Submit manuscript...
eISSN: 2378-315X

Biometrics & Biostatistics International Journal

Research Article Volume 7 Issue 2

Endemic SIR model in random media with applications

Anatoliy Swishchuk,1 Mariya Svishchuk2

1Department of Mathematics & Statistics, University of Calgary, Canada
2Mathematics & Computer Science Department, Mount Royal University, Canada

Correspondence: Anatoliy Swishchuk, Department of Mathematics & Statistics, University of Calgary, Calgary, Canada

Received: January 30, 2018 | Published: March 13, 2018

Citation: Swishchuk A, Svishchuk M. Endemic SIR model in random media with applications. Biom Biostat Int J. 2018;7(2):115–121. DOI: 10.15406/bbij.2018.07.00197

Download PDF

Abstract

We consider an averaging principle for the endemic SIR model in a semi-Markov random media. Under stationary conditions of a semi-Markov media we show that the perturbed endemic SIR model converges to the classic endemic SIR model with averaged coefficients. Numerical toy examples and their interpretations are also presented for two-state Markov and semi-Markov chains. We also discuss two numerical examples involving real data: 1) Dengue Fever Disease (Indonesia and Malaysia (2009)) and 2) Cholera Outbreak in Zimbabwe (2008-2009). Novelty of the paper consists in studying of an endemic SIR model in semi-Markov random media and in implementations and interpretations of the results through numerical toy examples and discussion of numerical examples with real data.

Keywords: endemic SIR model, semi-Markov random media, averaging principle, averaged endemic SIR model, two-state Markov chain, two-state semi-Markov chain, weibull disctribution, failure rate for the disease

Introduction

In the last years, deterministic and stochastic epidemic models, in both discrete and continuous time, have been studied Nasel,1,2 Ball & Lyne3 Both model types are needed, and both have their advantages and weaknesses Hethcote,4 Allen & Burguin.5 The deterministic models lead to powerful qualitative results with important threshold behaviour. They can serve as a useful inside into the stochastic models as well. Even with large population, chance fluctuation may not average out, especially when these fluctuations have some spatial nature. Therefore, it may be important to take these variability under consideration. Allowance should be made for complicating feature of real infections, such as population structure and duration of disease stages - the assumed homogeneous mixing and exponential distribution of simple models are seldom appropriate. A particular challenge for the future now is to extend the epidemic model types, to allow structured population where assumptions of homogeneous mixing do not apply or partially apply. The model described in this paper is a variation on a SIR theme, with a simple and relatively tractable mathematical structure. In particular, we assume that the hosts are identical and homogeneously mixing, but not in the entire population. We divide the population of interest into subgroups/clusters, where that hosts mix homogeneously. It is straightforward to generalize this type of mixing structure to allow the distinct subgroups to have different rates of disease spreading. The groups are not isolated from one another. We allow contacts between groups that are modelled by use of transition probabilities. A particular host while traveling in space and time randomly appears in different groups - changes environment. Therefore we introduce randomness not directly through , , and , but indirectly, through the coefficients of the SIR model. These coefficients are directed by a semi-Markov process which serves as a switching process Swishchuk & Wu.6

The choice of a semi-Markov process is made for the purpose of generalization. In some particular situation, when the state space is finite, a Markov process can play the role of a switching process. Semi-Markovian properties have one more advantage: sojourn time must not be exponentially distributed. We note that epidemic SIR model in random media and its averaging, merging, diffusion approximation, normal deviations and stability were considered in Swishchuk & Wu.6 We consider an averaging principle for the endemic SIR model in a semi-Markov random media. Under stationary conditions of a semi-Markov media we show that the perturbed endemic SIR model converges to the classic endemic SIR model with averaged coefficients. Numerical toy examples and their interpretations are also presented for two-state Markov and semi-Markov chains. We also discuss two numerical examples involving real data: 1) Dengue Fever Disease (Indonesia and Malaysia (2009)) and 2) Cholera Outbreak in Zimbabwe (2008-2009). Novelty of the paper consists in studying of an endemic SIR model in semi-Markov random media and in implementations and interpretations of the results through numerical toy examples and numerical examples with real data. We note that the dengue fever model was first introduced in Derouchi et al.7 A SIR model for speard of dengue fever disease with simulations for South Sulawesi, Indonesia and Selanor, Malaysia, was studied in Side et al.8 Estimating the reprodictive numbers for the 2008-2009 cholera outbreaks in Zimbabwe was considered in Mukandavire et al.9 A generalized cholera model and epidemic-endemic analysis was investigated in Wang et al.10 The paper is organized as follows. Section 2 describes classic endemic SIR model. Random media is discussed in section 3. Endemic SIR model in random media is introduced in section 4. Averaged endemic SIR model is investigated in section 5. Numerical toy examples with two-state Markov and semi-Markov chains are presented in section 6. Here we also give the interpretations of the obtained theoretical and numerical results. In Section 7 we discuss two numerical examples involving real data: 1) Dengue Fever Disease (Indonesia and Malaysia (2009)) and 2) Cholera Outbreak in Zimbabwe (2008-2009). Section 8 concludes the paper and highlights some future work.

Classic endemic SIR model

Let S(t),I(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadofaca aIOaGaamiDaiaaiMcacaaISaGaamysaiaaiIcacaWG0bGaaGykaaaa @3F07@  and R(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadkfaca aIOaGaamiDaiaaiMcaaaa@3B24@  be the number of individuals in each class of susceptible, infectives and removed, respectively. We follow the approach suggested by Hethcote4 taking under consideration demography and introducing β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabek7aIb aa@3990@ , μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGqk0=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0d Xdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH8oqBaa a@37FB@ μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabeY7aTb aa@39A5@ , γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabeo7aNb aa@3996@  as infective contact (transmission), death (mortality)/birth, and removal (or recovery) rates, respectively.

The deterministic SIR endemic model is ( N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGobaaaa@3833@ is the number of the individuals in the population):

{ dS dt =βSI+μ(NS),S(0)= S 0 dI dt =βSIγIμI,I(0)= I 0                         (1) dR dt =γIμR,R(0)= R 0 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaGabaqcLbsaea qabOqaamaalaaajuaGbaqcLbsacaWGKbGaam4uaaqcfayaaKqzGeGa amizaiaadshaaaGaaGypaiabgkHiTiabek7aIjaadofacaWGjbGaey 4kaSIaeqiVd0MaaGikaiaad6eacqGHsislcaWGtbGaaGykaiaaiYca caaMf8Uaam4uaiaaiIcacaaIWaGaaGykaiaai2dacaWGtbqcfa4aaS baaKazfa4=baqcLbmacaaIWaaajqwba+FabaaakeaaaeaadaWcaaqa aKqzGeGaamizaiaadMeaaOqaaKqzGeGaamizaiaadshaaaGaaGypai abek7aIjaadofacaWGjbGaeyOeI0Iaeq4SdCMaamysaiabgkHiTiab eY7aTjaadMeacaaISaGaaGzbVlaaysW7caWGjbGaaGikaiaaicdaca aIPaGaaGypaiaadMeakmaaBaaajeaqbaqcLbmacaaIWaaaleqaaOae aaaaaaaaa8qacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckajugibiaacIcacaaIXaGaaiykaaGcpaqaaaqaamaalaaa baqcLbsacaWGKbGaamOuaaGcbaqcLbsacaWGKbGaamiDaaaacaaI9a Gaeq4SdCMaamysaiabgkHiTiabeY7aTjaadkfacaaISaGaaGzbVlaa dkfacaaIOaGaaGimaiaaiMcacaaI9aGaamOuaOWaaSbaaKqaafaaju gWaiaaicdaaSqabaqcLbsacaaIUaaaaOGaay5Eaaaaaa@A6CB@

Sometimes it is better to work on longer time scale. Let s=S/N,i=I/N,r=R/N. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadohaca aI9aGaam4uaiaai+cacaWGobGaaGilaiaadMgacaaI9aGaamysaiaa i+cacaWGobGaaGilaiaadkhacaaI9aGaamOuaiaai+cacaWGobGaaG Olaaaa@4666@  Then the endemic SIR model in (1) becomes:

{ ds dt =βsi+μ(1s),s(0)= S 0 /N di dt =βsiγiμi,i(0)= I 0 /N                        (1) dr dt =γiμr,r(0)= R 0 /N. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaGabaqcLbsaea qabOqaamaalaaajaaObaqcLbsacaWGKbGaam4CaaGcbaqcLbsacaWG KbGaamiDaaaacaaI9aGaeyOeI0IaeqOSdiMaam4CaiaadMgacqGHRa WkcqaH8oqBcaaIOaGaaGymaiabgkHiTiaadohacaaIPaGaaGilaiaa ywW7caWGZbGaaGikaiaaicdacaaIPaGaaGypaiaadofajuaGdaWgaa qcbauaaKqzadGaaGimaaqcbauabaqcLbsacaaIVaGaamOtaaGcbaaa baWaaSaaaeaajugibiaadsgacaWGPbaakeaajugibiaadsgacaWG0b aaaiaai2dacqaHYoGycaWGZbGaamyAaiabgkHiTiabeo7aNjaadMga cqGHsislcqaH8oqBcaWGPbGaaGilaiaaywW7caaMe8UaamyAaiaaiI cacaaIWaGaaGykaiaai2dacaWGjbqcfa4aaSbaaKqaafaajugWaiaa icdaaKqaafqaaKqzGeGaaG4laiaad6eakabaaaaaaaaapeGaaiiOai aacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcqcLbsacaGG OaGaaGymaiaacMcaaOWdaeaaaeaadaWcaaqaaKqzGeGaamizaiaadk haaOqaaKqzGeGaamizaiaadshaaaGaaGypaiabeo7aNjaadMgacqGH sislcqaH8oqBcaWGYbGaaGilaiaaywW7caWGYbGaaGikaiaaicdaca aIPaGaaGypaiaadkfajuaGdaWgaaqcbauaaKqzadGaaGimaaqcbaua baqcLbsacaaIVaGaamOtaiaai6caaaGccaGL7baaaaa@AC24@

In the classical endemic SIR model the various classes are uniformly mixed, that is, every pair of individuals has equal probability of coming into contact with each other and the total population. Size is constant. For many diseases with transmission taking place within some particular groups, it is logical to divide the host population into groups, where it is assumed that hosts mix homogeneously within the group. Contacts among groups are modelled by use of a transition probability matrix whose (i,j) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaaiIcaca WGPbGaaGilaiaadQgacaaIPaaaaa@3BE7@ element specifies the probability that host in group i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadMgaaa a@38DD@  will have a potential contact with host in group j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadQgaaa a@38DE@ by visiting this group. As a good example of the described above situation an epidemic on some finite amount of islands with birds populations on each can be used. Another example is diseases spreading among big cities joined with some transportation systems. If we take under consideration that one particular host may visit different groups by moving in space and time, then an important concern is how to generalize the concept of the reproduction ratio for such a heterogeneous structured population.

One of the stochastic models capable to incorporate distinct subgroups with different contact rates is the epidemic SIR model in random environment.6 In this model we presume that the coefficients of transmission, recovery, and mortality depend on semi-Markov process that switches the coefficient values depending on the state of the process. It looks like the system is submerged into some random media.

