabe aacaWGRbaaaOGaeyOeI0IaaGymaaGaay5waiaaw2faaaaa@7DC3@

U k = n k + λ σ i=1 n { [ ( x i θ ) k 1 ] 1/σ1 ( x i θ ) k log( x i θ ) } +( 1 σ 1 ) i=1 n [ ( x i θ ) k log( x i θ ) ] [ ( x i θ ) k 1 ] +nlog( x i θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyva8aadaWgaaWcbaWdbiaadUgaa8aabeaak8qacqGH9aqpdaWc aaWdaeaapeGaamOBaaWdaeaapeGaam4AaaaacqGHRaWkdaWcaaWdae aapeGaeq4UdWgapaqaa8qacqaHdpWCaaWaaabmaeaadaGadaqaamaa dmaabaWaaeWaa8aabaWdbmaalaaapaqaa8qacaWG4bWdamaaBaaale aapeGaamyAaaWdaeqaaaGcbaWdbiabeI7aXbaaaiaawIcacaGLPaaa paWaaWbaaSqabeaapeGaam4AaaaakiabgkHiTiaaigdaaiaawUfaca GLDbaapaWaaWbaaSqabeaapeGaeyOeI0IaaGymaiaac+cacqaHdpWC cqGHsislcaaIXaaaaOGaaiikamaalaaapaqaa8qacaWG4bWdamaaBa aaleaapeGaamyAaaWdaeqaaaGcbaWdbiabeI7aXbaacaGGPaWdamaa CaaaleqabaWdbiaadUgaaaGccaWGSbGaam4BaiaadEgadaqadaWdae aapeWaaSaaa8aabaWdbiaadIhapaWaaSbaaSqaa8qacaWGPbaapaqa baaakeaapeGaeqiUdehaaaGaayjkaiaawMcaaaGaay5Eaiaaw2haaa WcbaGaamyAaiabg2da9iaaigdaaeaacaWGUbaaniabggHiLdGccqGH RaWkdaqadaWdaeaapeGaeyOeI0YaaSaaa8aabaWdbiaaigdaa8aaba Wdbiabeo8aZbaacqGHsislcaaIXaaacaGLOaGaayzkaaWaaabmaeaa daWcaaqaamaadmaabaWaaeWaa8aabaWdbmaalaaapaqaa8qacaWG4b WdamaaBaaaleaapeGaamyAaaWdaeqaaaGcbaWdbiabeI7aXbaaaiaa wIcacaGLPaaapaWaaWbaaSqabeaapeGaam4AaaaakiaadYgacaWGVb Gaam4zamaabmaapaqaa8qadaWcaaWdaeaapeGaamiEa8aadaWgaaWc baWdbiaadMgaa8aabeaaaOqaa8qacqaH4oqCaaaacaGLOaGaayzkaa aacaGLBbGaayzxaaaabaWaamWaaeaadaqadaWdaeaapeWaaSaaa8aa baWdbiaadIhapaWaaSbaaSqaa8qacaWGPbaapaqabaaakeaapeGaeq iUdehaaaGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaWGRbaaaOGa eyOeI0IaaGymaaGaay5waiaaw2faaaaaaSqaaiaadMgacqGH9aqpca aIXaaabaGaamOBaaqdcqGHris5aOGaey4kaSIaamOBaiaadYgacaWG VbGaam4zamaabmaapaqaa8qadaWcaaWdaeaapeGaamiEa8aadaWgaa WcbaWdbiaadMgaa8aabeaaaOqaa8qacqaH4oqCaaaacaGLOaGaayzk aaaaaa@9E99@