Random media

Let ( y n ) n Z + MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaaiIcaca WG5bGcdaWgaaqcbauaaKqzadGaamOBaaWcbeaajugibiaaiMcakmaa BaaajuaGbaqcLbmacaWGUbGaeyicI4SaamOwaOWaaWbaaKqbagqaba qcLbsacqGHRaWkaaaajuaGbeaaaaa@4578@ be a homogeneous Markov chain in a measurable space (Y,Y) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaaiIcaca WGzbGaaGilaiaadMfacaaIPaaaaa@3BC6@ with transition probabilities P(y,A),yY,AY, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadcfaca aIOaGaamyEaiaaiYcacaWGbbGaaGykaiaaiYcacaWG5bGaeyicI4Sa amywaiaaiYcacaWGbbGaeyicI4SaamywaiaaiYcaaaa@454D@ and ergodic distribution p(A),AY MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadchaca aIOaGaamyqaiaaiMcacaaISaGaamyqaiabgIGiolaadMfaaaa@3EED@ ; β(y) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabek7aIj aaiIcacaWG5bGaaGykaaaa@3BF3@ , γ(y) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabeo7aNj aaiIcacaWG5bGaaGykaaaa@3BF9@ , and μ(y) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabeY7aTj aaiIcacaWG5bGaaGykaaaa@3C08@ are non-negative, bounded measurable functions defined on Y; ( y n ; θ n ) n Z + MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadMfaca GG7aGaaGikaiaadMhakmaaBaaajuaibaqcLbmacaWGUbaajuaGbeaa jugibiaaiUdacqaH4oqCkmaaBaaajuaibaqcLbmacaWGUbaajuaGbe aajugibiaaiMcakmaaBaaajuaGbaqcLbmacaWGUbGaeyicI4SaamOw aOWaaWbaaKqbagqabaqcLbsacqGHRaWkaaaajuaGbeaaaaa@4D8E@ is a Markov renewal process in the phase space (Y× R + ,Y× R + ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaaiIcaca WGzbGaey41aqRaamOuaOWaaWbaaKqbagqajuaibaqcLbmacqGHRaWk aaqcLbsacaaISaGaamywaiabgEna0kaadkfajuaGdaahaaqcfasabe aajugWaiabgUcaRaaajugibiaaiMcaaaa@48A6@ with stochastic kernel Q(y,dz,t)=P(y,dz) G y (t),yY,dzY,t R + MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadgfaca aIOaGaamyEaiaaiYcacaWGKbGaamOEaiaaiYcacaWG0bGaaGykaiaa i2dacaWGqbGaaGikaiaadMhacaaISaGaamizaiaadQhacaaIPaGaam 4raOWaaSbaaKqbGeaajugWaiaadMhaaKqbagqaaKqzGeGaaGikaiaa dshacaaIPaGaaGilaiaadMhacqGHiiIZcaWGzbGaaGilaiaadsgaca WG6bGaeyicI4SaamywaiaacYcacaWG0bGaeyicI4SaamOuaOWaaWba aKqbagqajuaibaqcLbmacqGHRaWkaaaaaa@5CF0@ ; ν(t):=max{n: τ n t} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabe27aUj aaiIcacaWG0bGaaGykaiaaiQdacaaI9aGaaeyBaiaadggacaWG4bGa aGjbVlaaiUhacaWGUbGaaGOoaiabes8a0LqbaoaaBaaajuaibaqcLb macaWGUbaajuaibeaajugibiabgsMiJkaadshacaaI9baaaa@4DE1@ is a counting process, gis the distribution function of the sojourn times. In the discrete time case with the number of states finite, say, n, then semi-Markov stochastic kernel Q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadgfaaa a@38C5@  has a form Q ij (t)= p ij G i (t), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadgfakm aaBaaajuaibaqcLbmacaWGPbGaamOAaaqcfayabaqcLbsacaaIOaGa amiDaiaaiMcacaaI9aGaamiCaOWaaSbaaKqbGeaajugWaiaadMgaca WGQbaajuaGbeaajugibiaadEeakmaaBaaajuaibaqcLbmacaWGPbaa juaGbeaajugibiaaiIcacaWG0bGaaGykaiaaiYcaaaa@4D53@ where P=( p ij )=P( y n+1 =j/ y n =i) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadcfaca aI9aGaaGikaiaadchakmaaBaaajuaGbaqcLbsacaWGPbqcLbmacaWG QbaajuaGbeaajugibiaaiMcacaaI9aGaamiuaiaaiIcacaWG5bGcda WgaaqcfasaaKqzadGaamOBaiabgUcaRiaaigdaaKqbagqaaKqzGeGa aGypaiaadQgacaaIVaGaamyEaOWaaSbaaKqbGeaajugWaiaad6gaaK qbagqaaKqzGeGaaGypaiaadMgacaaIPaaaaa@5341@ is the matrix of transition probabilities, and G i (t)=P( τ n <t/ y n =i). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadEeaju aGdaWgaaqcfasaaKqzadGaamyAaaqcfasabaqcLbsacaaIOaGaamiD aiaaiMcacaaI9aGaamiuaiaaiIcacqaHepaDkmaaBaaajuaibaqcLb macaWGUbaajuaGbeaajugibiaaiYdacaWG0bGaaG4laiaadMhakmaa BaaajuaibaqcLbmacaWGUbaajuaGbeaajugibiaai2dacaWGPbGaaG ykaiaai6caaaa@50A6@ The Markov renewal process is a convenient constructive tool to define a semi-Markov process,  (y(t)) t R + ,y(t)= y ν(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaaiIcaca WG5bGaaGikaiaadshacaaIPaGaaGykaKqbaoaaBaaajuaibaqcLbma caWG0bGaeyicI4SaamOuaKqbaoaaCaaajuaibeqaaKqzadGaey4kaS caaaqcfasabaqcLbsacaGGSaGaaGPaVlaadMhacaaIOaGaamiDaiaa iMcacaaI9aGaamyEaOWaaSbaaKqbGeaajugWaiabe27aUjaaiIcaca WG0bGaaGykaaqcfayabaaaaa@5341@ . As ν(t)=n, τ n t< τ n+1 ,y(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabe27aUj aaiIcacaWG0bGaaGykaiaai2dacaWGUbGaaiilaiaaykW7cqaHepaD kmaaBaaajuaibaqcLbmacaWGUbaajuaGbeaajugibiabgsMiJkaads hacaaI8aGaeqiXdqNcdaWgaaqcfayaaKqzadGaamOBaiabgUcaRiaa igdaaKqbagqaaKqzGeGaaiilaiaaykW7caWG5bGaaGikaiaadshaca aIPaaaaa@55BA@ also assumes constant values on the same intervals and is continuous from the right. Namely, y(t)= y n , τ n t< τ n+1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadMhaca aIOaGaamiDaiaaiMcacaaI9aGaamyEaOWaaSbaaKqbGeaajugWaiaa d6gaaKqbagqaaKqzGeGaaGilaiabes8a0PWaaSbaaKqbGeaajugWai aad6gaaKqbagqaaKqzGeGaeyizImQaamiDaiaaiYdacqaHepaDkmaa BaaajuaibaqcLbmacaWGUbGaey4kaSIaaGymaaqcfayabaaaaa@5097@ , and y( τ n )= y n ,n0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadMhaca aIOaGaeqiXdqNcdaWgaaqcgasaaKqzadGaamOBaaqcgayabaqcLbsa caaIPaGaaGypaiaadMhakmaaBaaajyaibaqcLbmacaWGUbaajyaGbe aajugibiaacYcacaWGUbGaeyyzImRaaGimaiaai6caaaa@49E9@ For the semi-Markov process (y(t)) t R + MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaaiIcaca WG5bGaaGikaiaadshacaaIPaGaaGykaKqbaoaaBaaajuaibaqcLbma caWG0bGaeyicI4SaamOuaKqbaoaaCaaajuaibeqaaKqzadGaey4kaS caaaqcfasabaaaaa@452B@ , the renewal time θ n := τ n+1 τ n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabeI7aXP WaaSbaaKqbGeaajugWaiaad6gaaKqbagqaaKqzGeGaaGOoaiaai2da cqaHepaDkmaaBaaajuaibaqcLbmacaWGUbGaey4kaSIaaGymaaqcfa yabaqcLbsacqGHsislcqaHepaDkmaaBaaajuaqbaqcLboacaWGUbaa juaGbeaaaaa@4BBA@  may be naturally interpreted as the occupation time (life-time) in the state y n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadMhakm aaBaaajuaibaqcLbmacaWGUbaajuaGbeaaaaa@3BF5@ . That explains the choice of the process: semi-Markov process differs from a Markov process by the distribution of time, for a Markov process a distribution function is exponential while for a semi-Markov process it can be any distribution function. Therefore, by choosing a semi-Markov process for a role of a switching process, we have wider possibilities for the occupation time intervals. We consider only a regular semi-Markov process, this is a process that with probability 1 has a finite number of renewals on a finite period of time. Just as in the right-continuous Markov process, the moments of jumps are regeneration points erasing the influence of the past. The only difference is that sojourn time at a point y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadMhaaa a@38ED@ has an arbitrary distribution G y (t),yY,t R + MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadEeakm aaBaaajuaibaqcLbmacaWG5baajuaGbeaajugibiaaiIcacaWG0bGa aGykaiaacYcacaaMc8UaamyEaiabgIGiolaadMfacaGGSaGaaGPaVl aadshacqGHiiIZcaWGsbqcfa4aaWbaaKqbGeqabaqcLbmacqGHRaWk aaaaaa@4CD3@ which depends on the terminal state. The ergodic theorem for a semi-Markov process (y(t)) t R + MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaaiIcaca WG5bGaaGikaiaadshacaaIPaGaaGykaKqbaoaaBaaajuaibaqcLbma caWG0bGaeyicI4SaamOuaKqbaoaaCaaajuaibeqaaKqzadGaey4kaS caaaqcfasabaaaaa@452B@ states Swishchuk and Wu,6 that for any measured and bounded function f(y) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadAgaca aIOaGaamyEaiaaiMcaaaa@3B3D@

P( 1 t 0 t f(y(s))ds f ^ ,t )=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadcfakm aabmaajuaGbaGcdaWcaaqcfayaaKqzGeGaaGymaaqcfayaaKqzGeGa amiDaaaakmaapedajuaGbeqaaKqzGeGaaGimaaqcfayaaKqzGeGaam iDaaGaey4kIipacaWGMbGaaGikaiaadMhacaaIOaGaam4CaiaaiMca caaIPaGaamizaiaadohacqGHsgIRkmaaHaaajuaGbaqcLbsacaWGMb aajuaGcaGLcmaajugibiaaiYcacaWG0bGaeyOKH4QaeyOhIukajuaG caGLOaGaayzkaaqcLbsacaaI9aGaaGymaaaa@5A0C@

where

f ^ = 1 m Y m(y)f(y)π(dy) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqiaaqcfayaaK qzGeGaamOzaaqcfaOaayPadaqcLbsacaaI9aGcdaWcaaqcfayaaKqz GeGaaGymaaqcfayaaKqzGeGaamyBaaaakmaapebajuaGbeqaaKqzGe GaamywaaqcfayabKqzGeGaey4kIipacaWGTbGaaGikaiaadMhacaaI PaGaamOzaiaaiIcacaWG5bGaaGykaiabec8aWjaaiIcacaWGKbGaam yEaiaaiMcaaaa@50D0@ , m= Y m(y)π(dy) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaad2gaca aI9aGcdaWdraqcfayabeaajugibiaadMfaaKqbagqajugibiabgUIi YdGaamyBaiaaiIcacaWG5bGaaGykaiabec8aWjaaiIcacaWGKbGaam yEaiaaiMcaaaa@471B@ , m(y)= 0 + t G y (dt) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaad2gaca aIOaGaamyEaiaaiMcacaaI9aGcdaWdXaqcfayabeaajugibiaaicda aKqbagaajugibiabgUcaRiabg6HiLcGaey4kIipacaWG0bGaam4raK qbaoaaBaaajuaibaqcLbmacaWG5baajuaibeaajugibiaaiIcacaWG KbGaamiDaiaaiMcaaaa@4C40@

Endemic SIR model in random media (RM)

The model in semi-Markov random media/environment is defined as Swishchuk and Wu,6

{ dS dt =β(y(t))SI+μ(y(t))(NS), dS dt =β(y(t))SI+μ(y(t))(NS),                        (2) dR dt =γ(y(t))Iμ(y(t))R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaGabaabaeqaba WaaSaaaKqbagaajugibiaadsgacaWGtbaajuaGbaqcLbsacaWGKbGa amiDaaaacaaI9aGaeyOeI0IaeqOSdiMaaGikaiaadMhacaaIOaGaam iDaiaaiMcacaaIPaGaam4uaiaadMeacqGHRaWkcqaH8oqBcaaIOaGa amyEaiaaiIcacaWG0bGaaGykaiaaiMcacaaIOaGaamOtaiabgkHiTi aadofacaaIPaGaaGilaaGcbaaabaWaaSaaaKqbagaajugibiaadsga caWGtbaajuaGbaqcLbsacaWGKbGaamiDaaaacaaI9aGaeyOeI0Iaeq OSdiMaaGikaiaadMhacaaIOaGaamiDaiaaiMcacaaIPaGaam4uaiaa dMeacqGHRaWkcqaH8oqBcaaIOaGaamyEaiaaiIcacaWG0bGaaGykai aaiMcacaaIOaGaamOtaiabgkHiTiaadofacaaIPaGaaGilaOaeaaaa aaaaa8qacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckajugibiaacIcacaaIYaGaaiykaaGcpaqaaaqaamaalaaabaGa amizaiaadkfaaeaacaWGKbGaamiDaaaacaaI9aGaeq4SdCMaaGikai aadMhacaaIOaGaamiDaiaaiMcacaaIPaGaamysaiabgkHiTiabeY7a TjaaiIcacaWG5bGaaGikaiaadshacaaIPaGaaGykaiaadkfaaaGaay 5Eaaaaaa@A229@

Or, in terms of new variables s,i,r, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadohaca aISaGaamyAaiaaiYcacaWGYbGaaGilaaaa@3CEE@  the system in (2) takes a look (1):

{ ds dt =β(y(t))si+μ(y(t))(1s), ds dt =β(y(t))si+μ(y(t))(1s),                        (2) dr dt =γ(y(t))iμ(y(t))r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaGabaabaeqaba WaaSaaaKqbagaajugibiaadsgacaWGZbaajuaGbaqcLbsacaWGKbGa amiDaaaacaaI9aGaeyOeI0IaeqOSdiMaaGikaiaadMhacaaIOaGaam iDaiaaiMcacaaIPaGaam4CaiaadMgacqGHRaWkcqaH8oqBcaaIOaGa amyEaiaaiIcacaWG0bGaaGykaiaaiMcacaaIOaGaaGymaiabgkHiTi aadohacaaIPaGaaGilaaGcbaaabaWaaSaaaeaacaWGKbGaam4Caaqa aiaadsgacaWG0baaaiaai2dacqGHsislcqaHYoGycaaIOaGaamyEai aaiIcacaWG0bGaaGykaiaaiMcacaWGZbGaamyAaiabgUcaRiabeY7a TjaaiIcacaWG5bGaaGikaiaadshacaaIPaGaaGykaiaaiIcacaaIXa GaeyOeI0Iaam4CaiaaiMcacaaISaaeaaaaaaaaa8qacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckajugibiaacIcaca aIYaGaaiykaaGcpaqaaaqaamaalaaabaGaamizaiaadkhaaeaacaWG KbGaamiDaaaacaaI9aGaeq4SdCMaaGikaiaadMhacaaIOaGaamiDai aaiMcacaaIPaGaamyAaiabgkHiTiabeY7aTjaaiIcacaWG5bGaaGik aiaadshacaaIPaGaaGykaiaadkhaaaGaay5Eaaaaaa@A115@

It is important to note that now the coefficients α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabeg7aHb aa@398E@ , β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabek7aIb aa@3990@ , and γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabeo7aNb aa@3996@ are not constant. The state of the semi-Markov process defines their value. We may say that y(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadMhaca aIOaGaamiDaiaaiMcaaaa@3B4B@  is serving as a switching process: depending on the time this process takes its values in different states, defining corresponding to this state coefficients of disease spreading. s,i,r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadohaca aISaGaamyAaiaaiYcacaWGYbaaaa@3C38@ are random processes as well. For the finite (n-elements) set of states we have: S=( S i ),I=( I i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadofaca aI9aGaaGikaiaadofajuaGdaWgaaqcfasaaKqzadGaamyAaaqcfasa baqcLbmacaaIPaqcLbsacaGGSaGaamysaiaai2dacaaIOaGaamysaK qbaoaaBaaajuaibaqcLbmacaWGPbaajuaibeaajugibiaaiMcaaaa@48DD@ and R=( R i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadkfaca aI9aGaaGikaiaadkfakmaaBaaajuaibaqcLbmacaWGPbaajuaGbeaa jugibiaaiMcaaaa@3F5B@ with i=1,2,...n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadMgaca aI9aGaaGymaiaaiYcacaaIYaGaaGilaiaai6cacaaIUaGaaGOlaiaa d6gaaaa@3FA2@ . In this case, we may consider n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaad6gaaa a@38E2@ subgroups/clusters of the population under investigation. In each group we assume homogeneous mixing, but the coefficients of disease spreading may be different for different groups, taking their values as β i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabek7aIL qbaoaaBaaajuaibaqcLbmacaWGPbaajuaibeaaaaa@3CB7@ , μ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabeY7aTL qbaoaaBaaajuaibaqcLbmacaWGPbaajuaibeaaaaa@3CCC@ , and γ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabeo7aNP WaaSbaaKqbGeaajugWaiaadMgaaKqbagqaaaaa@3C99@ , i=1,2,...n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadMgaca aI9aGaaGymaiaaiYcacaaIYaGaaGilaiaai6cacaaIUaGaaGOlaiaa d6gaaaa@3FA2@ .

Averaging of the SIR model in RM

In order to investigate the system’s (2) equilibrium we perturb this system in the following way:

{ d S ε dt =ε(β(y(t)) S ε I ε +μ(y(t))(N S ε )) d I ε dt =ε(β(y(t)) S ε I ε γ(y(t)) I ε μ(y(t)) I ε ) d R ε dt =ε(γ(y(t)) I ε μ(y(t)) R ε ) (3) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaGabaqcfayaaK qzGeqbaeaabmWaaaqcfayaaOWaaSaaaKqbagaajugibiaadsgacaWG tbGcdaahaaqcfayabKqbGeaajugWaiabew7aLbaaaKqbagaajugibi aadsgacaWG0baaaiaai2dacqaH1oqzcaaIOaGaeyOeI0IaeqOSdiMa aGikaiaadMhacaaIOaGaamiDaiaaiMcacaaIPaGaam4uaOWaaWbaaK qbagqajuaibaqcLbmacqaH1oqzaaqcLbsacaWGjbGcdaahaaqcfaya bKqbGeaajugWaiabew7aLbaajugibiabgUcaRiabeY7aTjaaiIcaca WG5bGaaGikaiaadshacaaIPaGaaGykaiaaiIcacaWGobGaeyOeI0Ia am4uaOWaaWbaaKqbagqajuaibaqcLbmacqaH1oqzaaqcLbsacaaIPa GaaGykaaqcfayaaaqaaaqaaOWaaSaaaKqbagaajugibiaadsgacaWG jbGcdaahaaqcfayabKqbGeaajugWaiabew7aLbaaaKqbagaajugibi aadsgacaWG0baaaiaai2dacqaH1oqzcaaIOaGaeqOSdiMaaGikaiaa dMhacaaIOaGaamiDaiaaiMcacaaIPaGaam4uaKqbaoaaCaaajuaibe qaaKqzadGaeqyTdugaaKqzGeGaamysaKqbaoaaCaaajuaibeqaaKqz adGaeqyTdugaaKqzGeGaeyOeI0Iaeq4SdCMaaGikaiaadMhacaaIOa GaamiDaiaaiMcacaaIPaGaamysaKqbaoaaCaaajuaibeqaaKqzadGa eqyTdugaaKqzGeGaeyOeI0IaeqiVd0MaaGikaiaadMhacaaIOaGaam iDaiaaiMcacaaIPaGaamysaOWaaWbaaKqbagqajuaibaqcLbmacqaH 1oqzaaqcLbsacaaIPaaajuaGbaaabaaabaGcdaWcaaqcfayaaKqzGe GaamizaiaadkfakmaaCaaajuaGbeqcfasaaKqzadGaeqyTdugaaaqc fayaaKqzGeGaamizaiaadshaaaGaaGypaiabew7aLjaaiIcacqaHZo WzcaaIOaGaamyEaiaaiIcacaWG0bGaaGykaiaaiMcacaWGjbqcfa4a aWbaaKqbGeqabaqcLbmacqaH1oqzaaqcLbsacqGHsislcqaH8oqBca aIOaGaamyEaiaaiIcacaWG0bGaaGykaiaaiMcacaWGsbqcfa4aaWba aKqbGeqabaqcLbmacqaH1oqzaaqcLbsacaaIPaaajuaGbaaabaaaaa Gaay5EaaqcLbsacaaIOaGaaG4maiaaiMcaaaa@C9B3@

where ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabew7aLb aa@3996@  is a small positive parameter.

Changing the time scale t t ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadshacq GHsgIRkmaalaaajuaGbaqcLbsacaWG0baajuaGbaqcLbsacqaH1oqz aaaaaa@3FC9@  we transform the perturbed system (3) into the system

{ d S ε dt =β(y(t/ε)) S ε I ε +μ(y(t/ε))(N S ε ) d S ε dt =β(y(t/ε)) S ε I ε +μ(y(t/ε))(N S ε )                        (4) d R ε dt =γ(y(t/ε)) I ε μ(y(t/ε)) R ε , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaGabaabaeqaba WaaSaaaKqbagaajugibiaadsgacaWGtbqcfa4aaWbaaKqbGeqabaqc LbmacqaH1oqzaaaajuaGbaqcLbsacaWGKbGaamiDaaaacaaI9aGaey OeI0IaeqOSdiMaaGikaiaadMhacaaIOaGaamiDaiaai+cacqaH1oqz caaIPaGaaGykaiaadofakmaaCaaajuaGbeqcfasaaKqzadGaeqyTdu gaaKqzGeGaamysaKqbaoaaCaaajuaibeqaaKqzadGaeqyTdugaaKqz GeGaey4kaSIaeqiVd0MaaGikaiaadMhacaaIOaGaamiDaiaai+cacq aH1oqzcaaIPaGaaGykaiaaiIcacaWGobGaeyOeI0Iaam4uaKqbaoaa CaaajuaibeqaaKqzadGaeqyTdugaaKqzGeGaaGykaaGcbaaabaWaaS aaaeaacaWGKbGaam4uaKqbaoaaCaaaleqabaqcLbmacqaH1oqzaaaa keaacaWGKbGaamiDaaaacaaI9aGaeyOeI0IaeqOSdiMaaGikaiaadM hacaaIOaGaamiDaiaai+cacqaH1oqzcaaIPaGaaGykaiaadofadaah aaWcbeqaaKqzadGaeqyTdugaaOGaamysamaaCaaaleqabaqcLbmacq aH1oqzaaGccqGHRaWkcqaH8oqBcaaIOaGaamyEaiaaiIcacaWG0bGa aG4laiabew7aLjaaiMcacaaIPaGaaGikaiaad6eacqGHsislcaWGtb WaaWbaaSqabeaajugWaiabew7aLbaakiaaiMcaqaaaaaaaaaWdbiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacI cacaaI0aGaaiykaaWdaeaaaeaadaWcaaqaaiaadsgacaWGsbWaaWba aSqabeaajugWaiabew7aLbaaaOqaaiaadsgacaWG0baaaiaai2dacq aHZoWzcaaIOaGaamyEaiaaiIcacaWG0bGaaG4laiabew7aLjaaiMca caaIPaGaamysamaaCaaaleqabaqcLbmacqaH1oqzaaGccqGHsislcq aH8oqBcaaIOaGaamyEaiaaiIcacaWG0bGaaG4laiabew7aLjaaiMca caaIPaGaamOuamaaCaaaleqabaqcLbmacqaH1oqzaaGccaaISaaaai aawUhaaaaa@D33D@

which can be averaged in the following way (see Swishchuk and Wu, 2003);

when ε0:( S ε , I ε , R ε )( S ^ , I ^ , R ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabew7aLj abgkziUkaaicdacaGG6aGaaGPaVlaaiIcacaWGtbGcdaahaaqcfaya bKqbGeaajugWaiabew7aLbaajugibiaaiYcacaWGjbGcdaahaaqcfa yabKqbGeaajugWaiabew7aLbaajugibiaaiYcacaWGsbGcdaahaaqc fayabKqbGeaajugWaiabew7aLbaajugibiaaiMcacqGHsgIRcaaIOa GcdaqiaaqcfayaaKqzGeGaam4uaaqcfaOaayPadaqcLbsacaaISaGc daqiaaqcfayaaKqzGeGaamysaaqcfaOaayPadaqcLbsacaaISaGcda qiaaqcfayaaKqzGeGaamOuaaqcfaOaayPadaqcLbsacaaIPaaaaa@6105@ , in the sence:

for any δ0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabes7aKj abgwMiZkaaicdaaaa@3C14@ , lim ε0 P{(| S ε S ^ |+| I ε I ^ |+| R ε R ^ |)>δ}=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqfqaqcfayabe aajugWaiabew7aLLqzGeGaeyOKH4QaaGimaaqcfayabeaajugibiGa cYgacaGGPbGaaiyBaaaajugWaiaadcfajugibiaaiUhacaaIOaGaaG iFaiaadofakmaaCaaajuaqbeqaaKqzadGaeqyTdugaaKqzGeGaeyOe I0Iabm4uayaajaGaaGiFaiabgUcaRiaaiYhacaWGjbGcdaahaaqcfa yabKqbGeaajugWaiabew7aLbaajugibiabgkHiTiqadMeagaqcaiaa iYhacqGHRaWkcaaI8bGaamOuaOWaaWbaaKqbagqajuaibaqcLbmacq aH1oqzaaqcLbsacqGHsislceWGsbGbaKaacaaI8bGaaGykaiaai6da cqaH0oazcaaI9bGaaGypaiaaicdaaaa@6854@

The averaged system is

{ d S ^ dt = β ^ S ^ I ^ + μ ^ (N S ^ ) d I ^ dt = β ^ S ^ I ^ γ ^ I ^ μ ^ I ^ d I ^ dt = β ^ S ^ I ^ γ ^ I ^ μ ^ I ^ (5) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaGabaqcLb saeaqabKqbagaakmaalaaajuaGbaqcLbsacaWGKbGcdaqiaaqcfaya aKqzGeGaam4uaaqcfaOaayPadaaabaqcLbsacaWGKbGaamiDaaaaca aI9aGaeyOeI0IcdaqiaaqcfayaaKqzGeGaeqOSdigajuaGcaGLcmaa kmaaHaaajuaGbaqcLbsacaWGtbaajuaGcaGLcmaakmaaHaaajuaGba qcLbsacaWGjbaajuaGcaGLcmaajugibiabgUcaROWaaecaaKqbagaa jugibiabeY7aTbqcfaOaayPadaqcLbsacaaIOaGaamOtaiabgkHiTO WaaecaaKqbagaajugibiaadofaaKqbakaawkWaaKqzGeGaaGykaaqc fayaaOWaaSaaaKqbagaajugibiaadsgakmaaHaaajuaGbaqcLbsaca WGjbaajuaGcaGLcmaaaeaajugibiaadsgacaWG0baaaiaai2dakmaa HaaajuaGbaqcLbsacqaHYoGyaKqbakaawkWaaOWaaecaaKqbagaaju gibiaadofaaKqbakaawkWaaOWaaecaaKqbagaajugibiaadMeaaKqb akaawkWaaKqzGeGaeyOeI0IcdaqiaaqcfayaaKqzGeGaeq4SdCgaju aGcaGLcmaakmaaHaaajuaGbaqcLbsacaWGjbaajuaGcaGLcmaajugi biabgkHiTOWaaecaaKqbagaajugibiabeY7aTbqcfaOaayPadaGcda qiaaqcfayaaKqzGeGaamysaaqcfaOaayPadaaabaGcdaWcaaqcfaya aKqzGeGaamizaOWaaecaaKqbagaajugibiaadMeaaKqbakaawkWaaa qaaKqzGeGaamizaiaadshaaaGaaGypaOWaaecaaKqbagaajugibiab ek7aIbqcfaOaayPadaGcdaqiaaqcfayaaKqzGeGaam4uaaqcfaOaay PadaGcdaqiaaqcfayaaKqzGeGaamysaaqcfaOaayPadaqcLbsacqGH sislkmaaHaaajuaGbaqcLbsacqaHZoWzaKqbakaawkWaaOWaaecaaK qbagaajugibiaadMeaaKqbakaawkWaaKqzGeGaeyOeI0Icdaqiaaqc fayaaKqzGeGaeqiVd0gajuaGcaGLcmaakmaaHaaajuaGbaqcLbsaca WGjbaajuaGcaGLcmaaaaGaay5EaaqcLbsacaGGOaGaaGynaiaacMca aaa@A980@

In terms of new variables s,i,r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadohaca aISaGaamyAaiaaiYcacaWGYbaaaa@3C38@  (see (1’)) the system (5) has the following form:

{ d s ^ dt = β ^ s ^ i ^ + μ ^ (1 s ^ ) d i ^ dt = β ^ s ^ i ^ γ ^ i ^ μ ^ i ^ d r ^ dt = γ ^ i ^ μ ^ r ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaGabaqcLb saeaqabKqbagaakmaalaaajuaGbaqcLbsacaWGKbGcdaqiaaqcfaya aKqzGeGaam4CaaqcfaOaayPadaaabaqcLbsacaWGKbGaamiDaaaaca aI9aGaeyOeI0IcdaqiaaqcfayaaKqzGeGaeqOSdigajuaGcaGLcmaa kmaaHaaajuaGbaqcLbsacaWGZbaajuaGcaGLcmaakmaaHaaajuaGba qcLbsacaWGPbaajuaGcaGLcmaajugibiabgUcaROWaaecaaKqbagaa jugibiabeY7aTbqcfaOaayPadaqcLbsacaaIOaGaaGymaiabgkHiTO WaaecaaKqbagaajugibiaadohaaKqbakaawkWaaKqzGeGaaGykaaqc fayaaOWaaSaaaKqbagaajugibiaadsgakmaaHaaajuaGbaqcLbsaca WGPbaajuaGcaGLcmaaaeaajugibiaadsgacaWG0baaaiaai2dakmaa HaaajuaGbaqcLbsacqaHYoGyaKqbakaawkWaaOWaaecaaKqbagaaju gibiaadohaaKqbakaawkWaaOWaaecaaKqbagaajugibiaadMgaaKqb akaawkWaaKqzGeGaeyOeI0IcdaqiaaqcfayaaKqzGeGaeq4SdCgaju aGcaGLcmaakmaaHaaajuaGbaqcLbsacaWGPbaajuaGcaGLcmaajugi biabgkHiTOWaaecaaKqbagaajugibiabeY7aTbqcfaOaayPadaGcda qiaaqcfayaaKqzGeGaamyAaaqcfaOaayPadaaabaGcdaWcaaqcfaya aKqzGeGaamizaOWaaecaaKqbagaajugibiaadkhaaKqbakaawkWaaa qaaKqzGeGaamizaiaadshaaaGaaGypaOWaaecaaKqbagaajugibiab eo7aNbqcfaOaayPadaGcdaqiaaqcfayaaKqzGeGaamyAaaqcfaOaay PadaqcLbsacqGHsislkmaaHaaajuaGbaqcLbsacqaH8oqBaKqbakaa wkWaaOWaaecaaKqbagaajugibiaadkhaaKqbakaawkWaaaaacaGL7b aaaaa@9C2B@

Coefficients of the averaged system can be found by using the ergodic theorem for a semi-Markov process:

μ= 1 m Y m(y)μ(y)π(dy), β= 1 m Y m(y)β(y)π(dy),                        (6) γ= 1 m Y m(y)γ(y)π(dy), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaKqzGeGaeq iVd0Maeyypa0JcdaWcaaqaaKqzGeGaaGymaaGcbaqcLbsacaWGTbaa aOWaa8qeaeqaleaajugibiaadMfaaSqabKqzGeGaey4kIipacaWGTb GaaGikaiaadMhacaaIPaGaeqiVd0MaaGikaiaadMhacaaIPaGaeqiW daNaaGikaiaadsgacaWG5bGaaGykaiaaiYcaaOqaaaqcaawaaKqzGe GaeqOSdiMaeyypa0JcdaWcaaqcaawaaKqzGeGaaGymaaqcaawaaKqz GeGaamyBaaaakmaapebajaaybeqcbawaaKqzGeGaamywaaqcbawabK qzGeGaey4kIipacaWGTbGaaGikaiaadMhacaaIPaGaeqOSdiMaaGik aiaadMhacaaIPaGaeqiWdaNaaGikaiaadsgacaWG5bGaaGykaiaaiY cajaayqaaaaaaaaaWdbiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaKqzGeGaaiikaiaaiAdacaGGPaaajaaypaqaaa GcbaqcLbsacqaHZoWzcqGH9aqpkmaalaaabaqcLbsacaaIXaaakeaa jugibiaad2gaaaGcdaWdraqabSqaaKqzGeGaamywaaWcbeqcLbsacq GHRiI8aiaad2gacaaIOaGaamyEaiaaiMcacqaHZoWzcaaIOaGaamyE aiaaiMcacqaHapaCcaaIOaGaamizaiaadMhacaGGPaGaaiilaaaaaa@9EED@

and

m= Y m(y)π(dy), m(y)= 0 + t G y (dt),                        (7) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaKqzGeGaam yBaiabg2da9OWaa8qeaeqaleaajugibiaadMfaaSqabKqzGeGaey4k IipacaWGTbGaaGikaiaadMhacaaIPaGaeqiWdaNaaGikaiaadsgaca WG5bGaaGykaiaaiYcaaOqaaKqzGeGaamyBaiaaiIcacaWG5bGaaGyk aiabg2da9OWaa8qmaeqaleaajugibiaaicdaaSqaaKqzGeGaey4kaS IaeyOhIukacqGHRiI8aiaadshacaWGhbGcdaWgaaqcbauaaKqzadGa amyEaaWcbeaajugibiaaiIcacaWGKbGaamiDaiaaiMcacaaISaGcqa aaaaaaaaWdbiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacIcacaaI3aGaaiykaaaaaa@7903@

where π(y) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabec8aWj aaiIcacaWG5bGaaGykaaaa@3C0F@  is a unique invariant (stationary or ergodic) distribution. In the case when the state space of a semi-Markov process is finite, n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaad6gaaa a@38E2@ -element, we have P=P( y n+1 =j/ y n =i):=( p ij ;i,j=1,2,...,n), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadcfaca aI9aGaamiuaiaaiIcacaWG5bqcfa4aaSbaaKqaafaajugWaiaad6ga cqGHRaWkcaaIXaaajeaqbeaajugibiaai2dacaWGQbGaaG4laiaadM hajuaGdaWgaaqcbauaaKqzadGaamOBaaqcbauabaqcLbsacaaI9aGa amyAaiaaiMcacaaI6aGaaGypaiaaiIcacaWGWbGcdaWgaaqcbauaaK qzadGaamyAaiaadQgaaSqabaqcLbsacaaI7aGaamyAaiaaiYcacaWG QbGaaGypaiaaigdacaaISaGaaGOmaiaaiYcacaaIUaGaaGOlaiaai6 cacaaISaGaamOBaiaaiMcacaaISaaaaa@5EF0@  and the above integrals are becoming the following sums:

μ= 1 m i=1 n m i μ(i) π i β= 1 m i=1 n m i β(i) π i ,                        (8) γ= 1 m i=1 n m i γ(i) π i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaKqzGeGaeq iVd0Maeyypa0JcdaWcaaqcaawaaKqzGeGaaGymaaqcaawaaKqzGeGa amyBaaaakmaaqahajaaybeqcbawaaKqzGeGaamyAaiaai2dacaaIXa aajeaybaqcLbsacaWGUbaacqGHris5aiaad2gakmaaBaaajeaqbaqc LbmacaWGPbaajeaybeaajugibiabeY7aTjaaiIcacaWGPbGaaGykai abec8aWLqbaoaaBaaajeaqbaqcLbmacaWGPbaajeaqbeaaaOqaaaqc aawaaKqzGeGaeqOSdiMaeyypa0JcdaWcaaqcaawaaKqzGeGaaGymaa qcaawaaKqzGeGaamyBaaaakmaaqahajaaybeqcbawaaKqzGeGaamyA aiaai2dacaaIXaaajeaybaqcLbsacaWGUbaacqGHris5aiaad2gaju aGdaWgaaqcbauaaKqzadGaamyAaaqcbauabaqcLbsacqaHYoGycaaI OaGaamyAaiaaiMcacqaHapaCjuaGdaWgaaqcbauaaKqzadGaamyAaa qcbauabaqcLbsacaaISaqcaageaaaaaaaaa8qacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckajugibiaacIcacaaI4a Gaaiykaaqcaa2daeaaaOqaaKqzGeGaeq4SdCMaeyypa0JcdaWcaaqc aawaaKqzGeGaaGymaaqcaawaaKqzGeGaamyBaaaakmaaqahajaaybe qcbawaaKqzGeGaamyAaiaai2dacaaIXaaajeaybaqcLbsacaWGUbaa cqGHris5aiaad2gajuaGdaWgaaqcbauaaKqzadGaamyAaaqcbauaba qcLbsacqaHZoWzcaaIOaGaamyAaiaaiMcacqaHapaCjuaGdaWgaaqc bauaaKqzadGaamyAaaqcbauabaqcLbsacaaISaaaaaa@AFBE@

where m i = 0 t G i (dt) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaad2gaju aGdaWgaaqcfasaaKqzadGaamyAaaqcfasabaqcLbsacaaI9aGcdaWd XaqcfayabKqbGeaajugWaiaaicdaaKqbGeaajugWaiabg6HiLcqcLb sacqGHRiI8aiaadshacaWGhbGcdaWgaaqcfasaaKqzadGaamyAaaqc fayabaqcLbsacaaIOaGaamizaiaadshacaaIPaaaaa@4E18@ with a distribution function

G i (t)=P( τ n <t/ y n =i) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadEeakm aaBaaajyaibaqcLbmacaWGPbaajyaGbeaajugibiaaiIcacaWG0bGa aGykaiaai2dacaWGqbGaaGikaiabes8a0PWaaSbaaKGbGeaajugWai aad6gaaKGbagqaaKqzGeGaaGipaiaadshacaaIVaGaamyEaOWaaSba aKGbGeaajugWaiaad6gaaKGbagqaaKqzGeGaaGypaiaadMgacaaIPa aaaa@4FD0@ and the stationary probabilities π=( π 1 π 2 ... π n ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabec8aWj aai2dakmaabmaajuaGbaqcLbsafaqabeabbaaaaKqbagaajugibiab ec8aWPWaaSbaaKqbagaajugibiaaigdaaKqbagqaaaqaaKqzGeGaeq iWdaNcdaWgaaqcfayaaKqzGeGaaGOmaaqcfayabaaabaqcLbsacaaI UaGaaGOlaiaai6caaKqbagaajugibiabec8aWPWaaSbaaKqbagaaju gibiaad6gaaKqbagqaaaaaaiaawIcacaGLPaaajugibiaai6caaaa@511E@  Here, m= i=1 n π i m i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaad2gaca aI9aGcdaaeWaqcfayabeaajugWaiaadMgacaaI9aGaaGymaaqcfasa aKqzadGaamOBaaqcLbsacqGHris5aiabec8aWPWaaSbaaKqbGeaaju gWaiaadMgaaKqbGeqaaKqzGeGaamyBaOWaaSbaaKqbGeaajugWaiaa dMgaaKqbagqaaKqzGeGaaGilaaaa@4CD0@ where π i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabec8aWP WaaSbaaKqbGeaajugWaiaadMgaaKqbagqaaaaa@3CAF@ are ergodic distribution of n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaad6gaaa a@38E2@ -state semi-Markov process.

The averaged systems (5) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaaiIcaca aI1aGaaGykaaaa@3A13@  and ( 5 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaaiIcace aI1aGbauaacaaIPaGaaGilaaaa@3AD5@  being deterministic, can be used for a regular analysis. For example, an endemic equilibrium solution and a basic reproductive number for the averaged system may by found by regular method. For example, I ^ = μ ^ N γ ^ + μ ^ μ ^ β ^ , R ^ 0 = β ^ /( γ ^ + μ ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqiaaqcfayaaK qzGeGaamysaaqcfaOaayPadaqcLbsacaaI9aGcdaWcaaqcfayaaOWa aecaaKqbagaajugibiabeY7aTbqcfaOaayPadaqcLbsacaWGobaaju aGbaGcdaqiaaqcfayaaKqzGeGaeq4SdCgajuaGcaGLcmaajugibiab gUcaROWaaecaaKqbagaajugibiabeY7aTbqcfaOaayPadaaaaKqzGe GaeyOeI0IcdaWcaaqcfayaaOWaaecaaKqbagaajugibiabeY7aTbqc faOaayPadaaabaGcdaqiaaqcfayaaKqzGeGaeqOSdigajuaGcaGLcm aaaaqcLbsacaaISaGaaGPaVlqadkfagaqcaOWaaSbaaKqbGeaajugW aiaaicdaaKqbagqaaKqzGeGaaGypaiqbek7aIzaajaGaaG4laiaaiI cacuaHZoWzgaqcaiabgUcaRiqbeY7aTzaajaGaaGykaaaa@66E5@ , etc.

Numerical toy examples: markov and semi-markov cases

In this Section, we consider a numerical toy example with two-state Markov and semi-Markov chains, and show how to find averaged data in both cases. We also explain and give insight into the results for these specific examples and show in details how the methods work.