U θ = nk θ λk σθ i=1 n { [ ( x i θ ) k 1] 1/σ1 ( x i θ ) k } + k θ ( 1 σ +1 ) i=1 n ( x i θ ) k [ ( x i θ ) k 1 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyva8aadaWgaaWcbaWdbiabeI7aXbWdaeqaaOWdbiabg2da9iab gkHiTmaalaaapaqaa8qacaWGUbGaam4AaaWdaeaapeGaeqiUdehaai abgkHiTmaalaaapaqaa8qacqaH7oaBcaWGRbaapaqaa8qacqaHdpWC cqaH4oqCaaWaaabmaeaadaGadaqaaiaacUfadaqadaWdaeaapeWaaS aaa8aabaWdbiaadIhapaWaaSbaaSqaa8qacaWGPbaapaqabaaakeaa peGaeqiUdehaaaGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaWGRb aaaOGaeyOeI0IaaGymaiaac2fapaWaaWbaaSqabeaapeGaeyOeI0Ia aGymaiaac+cacqaHdpWCcqGHsislcaaIXaaaaOWaaeWaa8aabaWdbm aalaaapaqaa8qacaWG4bWdamaaBaaaleaapeGaamyAaaWdaeqaaaGc baWdbiabeI7aXbaaaiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaam 4AaaaaaOGaay5Eaiaaw2haaaWcbaGaamyAaiabg2da9iaaigdaaeaa caWGUbaaniabggHiLdGccqGHRaWkdaWcaaWdaeaapeGaam4AaaWdae aapeGaeqiUdehaamaabmaapaqaa8qadaWcaaWdaeaapeGaaGymaaWd aeaapeGaeq4WdmhaaiabgUcaRiaaigdaaiaawIcacaGLPaaadaaeWa qaamaalaaapaqaa8qadaqadaWdaeaapeWaaSaaa8aabaWdbiaadIha paWaaSbaaSqaa8qacaWGPbaapaqabaaakeaapeGaeqiUdehaaaGaay jkaiaawMcaa8aadaahaaWcbeqaa8qacaWGRbaaaaGcpaqaamaadmaa baWdbmaabmaapaqaa8qadaWcaaWdaeaapeGaamiEa8aadaWgaaWcba WdbiaadMgaa8aabeaaaOqaa8qacqaH4oqCaaaacaGLOaGaayzkaaWd amaaCaaaleqabaWdbiaadUgaaaGccqGHsislcaaIXaaapaGaay5wai aaw2faaaaaaSWdbeaacaWGPbGaeyypa0JaaGymaaqaaiaad6gaa0Ga eyyeIuoaaaa@8921@

The parameters can be estimated by equating these nonlinear equations to zero and solving them using the nlm function in R program.

Data analysis

In this section, we illustrate the effectiveness of Gumbel - Pareto distribution and compare the results with other existing models. To compare the distributions, we consider standardized goodness of fit measures like logL( Θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyOeI0IaamiBaiaad+gacaWGNbGaamitamaabmaapaqaaiabfI5a rbWdbiaawIcacaGLPaaaaaa@3EDC@ , AIC (Akaike information criterion), CAIC (Consistent Akaike information criterion), BIC (Bayesian information criterion) and HQIC (Hannan - Quinn information criterion). Smaller these values, better is the fit.

Data set I: Number of deaths due to COVID-19 in China. This data is reported in

(https://www.worldometers. info/coronavirus/country/china/) which represents daily deaths due to COVID-19 in China from 23 January to 28 March.

The data are: 8, 16, 15, 24, 26, 26, 38, 43, 46, 45, 57, 64, 65, 73, 73, 86, 89, 97, 108, 97, 146, 121, 143, 142, 105, 98, 136, 114, 118, 109, 97, 150, 71, 52, 29, 44, 47, 35, 42, 31, 38, 31, 30, 28, 27, 22, 17, 22, 11, 7, 13, 10, 14, 13, 11, 8, 3, 7, 6, 9, 7, 4, 6, 5, 3, 5.

Here we compare the new model with Exponentiated tranform of Gumbel type -II model (ETGT -II), Additive Gumbel type II (AGT -II) model and Gumbel type II model. The values of the statistics are given in Table 1.

Figure 1 The graph of the pdf and hazard rate of Gumbel - Pareto distribution for various parameter values.

 

 

 

 

 

 

 

Distribution

mles

logL MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyOeI0IaamiBaiaad+gacaWGNbGaamitaaaa@3BBD@

 AIC

 CAIC

 BIC

 HQIC

 

 

 

 

 

 

 

 

λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdWgaaa@38E3@  =2.527

 

 

 

 

 

GuP

σ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdmhaaa@38F2@  =2.968

 

 

 

 

 

 

 k=0.994

222.428

 452.856

444.856

453.512

444.856

 

θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiUdehaaa@38E4@  =2.879

 

 

 

 

 

 

 

 

 

 

 

 

 

γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4SdCgaaa@38D5@  =1.086

 

 

 

 

 

ETGT -II

δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdqgaaa@38D3@  =10.688

 329.158

664.316

664.703

670.885

666.912

 

ψ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiYdKhaaa@38FC@  =2.431

 

 

 

 

 

 

 

 

 

 

 

 

 

β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdigaaa@38CF@  =7.479

 

 

 

 

 

AGT -II

λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdWgaaa@38E3@ =13.432

 

 

 

 

 

 

δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdqgaaa@38D3@ =4.486

331.081

 670.162

670.818

678.921

673.623

 

α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySdegaaa@38CD@  =0.9137

 

 

 

 

 

 

 

 

 

 

 

 

 

β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdigaaa@38CF@ =0.916

 

 

 

 

 

GT -II

α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySdegaaa@38CD@ =13.532

331.102

 666.203

666.397

670.583

667.934

Table 1 The mles and the goodness of fit statistics , AIC, CAIC, BIC and HQIC for the data set 1

From the table, we can see that the suggested model is suitable for real life applications.

Data set II: The data set is a real data that consists of the number of successive failure for the air conditioning system reported of each member in a fleet of 13 Boeing 720 jet airplanes. The pooled data with 214 observations was considered by Proschan7, Kus8 and many others. Here we compare the model with existing Weibull Pareto model.

From Table 2, we can see that newly developed Gumbel Pareto distribution is suitable for the given data than the existing Weibull Pareto distribution.2

 

 

 

 

 

 

 

 

Distribution

mles

SE

logL MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyOeI0IaamiBaiaad+gacaWGNbGaamitaaaa@3BBD@

 AIC

 CAIC

 BIC

 HQIC

 

 

 

 

 

 

 

 

 

λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdWgaaa@38E3@ =9.6166

1.213

 

 

 

 

 

GuP

σ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdmhaaa@38F2@ =10.1333

2.281

 

 

 

 

 

 

 k=7.233

1.678

1005.81

 2017.62

 2017.74

 2027.72

 2021.71

 

θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiUdehaaa@38E4@ =0.9981

0.0026

 

 

 

 

 

 

 

 

 

 

 

 

 

 

α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySdegaaa@38CD@ =9.8626

0.008

 

 

 

 

 

WP

θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiUdehaaa@38E4@ =0.9283

0.004

 1459.62

 2925.24

 2925.35

 2935.34

 2929.32

 

b=0.1267

0.00001

 

 

 

 

 

Table 2 The mles and their standard errors (SE) and the goodness of fit statistics , AIC, CAIC, BIC and HQIC for the data set II

Stress - strength analysis

The reliability is defined as the probability of not failing, denoted by R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOuaaaa@3805@ and is defined as R=P(X<Y) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOuaiabg2da9iaadcfacaGGOaGaamiwaiabgYda8iaadMfacaGG Paaaaa@3DF8@ where X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiwaaaa@380B@ represents the stress and represents the strength of a component. For the evaluation of , here we assume that both the random variables follow the distributions belonging to the same family and are independent. There are a number of applications in the literature including stress - strength model and breakdown of a system having two components. If X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiwaaaa@380B@ and Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamywaaaa@380C@ are two independent random variables with cdf F 1 ( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOra8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qadaqadaWdaeaa peGaamiEaaGaayjkaiaawMcaaaaa@3BCD@ and F 2 ( y ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOra8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qadaqadaWdaeaa peGaamyEaaGaayjkaiaawMcaaaaa@3BCF@ and pdf f 1 ( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qadaqadaWdaeaa peGaamiEaaGaayjkaiaawMcaaaaa@3BED@ and f 2 ( y ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qadaqadaWdaeaa peGaamyEaaGaayjkaiaawMcaaaaa@3BEF@ respectively. Then

R=P( X<Y )= F 2 ( t ) f 1 ( t )dt. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOuaiabg2da9iaadcfadaqadaqaaiaadIfacqGH8aapcaWGzbaa caGLOaGaayzkaaGaeyypa0ZaaybCaeqal8aabaWdbiabgkHiTiabg6 HiLcWdaeaapeGaeyOhIukan8aabaWdbiabgUIiYdaakiaab2aicaWG gbWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbmaabmaapaqaa8qaca WG0baacaGLOaGaayzkaaGaamOza8aadaWgaaWcbaWdbiaaigdaa8aa beaak8qadaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaiaadsgaca WG0bGaaiOlaiaab2aiaaa@5320@ (6.1)

Lemma 6.1 If X and Y are two independent random variables following Gumbel - X family of distributions with parameters ( λ 1 , σ 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiabeU7aS9aadaWgaaWcbaWdbiaaigdaa8aabeaa k8qacaGGSaGaeq4Wdm3damaaBaaaleaapeGaaGymaaWdaeqaaaGcpe GaayjkaiaawMcaaaaa@3F5B@ and ( λ 2 , σ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiabeU7aS9aadaWgaaWcbaWdbiaaikdaa8aabeaa k8qacaGGSaGaeq4Wdm3damaaBaaaleaapeGaaGOmaaWdaeqaaaGcpe GaayjkaiaawMcaaaaa@3F5D@ respectively. Then