Two-state markov chain

If y(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadMhaca aIOaGaamiDaiaaiMcaaaa@3B4B@  is a Markov Chain with two states y:=i=(0,1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadMhaca aI6aGaaGypaiaadMgacaaI9aGaaGikaiaaicdacaaISaGaaGymaiaa iMcaaaa@3FBD@  and transition matrix

P=( 0.7 0.3 0.4 0.6 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadcfaca aI9aGcdaqadaqcfayaaKqzGeqbaeqabmGaaaqcfayaaKqzGeGaaGim aiaai6cacaaI3aaajuaGbaqcLbsacaaIWaGaaGOlaiaaiodaaKqbag aajugibiaaicdacaaIUaGaaGinaaqcfayaaKqzGeGaaGimaiaai6ca caaI2aaajuaGbaaabaaaaaGaayjkaiaawMcaaaaa@4A14@ , the stationary probabilities now are π =( π 0 π 1 )=( 0.571 0.429 ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiqbec8aWz aalaGaaGypaOWaaeWaaKqbagaajugibuaabeqaceaaaKqbagaajugi biabec8aWPWaaSbaaKqbagaajugibiaaicdaaKqbagqaaaqaaKqzGe GaeqiWdaNcdaWgaaqcfayaaKqzGeGaaGymaaqcfayabaaaaaGaayjk aiaawMcaaKqzGeGaaGypaOWaaeWaaKqbagaajugibuaabeqadeaaaK qbagaajugibiaaicdacaaIUaGaaGynaiaaiEdacaaIXaaajuaGbaqc LbsacaaIWaGaaGOlaiaaisdacaaIYaGaaGyoaaqcfayaaaaaaiaawI cacaGLPaaajugibiaai6caaaa@5709@

For the distribution function G i (x)=1 e λ(i)x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadEeaju aGdaWgaaqcfasaaKqzadGaamyAaaqcfasabaqcLbsacaaIOaGaamiE aiaaiMcacaaI9aGaaGymaiabgkHiTiaadwgakmaaCaaajuaGbeqcfa saaKqzadGaeyOeI0Iaeq4UdWMaaGikaiaadMgacaaIPaGaamiEaaaa aaa@4A33@ (we take here exponential distribution for simplicity, but it could be taken any, e.g., gamma or Weibull (see sec. 6.3), etc.) we take

λ(0)=8  and  λ(1)=10.                        (9) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabeU7aSj aacIcacaaIWaGaaiykaiabg2da9iaaiIdaqaaaaaaaaaWdbiaaccka caGGGcGaaiyyaiaac6gacaGGKbGaaiiOaiaacckapaGaeq4UdWMaaG ikaiaaigdacaaIPaGaaGypaiaaigdacaaIWaGaaGOlaOWdbiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaKqzGeWdai aaiIcacaaI5aGaaGykaaaa@6A04@

In this way (7),

m= π 0 /λ(0)+ π 1 /λ(1)=0.571/8+0.429/10=0.11.                        (10) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaad2gaca aI9aGaeqiWdaxcfa4aaSbaaKazfa4=baqcLbmacaaIWaaajqwba+Fa baqcLbsacaaIVaGaeq4UdWMaaGikaiaaicdacaaIPaGaey4kaSIaeq iWdaNcdaWgaaqcKvaG=haajugWaiaaigdaaKqbGfqaaKqzGeGaaG4l aiabeU7aSjaaiIcacaaIXaGaaGykaiaai2dacaaIWaGaaGOlaiaaiw dacaaI3aGaaGymaiaai+cacaaI4aGaey4kaSIaaGimaiaai6cacaaI 0aGaaGOmaiaaiMdacaaIVaGaaGymaiaaicdacaaI9aGaaGimaiaai6 cacaaIXaGaaGymaiaai6cakabaaaaaaaaapeGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcqcLbsapaGaaGikaiaaig dacaaIWaGaaGykaaaa@833E@

We note, that m(i)=1/λ(i),i=0,1, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaad2gaca aIOaGaamyAaiaaiMcacaaI9aGaaGymaiaai+cacqaH7oaBcaaIOaGa amyAaiaaiMcacaaISaGaamyAaiaai2dacaaIWaGaaGilaiaaigdaca aISaaaaa@46C2@  for exponential distribution G i (x). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadEeakm aaBaaajuaibaqcLbmacaWGPbaajuaGbeaajugibiaaiIcacaWG4bGa aGykaiaai6caaaa@3F67@

Suppose that our parameters μ(i),γ(i),β(i),i=0,1, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabeY7aTj aaiIcacaWGPbGaaGykaiaaiYcacqaHZoWzcaaIOaGaamyAaiaaiMca caaISaGaeqOSdiMaaGikaiaadMgacaaIPaGaaGilaiaadMgacaaI9a GaaGimaiaaiYcacaaIXaGaaGilaaaa@4A9E@ have the following values:

μ(0)=1/60, μ(1)=1/40, γ(0)=1/3,  γ(1)=1/4,                                       (11) β(0)=1.05, β(1)=1.1. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaKqzGeGaeq iVd0MaaGikaiaaicdacaaIPaGaaGypaiaaigdacaaIVaGaaGOnaiaa icdacaaISaaeaaaaaaaaa8qacaGGGcWdaiabeY7aTjaaiIcacaaIXa GaaGykaiaai2dacaaIXaGaaG4laiaaisdacaaIWaGaaGilaaGcbaqc LbsacqaHZoWzcaaIOaGaaGimaiaaiMcacaaI9aGaaGymaiaai+caca aIZaGaaGila8qacaGGGcGaaiiOa8aacqaHZoWzcaaIOaGaaGymaiaa iMcacaaI9aGaaGymaiaai+cacaaI0aGaaGilaOWdbiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacIcacaaIXaGaaGymaiaa cMcaa8aabaqcLbsacqaHYoGycaaIOaGaaGimaiaaiMcacaaI9aGaaG ymaiaai6cacaaIWaGaaGynaiaaiYcapeGaaiiOa8aacqaHYoGycaaI OaGaaGymaiaaiMcacaaI9aGaaGymaiaai6cacaaIXaGaaGOlaaaaaa@9C90@  

Then μ ^ , γ ^ , β ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiqbeY7aTz aajaGaaGilaiqbeo7aNzaajaGaaGilaiqbek7aIzaajaaaaa@3E89@  become (we use below formulas (7) and (8)):

μ ^ =0.02, γ ^ =0.31,                                       (12) β ^ =1.11. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaKqzGeGafq iVd0MbaKaacqGH9aqpcaaIWaGaaGOlaiaaicdacaaIYaGaaGilaaGc baqcLbsacuaHZoWzgaqcaiabg2da9iaaicdacaaIUaGaaG4maiaaig dacaaISaGcqaaaaaaaaaWdbiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacIcacaaIXaGaaGOmaiaacMcaa8aabaqcLbsacu aHYoGygaqcaiabg2da9iaaigdacaaIUaGaaGymaiaaigdacaaIUaaa aaa@7BC3@  

From (12) we can find that R ^ 0 = β ^ /( γ ^ + μ ^ )=3.36. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiqadkfaga qcaOWaaSbaaKqbGeaajugWaiaaicdaaKqbagqaaKqzGeGaaGypaiqb ek7aIzaajaGaaG4laiaaiIcacuaHZoWzgaqcaiabgUcaRiqbeY7aTz aajaGaaGykaiaai2dacaaIZaGaaGOlaiaaiodacaaI2aGaaGOlaaaa @499A@ Using these data we can find the equilibrium states ( s ^ e ,  i ^ e ): MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaaiIcace WGZbGbaKaakmaaBaaajuaibaqcLbmacaWGLbaajuaGbeaajugibiaa iYcakabaaaaaaaaapeGaaiiOaKqzGeWdaiqadMgagaqcaKqbaoaaBa aajuaibaqcLbmacaWGLbaajuaibeaajugibiaaiMcacaaI6aaaaa@4600@

S ^ e =( γ ^ + μ ^ )/ β ^ =0.3, I ^ e =( μ ^ ( R ^ 0 1))/ β ^ =0.043.                        (13) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaKqzGeGabm 4uayaajaGcdaWgaaqcKvaG=haajugWaiaadwgaaKazfa4=beaajugi biabg2da9iaaiIcacuaHZoWzgaqcaiabgUcaRiqbeY7aTzaajaGaaG ykaiaai+cacuaHYoGygaqcaiaai2dacaaIWaGaaGOlaiaaiodacaaI SaaakeaajugibiqadMeagaqcaOWaaSbaaKqaafaajugWaiaadwgaaS qabaqcLbsacqGH9aqpcaaIOaGafqiVd0MbaKaacaaIOaGabmOuayaa jaGcdaWgaaqcbauaaKqzadGaaGimaaWcbeaajugibiabgkHiTiaaig dacaaIPaGaaGykaiaai+cacuaHYoGygaqcaiaai2dacaaIWaGaaGOl aiaaicdacaaI0aGaaG4maiaai6cakabaaaaaaaaapeGaaiiOaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiikaiaaigda caaIZaGaaiykaaaaaa@8217@

If we take, for example, N=1,000, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaad6eaca aI9aGaaGymaiaaiYcacaaIWaGaaGimaiaaicdacaaISaaaaa@3DDE@ then going back to our initial variables S and I we can find that equilibrium states are:

S ^ e =( γ ^ + μ ^ )/ β ^ ×N=0.3×1,000=300, I ^ e =( μ ^ ( R ^ 0 1))/ β ^ ×N=0.043×1,000=43.                        (14) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaKqzGeGabm 4uayaajaqcfa4aaSbaaKazfa4=baqcLbmacaWGLbaajqwba+Fabaqc LbsacqGH9aqpcaaIOaGafq4SdCMbaKaacqGHRaWkcuaH8oqBgaqcai aaiMcacaaIVaGafqOSdiMbaKaacqGHxdaTcaWGobGaaGypaiaaicda caaIUaGaaG4maiabgEna0kaaigdacaaISaGaaGimaiaaicdacaaIWa GaaGypaiaaiodacaaIWaGaaGimaiaaiYcaaOqaaKqzGeGabmysayaa jaGcdaWgaaqcbauaaKqzadGaamyzaaWcbeaajugibiabg2da9iaaiI cacuaH8oqBgaqcaiaaiIcaceWGsbGbaKaakmaaBaaajeaqbaqcLbma caaIWaaaleqaaKqzGeGaeyOeI0IaaGymaiaaiMcacaaIPaGaaG4lai qbek7aIzaajaGaey41aqRaamOtaiaai2dacaaIWaGaaGOlaiaaicda caaI0aGaaG4maiabgEna0kaaigdacaaISaGaaGimaiaaicdacaaIWa GaaGypaiaaisdacaaIZaGaaGOlaOaeaaaaaaaaa8qacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGOaGaaGymai aaisdacaGGPaaaaaa@9916@   

Also, the value for I ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiqadMeaga qcaaaa@38CD@  is:

I ^ = μ ^ ×N/( μ ^ + γ ^ ) μ ^ / β ^ =61. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiqadMeaga qcaiaai2dacuaH8oqBgaqcaiabgEna0kaad6eacaaIVaGaaGikaiqb eY7aTzaajaGaey4kaSIafq4SdCMbaKaacaaIPaGaeyOeI0IafqiVd0 MbaKaacaaIVaGafqOSdiMbaKaacaaI9aGaaGOnaiaaigdacaaIUaaa aa@4CD8@ (15)

Two-state semi-markov chain

Here, we consider the case of two-state semi-Markov chain with arbitrary distribution G i (x),i=0,1, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadEeakm aaBaaajuaibaqcLbmacaWGPbaajuaGbeaajugibiaaiIcacaWG4bGa aGykaiaaiYcacaaMf8UaamyAaiaai2dacaaIWaGaaGilaiaaigdaca aISaaaaa@4589@  for τ n . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabes8a0P WaaSbaaKqbGeaajugWaiaad6gaaKqbagqaaKqzGeGaaGOlaaaa@3E03@ Let us take Weibull distribution Krishnamoorthy,11 G i (x) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadEeakm aaBaaajeaqbaqcLbmacaWGPbaaleqaaKqzGeGaaGikaiaadIhacaaI Paaaaa@3E48@ for τ n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabes8a0P WaaSbaaKqaGhaajugWaiaad6gaaKazbamabeaaaaa@3E18@ (see Sec. 3) with probability density function f i (x):=d G i (x)/dx: MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadAgakm aaBaaajuaibaqcLbmacaWGPbaajuaGbeaajugibiaaiIcacaWG4bGa aGykaiaaiQdacaaI9aGaamizaiaadEeajuaGdaWgaaqcfasaaKqzad GaamyAaaqcfasabaqcLbsacaaIOaGaamiEaiaaiMcacaaIVaGaamiz aiaadIhacaaI6aaaaa@4B89@

f i ( x )={ λ(i)K( i ) ( λ( i )x ) K( i )-1 exp[ - ( λ( i )x ) K( i ) ],X0, 0,X<0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOzaK qbaoaaBaaajuaibaGaamyAaaqcfayabaWaaeWaaOqaaKqzGeGaamiE aaGccaGLOaGaayzkaaqcLbsacqGH9aqpjuaGdaGabaabaeqabaGaeq 4UdWMaaiikaiaadMgacaGGPaGaam4samaabmaabaGaamyAaaGaayjk aiaawMcaamaabmaabaGaeq4UdW2aaeWaaeaacaWGPbaacaGLOaGaay zkaaGaamiEaaGaayjkaiaawMcaamaaCaaabeqaaiaadUeadaqadaqa aiaadMgaaiaawIcacaGLPaaacaGGTaGaaGymaaaaciGGLbGaaiiEai aacchadaWadaqaaiaac2cadaqadaqaaiabeU7aSnaabmaabaGaamyA aaGaayjkaiaawMcaaiaadIhaaiaawIcacaGLPaaadaahaaqabeaaca WGlbWaaeWaaeaacaWGPbaacaGLOaGaayzkaaaaaaGaay5waiaaw2fa aiaacYcacaWGybGaeyizImQaaGimaiaacYcaaeaaieaaqaaaaaaaaa Wdbiaa=bcacaWFGaGaa8hiaiaa=bcacaWFGaGaa8hiaiaa=bcacaWF GaGaa8hiaiaa=bcacaWFGaGaa8hiaiaa=bcacaWFGaGaa8hiaiaa=b cacaWFGaGaa8hiaiaa=bcacaWFGaGaa8hiaiaa=bcacaWFGaGaa8hi aiaa=bcacaWFGaGaa8hiaiaa=bcacaWFGaGaa8hiaiaa=bcacaWFGa Gaa8hiaiaa=bcacaWFGaGaa8hiaiaa=bcacaWFGaGaa8hiaiaa=bca caWFGaGaa8hiaiaa=bcacaWFGaGaa8hiaiaa=bcacaWFGaGaa8hiai aa=bcacaWFGaGaa8hiaiaa=bcacaWFGaGaa8hiaiaa=bcacaWFGaGa a8hiaiaa=bcacaWFGaGaa8hiaiaa=bcacaWFGaGaa8hiaiaa=bcaca aIWaGaaiilaiaadIfacqGH8aapcaaIWaGaaiilaaaapaGaay5Eaaaa aa@9464@ (16)

where i=0,1. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadMgaca aI9aGaaGimaiaaiYcacaaIXaGaaGOlaaaa@3C87@  Recall that K(i) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadUeaca aIOaGaamyAaiaaiMcaaaa@3B12@  is called shape parameter, and λ(i) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabeU7aSj aaiIcacaWGPbGaaGykaaaa@3BF6@ -scale parameter. We note, that if we take K(i)=1,i=0,1, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadUeaca aIOaGaamyAaiaaiMcacaaI9aGaaGymaiaaiYcacaaMf8UaamyAaiaa i2dacaaIWaGaaGilaiaaigdacaaISaaaaa@436E@  then we have exponential distribution considered in sec. 6.2. Suppose that λ(0)=8 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabeU7aSj aaiIcacaaIWaGaaGykaiaai2dacaaI4aaaaa@3D4B@  and λ(1)=10. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabeU7aSj aaiIcacaaIXaGaaGykaiaai2dacaaIXaGaaGimaiaai6caaaa@3EB7@ We recall that the mean value for r.v. with Weibull density distribution in (16) is (1/λ(i))Γ(1+1/K(i)), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaaiIcaca aIXaGaaG4laiabeU7aSjaaiIcacaWGPbGaaGykaiaaiMcacqqHtoWr caaIOaGaaGymaiabgUcaRiaaigdacaaIVaGaam4saiaaiIcacaWGPb GaaGykaiaaiMcacaaISaaaaa@4886@  where Γ() MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabfo5ahj aaiIcacqGHflY1caaIPaaaaa@3D06@ stands for Gamma distribution. We consider two cases here: i) K(i)=2(K(i)>1),i=0,1, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadUeaca aIOaGaamyAaiaaiMcacaaI9aGaaGOmaiaaywW7caaIOaGaam4saiaa iIcacaWGPbGaaGykaiaai6dacaaIXaGaaGykaiaaiYcacaWGPbGaaG ypaiaaicdacaaISaGaaGymaiaaiYcaaaa@497A@ and  ii) K(i)=1/2(K(i)<1),i=0,1. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadUeaca aIOaGaamyAaiaaiMcacaaI9aGaaGymaiaai+cacaaIYaGaaGzbVlaa iIcacaWGlbGaaGikaiaadMgacaaIPaGaaGipaiaaigdacaaIPaGaaG ilaiaadMgacaaI9aGaaGimaiaaiYcacaaIXaGaaGOlaaaa@4AEE@ The case K(i)=1,i=0,1, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadUeaca aIOaGaamyAaiaaiMcacaaI9aGaaGymaiaaiYcacaWGPbGaaGypaiaa icdacaaISaGaaGymaiaaiYcaaaa@41E0@ refers to exponential distribution G i (x) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadEeakm aaBaaajuaibaqcLbmacaWGPbaajuaGbeaajugibiaaiIcacaWG4bGa aGykaaaa@3EAF@ and has already been considered in sec. 6.1.

 i) Let us take K(i)=2(K(i)>1),i=0,1. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadUeaca aIOaGaamyAaiaaiMcacaaI9aGaaGOmaiaaywW7caaIOaGaam4saiaa iIcacaWGPbGaaGykaiaai6dacaaIXaGaaGykaiaaiYcacaaMf8Uaam yAaiaai2dacaaIWaGaaGilaiaaigdacaaIUaaaaa@4B0A@ Thus, we can calculate the following parameters, m(0) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaad2gaca aIOaGaaGimaiaaiMcaaaa@3B00@  and m(1): MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaad2gaca aIOaGaaGymaiaaiMcacaaI6aaaaa@3BC5@

m(0)=1/λ(0))Γ(1+1/K(0))=(1/8)Γ(3/2)0.11 m(1)=1/λ(1))Γ(1+1/K(1))=(1/10)Γ(3/2)0.088. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiaad2gaca aIOaGaaGimaiaaiMcacqGH9aqpcaaIXaGaaG4laiabeU7aSjaaiIca caaIWaGaaGykaiaaiMcacqqHtoWrcaaIOaGaaGymaiabgUcaRiaaig dacaaIVaGaam4saiaaiIcacaaIWaGaaGykaiaaiMcacaaI9aGaaGik aiaaigdacaaIVaGaaGioaiaaiMcacqqHtoWrcaaIOaGaaG4maiaai+ cacaaIYaGaaGykaiabgIKi7kaaicdacaaIUaGaaGymaiaaigdaaeaa caWGTbGaaGikaiaaigdacaaIPaGaeyypa0JaaGymaiaai+cacqaH7o aBcaaIOaGaaGymaiaaiMcacaaIPaGaeu4KdCKaaGikaiaaigdacqGH RaWkcaaIXaGaaG4laiaadUeacaaIOaGaaGymaiaaiMcacaaIPaGaaG ypaiaaiIcacaaIXaGaaG4laiaaigdacaaIWaGaaGykaiabfo5ahjaa iIcacaaIZaGaaG4laiaaikdacaaIPaGaeyisISRaaGimaiaai6caca aIWaGaaGioaiaaiIdacaaIUaaaaaa@7B4D@ (17)

Then (see (7))

m= π 0 m(0)+ π 1 m(1)=0.571×0.11+0.429×0.088 =0.06281+0.037752 =0.1005620.1. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaKqzGeGaam yBaiabg2da9iabec8aWPWaaSbaaKqbGeaajugWaiaaicdaaKqbagqa aKqzGeGaamyBaiaaiIcacaaIWaGaaGykaiabgUcaRiabec8aWLqbao aaBaaajuaibaqcLbmacaaIXaaajuaibeaajugibiaad2gacaaIOaGa aGymaiaaiMcacaaI9aGaaGimaiaai6cacaaI1aGaaG4naiaaigdacq GHxdaTcaaIWaGaaGOlaiaaigdacaaIXaGaey4kaSIaaGimaiaai6ca caaI0aGaaGOmaiaaiMdacqGHxdaTcaaIWaGaaGOlaiaaicdacaaI4a GaaGioaaqcfayaaKqzGeGaeyypa0JaaGimaiaai6cacaaIWaGaaGOn aiaaikdacaaI4aGaaGymaiabgUcaRiaaicdacaaIUaGaaGimaiaaio dacaaI3aGaaG4naiaaiwdacaaIYaaakeaajugibiabg2da9iaaicda caaIUaGaaGymaiaaicdacaaIWaGaaGynaiaaiAdacaaIYaGaeyisIS RaaGimaiaai6cacaaIXaGaaGOlaaaaaa@793B@ (18)

Suppose that the parameters μ(i),β(i),γ(i).i=0,1, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabeY7aTj aaiIcacaWGPbGaaGykaiaaiYcacqaHYoGycaaIOaGaamyAaiaaiMca caaISaGaeq4SdCMaaGikaiaadMgacaaIPaGaaGOlaiaadMgacaaI9a GaaGimaiaaiYcacaaIXaGaaGilaaaa@4AA0@ are the same as in (11). Then we have for the averaged parameters:

μ ^ = 1 m [m(0)μ(0) π 0 +m(1)μ(1) π 1 ] = 1 0.1 [0.11×(1/60)×0.571+0.088×(1/40)×0.429] =10[0.0010468+0.0009438]=0.0199060.02 γ ^ = 1 m [m(0)γ(0) π 0 +m(1)γ(1) π 1 ] = 1 0.1 [0.11×(1/3)×0.571+0.088×(1/4)×0.429] =10[0.0209366+0.009438]=0.03037460.03 β ^ = 1 m [m(0)β(0) π 0 +m(1)β(1) π 1 ] = 1 0.1 [0.11×(1.05)×0.571+0.088×(1.1)×0.429] =10[0.0659505+0.0415272]=0.10747770.11, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaKqzGeGafq iVd0MbaKaacqGH9aqpkmaalaaabaGaaGymaaqaaiaad2gaaaGaaG4w aiaad2gacaaIOaGaaGimaiaaiMcacqaH8oqBcaaIOaGaaGimaiaaiM cacqaHapaCdaWgaaWcbaGaaGimaaqabaGccqGHRaWkcaWGTbGaaGik aiaaigdacaaIPaGaeqiVd0MaaGikaiaaigdacaaIPaGaeqiWda3aaS baaSqaaiaaigdaaeqaaOGaaGyxaaqaaaqaaiabg2da9maalaaabaGa aGymaaqaaiaaicdacaaIUaGaaGymaaaacaaIBbGaaGimaiaai6caca aIXaGaaGymaiabgEna0kaaiIcacaaIXaGaaG4laiaaiAdacaaIWaGa aGykaiabgEna0kaaicdacaaIUaGaaGynaiaaiEdacaaIXaGaey4kaS IaaGimaiaai6cacaaIWaGaaGioaiaaiIdacqGHxdaTcaaIOaGaaGym aiaai+cacaaI0aGaaGimaiaaiMcacqGHxdaTcaaIWaGaaGOlaiaais dacaaIYaGaaGyoaiaai2faaeaaaeaacqGH9aqpcaaIXaGaaGimaiaa iUfacaaIWaGaaGOlaiaaicdacaaIWaGaaGymaiaaicdacaaI0aGaaG OnaiaaiIdacqGHRaWkcaaIWaGaaGOlaiaaicdacaaIWaGaaGimaiaa iMdacaaI0aGaaG4maiaaiIdacaaIDbGaaGypaiaaicdacaaIUaGaaG imaiaaigdacaaI5aGaaGyoaiaaicdacaaI2aGaeyisISRaaGimaiaa i6cacaaIWaGaaGOmaaqaaiqbeo7aNzaajaGaeyypa0ZaaSaaaeaaca aIXaaabaGaamyBaaaacaaIBbGaamyBaiaaiIcacaaIWaGaaGykaiab eo7aNjaaiIcacaaIWaGaaGykaiabec8aWnaaBaaaleaacaaIWaaabe aakiabgUcaRiaad2gacaaIOaGaaGymaiaaiMcacqaHZoWzcaaIOaGa aGymaiaaiMcacqaHapaCdaWgaaWcbaGaaGymaaqabaGccaaIDbaaba aabaGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGimaiaai6cacaaIXaaa aiaaiUfacaaIWaGaaGOlaiaaigdacaaIXaGaey41aqRaaGikaiaaig dacaaIVaGaaG4maiaaiMcacqGHxdaTcaaIWaGaaGOlaiaaiwdacaaI 3aGaaGymaiabgUcaRiaaicdacaaIUaGaaGimaiaaiIdacaaI4aGaey 41aqRaaGikaiaaigdacaaIVaGaaGinaiaaiMcacqGHxdaTcaaIWaGa aGOlaiaaisdacaaIYaGaaGyoaiaai2faaeaaaeaacqGH9aqpcaaIXa GaaGimaiaaiUfacaaIWaGaaGOlaiaaicdacaaIYaGaaGimaiaaiMda caaIZaGaaGOnaiaaiAdacqGHRaWkcaaIWaGaaGOlaiaaicdacaaIWa GaaGyoaiaaisdacaaIZaGaaGioaiaai2facaaI9aGaaGimaiaai6ca caaIWaGaaG4maiaaicdacaaIZaGaaG4naiaaisdacaaI2aGaeyisIS RaaGimaiaai6cacaaIWaGaaG4maaqaaiqbek7aIzaajaGaeyypa0Za aSaaaeaacaaIXaaabaGaamyBaaaacaaIBbGaamyBaiaaiIcacaaIWa GaaGykaiabek7aIjaaiIcacaaIWaGaaGykaiabec8aWnaaBaaaleaa caaIWaaabeaakiabgUcaRiaad2gacaaIOaGaaGymaiaaiMcacqaHYo GycaaIOaGaaGymaiaaiMcacqaHapaCdaWgaaWcbaGaaGymaaqabaGc caaIDbaabaaabaGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGimaiaai6 cacaaIXaaaaiaaiUfacaaIWaGaaGOlaiaaigdacaaIXaGaey41aqRa aGikaiaaigdacaaIUaGaaGimaiaaiwdacaaIPaGaey41aqRaaGimai aai6cacaaI1aGaaG4naiaaigdacqGHRaWkcaaIWaGaaGOlaiaaicda caaI4aGaaGioaiabgEna0kaaiIcacaaIXaGaaGOlaiaaigdacaaIPa Gaey41aqRaaGimaiaai6cacaaI0aGaaGOmaiaaiMdacaaIDbaabaaa baGaeyypa0JaaGymaiaaicdacaaIBbGaaGimaiaai6cacaaIWaGaaG OnaiaaiwdacaaI5aGaaGynaiaaicdacaaI1aGaey4kaSIaaGimaiaa i6cacaaIWaGaaGinaiaaigdacaaI1aGaaGOmaiaaiEdacaaIYaGaaG yxaiaai2dacaaIWaGaaGOlaiaaigdacaaIWaGaaG4naiaaisdacaaI 3aGaaG4naiaaiEdacqGHijYUcaaIWaGaaGOlaiaaigdacaaIXaGaaG ilaaaaaa@4FF1@  (19)

where m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaad2gaaa a@38E1@ was calculated in (18). From here we can find

R ^ 0 = β ^ /( γ ^ + μ ^ )=0.11/(0.03+0.02)=0.11/0.05=2.2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiqadkfaga qcaOWaaSbaaKqbGeaajugWaiaaicdaaKqbagqaaKqzGeGaaGypaiqb ek7aIzaajaGaaG4laiaaiIcacuaHZoWzgaqcaiabgUcaRiqbeY7aTz aajaGaaGykaiaai2dacaaIWaGaaGOlaiaaigdacaaIXaGaaG4laiaa iIcacaaIWaGaaGOlaiaaicdacaaIZaGaey4kaSIaaGimaiaai6caca aIWaGaaGOmaiaaiMcacaaI9aGaaGimaiaai6cacaaIXaGaaGymaiaa i+cacaaIWaGaaGOlaiaaicdacaaI1aGaaGypaiaaikdacaaIUaGaaG Omaaaa@5BF3@  (20)