 

R= j=0 (1) j λ 2 j j! λ 1 j σ 1 σ 2 Γ( j σ 1 σ 2 +1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOuaiabg2da9maaqadabaWaaSaaaeaacaGGOaGaeyOeI0IaaGym aiaacMcapaWaaWbaaSqabeaapeGaamOAaaaakiabeU7aS9aadaWgaa WcbaWdbiaaikdaa8aabeaakmaaCaaaleqabaWdbiaadQgaaaaakeaa caWGQbGaaiyiaiabeU7aS9aadaWgaaWcbaWdbiaaigdaa8aabeaakm aaCaaaleqabaWdbmaalaaapaqaa8qacaWGQbGaeq4Wdm3damaaBaaa meaapeGaaGymaaWdaeqaaaWcbaWdbiabeo8aZ9aadaWgaaadbaWdbi aaikdaa8aabeaaaaaaaaaaaSWdbeaacaWGQbGaeyypa0JaaGimaaqa aiabg6HiLcqdcqGHris5aOGaeu4KdC0aaeWaa8aabaWdbiaadQgada WcaaWdaeaapeGaeq4Wdm3damaaBaaaleaapeGaaGymaaWdaeqaaaGc baWdbiabeo8aZ9aadaWgaaWcbaWdbiaaikdaa8aabeaaaaGcpeGaey 4kaSIaaGymaaGaayjkaiaawMcaaaaa@5EE7@ (6.2)

 A reliability test plan is developed when the life time of the items follow Gumbel - Pareto distribution. See Jeena and Jose9 for more details.10-14

Conclusion

In this paper, we proposed the new Gumbel-Pareto distribution. We study some of its structural properties including moments, quantile functions and order statistics.The estimation of the model parameters is addressed by maximum likelihood method. We fit the new model to two real data sets to demonstrate the usefulness in practice. We conclude that GuP distribution provides consistently better fit than other competing models for the data set. We hope that the proposed model will attract wider applications in various areas such as engineering, survival and lifetime data, hydrology,economics, Biostatistical data on Cancer, Covid etc

References

  1. Al - Aqtash R. On generating a new family of distributions using the logit function. Ph.D. thesis, central michigan university, mount pleasant, michigan. 2013.
  2. Alzaatreh A, Lee C, Famoye F. A new method for generating families of continuous distributions. Metron. 2013a;71(1):63‒79.
  3. Alzaatreh A, Lee C, Famoye F. Weibull pareto distribution and its applications. Communications in statistics - theory and methods. 2013b; 42(9): 1673‒1691.
  4. Yoo K, Arashi M, Bekker A. Pitting the Gumbel and logistic growth models against one another to model COVID-19 spread. medRxiv. 2020.
  5. Sindhu TN, Shafiq A, Al-Mdallal QM. Exponentiated transformation of Gumbel Type-II distribution for modeling COVID-19 data. Alexandria Engineering Journal. 2021;60(1):671‒689.
  6. Kocha Åczyk M, Lipniacki T. Pareto-based evaluation of national responses to COVID-19 pandemic shows that saving lives and protecting economy are non-trade-off objectives. Scientific reports. 2021;11(1):1‒9.
  7. Proschan F. Theoretical explanation of observed decreasing failure rate. Technometrics. 1963;5(3):375‒383.
  8. Kus C. A New lifetime distribution. Computational statistics and data analysis. 2007;51(9):4497‒4509.
  9. Joseph J, Jose KK. Reliability test plan for gumbel–pareto life time model. International Journal of Statistics and Reliability Engineering. 2021;8(1):121‒131.
  10. Beare BK, Toda. On the emergence of a power law in the distribution of COVID-19 cases. Physica D: Nonlinear Phenomena. 2020;412:132649.
  11. EJ Gumbel. Statistical theory of extreme values and some practical applications. Applied Mathematics, 1st edn. vol. 33, U.S. Department of Commerce, National Bureau of Standards, ASIN B0007DSHG4, Gaithersburg, Md, USA. 1954.
  12. Kotz S, Nadarajah S. Extreme value distributions: theory and applications. Imperial College Press, London. 2000.
  13. S Nadarajah. The exponentiated Gumbel distribution with climate application, Environmetrics. 2006;17(1):13‒23.
  14. Wong F, Collins JJ. Evidence that coronavirus superspreading is fat-tailed. Proceedings of the national academy of sciences. 2020;117(47):29416‒29418.
Creative Commons Attribution License

©2021 Joseph, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.