Also, the equilibrium states are:

s ^ e =( γ ^ + μ ^ )/ β ^ =0.05/0.11=0.004545 =0.0045 i ^ e =( μ ^ ( R ^ 0 I))/ β ^ =0.02(2.21)/0.11=0.02×1.2×0.11=0.00264 =0.003. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaKqzGeGabm 4CayaajaGcdaWgaaqcKvaG=haajugWaiaadwgaaKqbagqaaKqzGeGa eyypa0JaaGikaiqbeo7aNzaajaGaey4kaSIafqiVd0MbaKaacaaIPa GaaG4laiqbek7aIzaajaaakeaajugibiabg2da9iaaicdacaaIUaGa aGimaiaaiwdacaaIVaGaaGimaiaai6cacaaIXaGaaGymaiaai2daca aIWaGaaGOlaiaaicdacaaIWaGaaGinaiaaiwdacaaI0aGaaGynaaGc baqcLbsacqGH9aqpcqGHijYUcaaIWaGaaGOlaiaaicdacaaIWaGaaG inaiaaiwdaaOqaaKqzGeGabmyAayaajaqcfa4aaSbaaKqaafaajugW aiaadwgaaKqaafqaaKqzGeGaeyypa0JaaGikaiqbeY7aTzaajaGaaG ikaiqadkfagaqcaKqbaoaaBaaajeaqbaqcLbmacaaIWaaajeaqbeaa jugibiabgkHiTiaadMeacaaIPaGaaGykaiaai+cacuaHYoGygaqcaa GcbaqcLbsacqGH9aqpcaaIWaGaaGOlaiaaicdacaaIYaGaaGikaiaa ikdacaaIUaGaaGOmaiabgkHiTiaaigdacaaIPaGaaG4laiaaicdaca aIUaGaaGymaiaaigdacaaI9aGaaGimaiaai6cacaaIWaGaaGOmaiab gEna0kaaigdacaaIUaGaaGOmaiabgEna0kaaicdacaaIUaGaaGymai aaigdacaaI9aGaaGimaiaai6cacaaIWaGaaGimaiaaikdacaaI2aGa aGinaaGcbaqcLbsacqGH9aqpcqGHijYUcaaIWaGaaGOlaiaaicdaca aIWaGaaG4maiaai6caaaaa@99D4@  (21)

If we take again N=1,000, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaad6eaca aI9aGaaGymaiaaiYcacaaIWaGaaGimaiaaicdacaaISaaaaa@3DDE@ then from (21) we have:

S ^ e = s ^ e ×1,000=4.5 I ^ e = i ^ e ×1,000=0.003×1,000=3. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaKqzGeGabm 4uayaajaGcdaWgaaqcKvaG=haajugWaiaadwgaaKqbagqaaKqzGeGa eyypa0Jabm4CayaajaGcdaWgaaqcbauaaKqzadGaamyzaaWcbeaaju gibiabgEna0kaaigdacaaISaGaaGimaiaaicdacaaIWaGaaGypaiaa isdacaaIUaGaaGynaaGcbaqcLbsaceWGjbGbaKaakmaaBaaajeaqba qcLbmacaWGLbaaleqaaKqzGeGaeyypa0JabmyAayaajaGcdaWgaaqc bauaaKqzadGaamyzaaWcbeaajugibiabgEna0kaaigdacaaISaGaaG imaiaaicdacaaIWaGaaGypaiaaicdacaaIUaGaaGimaiaaicdacaaI ZaGaey41aqRaaGymaiaaiYcacaaIWaGaaGimaiaaicdacaaI9aGaaG 4maiaai6caaaaa@67F1@ (22)

Also, the value for I ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiqadMeaga qcaaaa@38CD@ is:

I ^ = μ ^ ×N/( μ ^ + γ ^ ) μ ^ / β ^ =0.02×1,000/(0.02+0.03)0.02/0.11 =0.02×1,000/(0.02+0.03)0.02/0.11 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaKqzGeGabm ysayaajaGaeyypa0JafqiVd0MbaKaacqGHxdaTcaWGobGaaG4laiaa iIcacuaH8oqBgaqcaiabgUcaRiqbeo7aNzaajaGaaGykaiabgkHiTi qbeY7aTzaajaGaaG4laiqbek7aIzaajaaakeaajugibiabg2da9iaa icdacaaIUaGaaGimaiaaikdacqGHxdaTcaaIXaGaaGilaiaaicdaca aIWaGaaGimaiaai+cacaaIOaGaaGimaiaai6cacaaIWaGaaGOmaiab gUcaRiaaicdacaaIUaGaaGimaiaaiodacaaIPaGaeyOeI0IaaGimai aai6cacaaIWaGaaGOmaiaai+cacaaIWaGaaGOlaiaaigdacaaIXaaa keaajugibiabg2da9iaaicdacaaIUaGaaGimaiaaikdacqGHxdaTca aIXaGaaGilaiaaicdacaaIWaGaaGimaiaai+cacaaIOaGaaGimaiaa i6cacaaIWaGaaGOmaiabgUcaRiaaicdacaaIUaGaaGimaiaaiodaca aIPaGaeyOeI0IaaGimaiaai6cacaaIWaGaaGOmaiaai+cacaaIWaGa aGOlaiaaigdacaaIXaaaaaa@7F2D@  (23)

 ii) Let us take K(i)=1/2(K(i)<1),i=0,1. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadUeaca aIOaGaamyAaiaaiMcacaaI9aGaaGymaiaai+cacaaIYaGaaGzbVlaa iIcacaWGlbGaaGikaiaadMgacaaIPaGaaGipaiaaigdacaaIPaGaaG ilaiaaywW7caWGPbGaaGypaiaaicdacaaISaGaaGymaiaai6caaaa@4C7C@

Thus, we can again calculate the following parameters, m(0) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaad2gaca aIOaGaaGimaiaaiMcaaaa@3B00@ and m(0) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaad2gaca aIOaGaaGimaiaaiMcaaaa@3B00@

m(0)=1/λ(0))Γ(1+1/K(0))=(1/8)Γ(3)0.25 m(1)=1/λ(1))Γ(1+1/K(1))=(1/10)Γ(3)0.2. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaKqzGeGaam yBaiaaiIcacaaIWaGaaGykaiabg2da9iaaigdacaaIVaGaeq4UdWMa aGikaiaaicdacaaIPaGaaGykaiabfo5ahjaaiIcacaaIXaGaey4kaS IaaGymaiaai+cacaWGlbGaaGikaiaaicdacaaIPaGaaGykaiaai2da caaIOaGaaGymaiaai+cacaaI4aGaaGykaiabfo5ahjaaiIcacaaIZa GaaGykaiabgIKi7kaaicdacaaIUaGaaGOmaiaaiwdaaOqaaKqzGeGa amyBaiaaiIcacaaIXaGaaGykaiabg2da9iaaigdacaaIVaGaeq4UdW MaaGikaiaaigdacaaIPaGaaGykaiabfo5ahjaaiIcacaaIXaGaey4k aSIaaGymaiaai+cacaWGlbGaaGikaiaaigdacaaIPaGaaGykaiaai2 dacaaIOaGaaGymaiaai+cacaaIXaGaaGimaiaaiMcacqqHtoWrcaaI OaGaaG4maiaaiMcacqGHijYUcaaIWaGaaGOlaiaaikdacaaIUaaaaa a@780E@ (24) Then (see (7))

m= π 0 m(0)+ π 1 m(1)=0.571×0.25+0.429×0.2 =0.14275+0.0858=0.228550.23 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaKqzGeGaam yBaiabg2da9iabec8aWPWaaSbaaKqaafaajugWaiaaicdaaSqabaqc LbsacaWGTbGaaGikaiaaicdacaaIPaGaey4kaSIaeqiWdaNcdaWgaa qcbauaaKqzadGaaGymaaWcbeaajugibiaad2gacaaIOaGaaGymaiaa iMcacaaI9aGaaGimaiaai6cacaaI1aGaaG4naiaaigdacqGHxdaTca aIWaGaaGOlaiaaikdacaaI1aGaey4kaSIaaGimaiaai6cacaaI0aGa aGOmaiaaiMdacqGHxdaTcaaIWaGaaGOlaiaaikdaaOqaaKqzGeGaey ypa0JaaGimaiaai6cacaaIXaGaaGinaiaaikdacaaI3aGaaGynaiab gUcaRiaaicdacaaIUaGaaGimaiaaiIdacaaI1aGaaGioaiaai2daca aIWaGaaGOlaiaaikdacaaIYaGaaGioaiaaiwdacaaI1aGaeyisISRa aGimaiaai6cacaaIYaGaaG4maaaaaa@734E@  (25)

Suppose that the parameters μ(i),β(i),γ(i).i=0,1, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabeY7aTj aaiIcacaWGPbGaaGykaiaaiYcacqaHYoGycaaIOaGaamyAaiaaiMca caaISaGaeq4SdCMaaGikaiaadMgacaaIPaGaaGOlaiaadMgacaaI9a GaaGimaiaaiYcacaaIXaGaaGilaaaa@4AA0@ are the same as in (11). Then we have for the averaged parameters (see (24)):

μ ^ = 1 m [m(0)μ(0) π 0 +m(1)μ(1) π 1 ] = 1 0.23 [0.25×(1/60)×0.571+0.2×(1/40)×0.429] γ ^ = 1 m [m(0)γ(0) π 0 +m(1)γ(1) π 1 ] = 1 0.23 [0.25×(1/3)×0.571+0.2×(1/4)×0.429] =4.35[0.08+0.02]=0.4350.44 β ^ = 1 m [m(0)β(0) π 0 +m(1)β(1) π 1 ] = 1 0.23 [0.25×(1.05)×0.571+0.2×(1.1)×0.429] =4.35[0.15+0.09]1.04, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaKqzGeGafq iVd0MbaKaacqGH9aqpkmaalaaajaaybaqcLbsacaaIXaaajaaybaqc LbsacaWGTbaaaiaaiUfacaWGTbGaaGikaiaaicdacaaIPaGaeqiVd0 MaaGikaiaaicdacaaIPaGaeqiWdaNcdaWgaaqcbauaaKqzadGaaGim aaqcbawabaqcLbsacqGHRaWkcaWGTbGaaGikaiaaigdacaaIPaGaeq iVd0MaaGikaiaaigdacaaIPaGaeqiWdaNcdaWgaaqcbauaaKqzadGa aGymaaqcbawabaqcLbsacaaIDbaakeaaaKaaGfaajugibiabg2da9O WaaSaaaKaaGfaajugibiaaigdaaKaaGfaajugibiaaicdacaaIUaGa aGOmaiaaiodaaaGaaG4waiaaicdacaaIUaGaaGOmaiaaiwdacqGHxd aTcaaIOaGaaGymaiaai+cacaaI2aGaaGimaiaaiMcacqGHxdaTcaaI WaGaaGOlaiaaiwdacaaI3aGaaGymaiabgUcaRiaaicdacaaIUaGaaG OmaiabgEna0kaaiIcacaaIXaGaaG4laiaaisdacaaIWaGaaGykaiab gEna0kaaicdacaaIUaGaaGinaiaaikdacaaI5aGaaGyxaaqcaawaaa qaaKqzGeGafq4SdCMbaKaacqGH9aqpkmaalaaajaaybaqcLbsacaaI XaaajaaybaqcLbsacaWGTbaaaiaaiUfacaWGTbGaaGikaiaaicdaca aIPaGaeq4SdCMaaGikaiaaicdacaaIPaGaeqiWdaNcdaWgaaqcbaua aKqzadGaaGimaaqcbawabaqcLbsacqGHRaWkcaWGTbGaaGikaiaaig dacaaIPaGaeq4SdCMaaGikaiaaigdacaaIPaGaeqiWdaxcfa4aaSba aKqaafaajugWaiaaigdaaKqaafqaaKqzGeGaaGyxaaqcaawaaaqaaK qzGeGaeyypa0JcdaWcaaqcaawaaKqzGeGaaGymaaqcaawaaKqzGeGa aGimaiaai6cacaaIYaGaaG4maaaacaaIBbGaaGimaiaai6cacaaIYa GaaGynaiabgEna0kaaiIcacaaIXaGaaG4laiaaiodacaaIPaGaey41 aqRaaGimaiaai6cacaaI1aGaaG4naiaaigdacqGHRaWkcaaIWaGaaG OlaiaaikdacqGHxdaTcaaIOaGaaGymaiaai+cacaaI0aGaaGykaiab gEna0kaaicdacaaIUaGaaGinaiaaikdacaaI5aGaaGyxaaqcaawaaa qaaKqzGeGaeyypa0JaaGinaiaai6cacaaIZaGaaGynaiaaiUfacaaI WaGaaGOlaiaaicdacaaI4aGaey4kaSIaaGimaiaai6cacaaIWaGaaG Omaiaai2facaaI9aGaaGimaiaai6cacaaI0aGaaG4maiaaiwdacqGH ijYUcaaIWaGaaGOlaiaaisdacaaI0aaajaaybaqcLbsacuaHYoGyga qcaiabg2da9OWaaSaaaKaaGfaajugibiaaigdaaKaaGfaajugibiaa d2gaaaGaaG4waiaad2gacaaIOaGaaGimaiaaiMcacqaHYoGycaaIOa GaaGimaiaaiMcacqaHapaCjuaGdaWgaaqcbauaaKqzadGaaGimaaqc bauabaqcLbsacqGHRaWkcaWGTbGaaGikaiaaigdacaaIPaGaeqOSdi MaaGikaiaaigdacaaIPaGaeqiWdaNcdaWgaaqcbauaaKqzadGaaGym aaqcbawabaqcLbsacaaIDbaajaaybaaabaqcLbsacqGH9aqpkmaala aajaaybaqcLbsacaaIXaaajaaybaqcLbsacaaIWaGaaGOlaiaaikda caaIZaaaaiaaiUfacaaIWaGaaGOlaiaaikdacaaI1aGaey41aqRaaG ikaiaaigdacaaIUaGaaGimaiaaiwdacaaIPaGaey41aqRaaGimaiaa i6cacaaI1aGaaG4naiaaigdacqGHRaWkcaaIWaGaaGOlaiaaikdacq GHxdaTcaaIOaGaaGymaiaai6cacaaIXaGaaGykaiabgEna0kaaicda caaIUaGaaGinaiaaikdacaaI5aGaaGyxaaqcaawaaaGcbaqcLbsacq GH9aqpcaaI0aGaaGOlaiaaiodacaaI1aGaaG4waiaaicdacaaIUaGa aGymaiaaiwdacqGHRaWkcaaIWaGaaGOlaiaaicdacaaI5aGaaGyxai abgIKi7kaaigdacaaIUaGaaGimaiaaisdacaaISaaaaaa@3C67@  (26)

where m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaad2gaaa a@38E1@ was calculated in (24). From here we can find

R ^ 0 = β ^ /( γ ^ + μ ^ )=1.04/(0.44+0.02)=1.04/0.42.26 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeGabaa0rKqzGeGabm OuayaajaGcdaWgaaqcKvaG=haajugWaiaaicdaaKqbGfqaaKqzGeGa aGypaiqbek7aIzaajaGaaG4laiaaiIcacuaHZoWzgaqcaiabgUcaRi qbeY7aTzaajaGaaGykaiaai2dacaaIXaGaaGOlaiaaicdacaaI0aGa aG4laiaaiIcacaaIWaGaaGOlaiaaisdacaaI0aGaey4kaSIaaGimai aai6cacaaIWaGaaGOmaiaaiMcacaaI9aGaaGymaiaai6cacaaIWaGa aGinaiaai+cacaaIWaGaaGOlaiaaisdacqGHijYUcaaIYaGaaGOlai aaikdacaaI2aaaaa@5F74@ (27)

Also, the equilibrium states are:

s ^ e =( γ ^ + μ ^ )/ β ^ =0.46/1.04 =0.44 i ^ e =( μ ^ ( R ^ 0 I))/ β ^ =0.02(2.261)/1.04 =0.02 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaKqzGeGabm 4Cayaajaqcfa4aaSbaaKazfa4=baqcLbmacaWGLbaajuaibeaajugi biabg2da9iaaiIcacuaHZoWzgaqcaiabgUcaRiqbeY7aTzaajaGaaG ykaiaai+cacuaHYoGygaqcaaGcbaqcLbsacqGH9aqpcaaIWaGaaGOl aiaaisdacaaI2aGaaG4laiaaigdacaaIUaGaaGimaiaaisdaaOqaaK qzGeGaeyypa0JaaGimaiaai6cacaaI0aGaaGinaaGcbaqcLbsaceWG PbGbaKaajuaGdaWgaaqcbauaaKqzadGaamyzaaqcbauabaqcLbsacq GH9aqpcaaIOaGafqiVd0MbaKaacaaIOaGabmOuayaajaqcfa4aaSba aKqaafaajugWaiaaicdaaKqaafqaaKqzGeGaeyOeI0IaamysaiaaiM cacaaIPaGaaG4laiqbek7aIzaajaaakeaajugibiabg2da9iaaicda caaIUaGaaGimaiaaikdacaaIOaGaaGOmaiaai6cacaaIYaGaaGOnai abgkHiTiaaigdacaaIPaGaaG4laiaaigdacaaIUaGaaGimaiaaisda aOqaaKqzGeGaeyypa0JaaGimaiaai6cacaaIWaGaaGOmaaaaaa@7AF7@ (28)

If we take again N=1,000, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaad6eaca aI9aGaaGymaiaaiYcacaaIWaGaaGimaiaaicdacaaISaaaaa@3DDE@  then from (27) we have:

S ^ e = s ^ ^ e ×1,000=0.44×1,000=440 I ^ e = i ^ e ×1,000=0.0.02×1,000=20. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaKqzGeGabm 4uayaajaqcfa4aaSbaaKazfa4=baqcLbmacaWGLbaajuaibeaajugi biabg2da9iqadohagaqcgaqcaOWaaSbaaKqaafaajugWaiaadwgaaS qabaqcLbsacqGHxdaTcaaIXaGaaGilaiaaicdacaaIWaGaaGimaiaa i2dacaaIWaGaaGOlaiaaisdacaaI0aGaey41aqRaaGymaiaaiYcaca aIWaGaaGimaiaaicdacaaI9aGaaGinaiaaisdacaaIWaaakeaajugi biqadMeagaqcaOWaaSbaaKqaafaajugWaiaadwgaaSqabaqcLbsacq GH9aqpceWGPbGbaKaakmaaBaaajeaqbaqcLbmacaWGLbaaleqaaKqz GeGaey41aqRaaGymaiaaiYcacaaIWaGaaGimaiaaicdacaaI9aGaaG imaiaai6cacaaIWaGaaGOlaiaaicdacaaIYaGaey41aqRaaGymaiaa iYcacaaIWaGaaGimaiaaicdacaaI9aGaaGOmaiaaicdacaaIUaaaaa a@7300@  (29)

Also, the value for I ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiqadMeaga qcaaaa@38CD@ is:

I ^ = μ ^ ×N/( μ ^ + γ ^ ) μ ^ / β ^ =0.02×1,000/(0.46)0.02/1.04 =20/0.460.019=43.4820.019=43.4692 =43. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaKqzGeGabm ysayaajaGaeyypa0JafqiVd0MbaKaacqGHxdaTcaWGobGaaG4laiaa iIcacuaH8oqBgaqcaiabgUcaRiqbeo7aNzaajaGaaGykaiabgkHiTi qbeY7aTzaajaGaaG4laiqbek7aIzaajaaakeaajugibiabg2da9iaa icdacaaIUaGaaGimaiaaikdacqGHxdaTcaaIXaGaaGilaiaaicdaca aIWaGaaGimaiaai+cacaaIOaGaaGimaiaai6cacaaI0aGaaGOnaiaa iMcacqGHsislcaaIWaGaaGOlaiaaicdacaaIYaGaaG4laiaaigdaca aIUaGaaGimaiaaisdaaOqaaKqzGeGaeyypa0JaaGOmaiaaicdacaaI VaGaaGimaiaai6cacaaI0aGaaGOnaiabgkHiTiaaicdacaaIUaGaaG imaiaaigdacaaI5aGaaGypaiaaisdacaaIZaGaaGOlaiaaisdacaaI 4aGaaGOmaiabgkHiTiaaicdacaaIUaGaaGimaiaaigdacaaI5aGaaG ypaiaaisdacaaIZaGaaGOlaiaaisdacaaI2aGaaGyoaiaaikdaaOqa aKqzGeGaeyypa0JaaGinaiaaiodacaaIUaaaaaa@7FD5@

Interpretation of the numerical examples

In our case, we have an infection that is endemic in a community when transmission persists. Including two-state Markov chain into coefficients μ,γ,β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabeY7aTj aaiYcacqaHZoWzcaaISaGaeqOSdigaaa@3E59@  means that the endemic develops with respect to two modes: one mode 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaaIWaaaaa@381A@  with coefficients μ(1),γ(1),β(1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabeY7aTj aaiIcacaaIXaGaaGykaiaaiYcacqaHZoWzcaaIOaGaaGymaiaaiMca caaISaGaeqOSdiMaaGikaiaaigdacaaIPaaaaa@44B9@ and another mode 1 with coefficients μ(1),γ(1),β(1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabeY7aTj aaiIcacaaIXaGaaGykaiaaiYcacqaHZoWzcaaIOaGaaGymaiaaiMca caaISaGaeqOSdiMaaGikaiaaigdacaaIPaaaaa@44B9@ (see (11)). Probability to stay in mode 0 is 0.7, probability to stay in mode 0 is 0.7 probability to switch from mode 0 to mode 1 is 0.3 and probability to switch from mode 1 to mode 0 is 0.4 (see entries of matrix P).

Two-state markov chain case: sec. 6.1

Time to stay in mode 0 or mode 1 distributed exponentially with parameter λ(i),i=0,1, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabeU7aSj aaiIcacaWGPbGaaGykaiaaiYcacaWGPbGaaGypaiaaicdacaaISaGa aGymaiaaiYcaaaa@4142@ respectively. Initially, the contact numbers were R 0 0 =β(0)/(μ(0)+γ(0))=3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadkfaju aGdaqhaaqcfasaaKqzadGaaGimaaqcfasaaKqzadGaaGimaaaajugi biaai2dacqaHYoGycaaIOaGaaGimaiaaiMcacaaIVaGaaGikaiabeY 7aTjaaiIcacaaIWaGaaGykaiabgUcaRiabeo7aNjaaiIcacaaIWaGa aGykaiaaiMcacaaI9aGaaG4maaaa@4ED7@ for mode 0,and R 0 1 =β(1)/(μ(1)+γ(1))=4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadkfaju aGdaqhaaqcfasaaKqzadGaaGimaaqcfasaaKqzadGaaGymaaaajugi biaai2dacqaHYoGycaaIOaGaaGymaiaaiMcacaaIVaGaaGikaiabeY 7aTjaaiIcacaaIXaGaaGykaiabgUcaRiabeo7aNjaaiIcacaaIXaGa aGykaiaaiMcacaaI9aGaaGinaaaa@4EDC@ for mode 1 After averaging it is R ^ 0 =3.36 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiqadkfaga qcaKqbaoaaBaaajuaibaqcLbmacaaIWaaajuaibeaajugibiaai2da caaIZaGaaGOlaiaaiodacaaI2aaaaa@4011@ (see sec. 6.1). The solution to the endemic averaged SIR endemic model (5’) eventually settles down to a steady state. We defined this steady state ( s e , i e ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaaiIcaca WGZbGcdaWgaaqcfasaaKqzadGaamyzaaqcfayabaqcLbsacaaISaGa amyAaOWaaSbaaKqbGeaajugWaiaadwgaaKqbagqaaKqzGeGaaGykaa aa@430C@ in (13) by solving the equations s ^ =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiqadohaga qcgaqbaiaai2dacaaIWaaaaa@3A83@ and i ^ =0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiqadMgaga qcgaqbaiaai2dacaaIWaGaaGOlaaaa@3B31@ It means that on the long time interval the number S ^ e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiqadofaga qcaOWaaSbaaKGbGeaajugWaiaadwgaaKGbagqaaaaa@3BD8@ of susceptible is S ^ e =300, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiqadofaga qcaOWaaSbaaKqbGeaajugWaiaadwgaaKqbagqaaKqzGeGaaGypaiaa iodacaaIWaGaaGimaiaaiYcaaaa@4013@ and the number I ^ e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiqadMeaga qcaKqbaoaaBaaajuaibaqcLbmacaWGLbaajuaibeaaaaa@3BF0@ of infectious is I ^ e =43 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiqadMeaga qcaKqbaoaaBaaajuaibaqcLbmacaWGLbaajuaibeaajugibiaai2da caaI0aGaaG4maaaa@3EC1@ (see (14)). If we compare the latter number I ^ e =43 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiqadMeaga qcaOWaaSbaaKqbGeaajugWaiaadwgaaKqbagqaaKqzGeGaaGypaiaa isdacaaIZaaaaa@3E9D@ (steady state for I ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaceWGjbGbaKaaaa a@383E@ ) with I ^ =61 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiqadMeaga qcaiaai2dacaaI2aGaaGymaaaa@3B0F@ then we can see that the number of infectious is decreasing on the long time interval.

Two-state semi-markov chain case: sec. 6.2

The parameter K(i) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadUeaca aIOaGaamyAaiaaiMcaaaa@3B12@ in Weibull distribution describes the  failure rate for the disease: if K(i)<1, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadUeaca aIOaGaamyAaiaaiMcacaaI8aGaaGymaiaaiYcaaaa@3D49@ then the number of infectious of the disease decreases over time, if K(i)=1, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadUeaca aIOaGaamyAaiaaiMcacaaI9aGaaGymaiaaiYcaaaa@3D4A@ then the number of infectious of the disease is constant over time (exponential distribution), and if K(i)>1, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadUeaca aIOaGaamyAaiaaiMcacaaI+aGaaGymaiaaiYcaaaa@3D4B@ then the number of infectious of the disease increases over time. In our cases: if  i) K(i)=2>1,i=0,1, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadUeaca aIOaGaamyAaiaaiMcacaaI9aGaaGOmaiaai6dacaaIXaGaaGilaiaa dMgacaaI9aGaaGimaiaaiYcacaaIXaGaaGilaaaa@4364@ then it means that the number of infectious of the disease in this case increases. And it was really the case: the number of infectious I ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiqadMeaga qcaaaa@38CD@ increased to 400 (see (23)), but after the long-time period decreased and stabilized to 3 (see (22)). Compare with the Markov case, where I ^ =61, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiqadMeaga qcaiaai2dacaaI2aGaaGymaiaaiYcaaaa@3BC5@ the semi-Markov case gave us much bigger number of infectious, namely I ^ =400. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiqadMeaga qcaiaai2dacaaI0aGaaGimaiaaicdacaaIUaaaaa@3C7E@ if ii) K(i)=1/2<1,i=0,1, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadUeaca aIOaGaamyAaiaaiMcacaaI9aGaaGymaiaai+cacaaIYaGaaGipaiaa igdacaaISaGaamyAaiaai2dacaaIWaGaaGilaiaaigdacaaISaaaaa@44D6@ then it means that the number of infectious of the disease in this case decreases. And it was really the case: the number of infectious I ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiqadMeaga qcaaaa@38CD@  was 43 (see (30)), but after the long-time period decreased and stabilized to 20 (see (29)). Compare with the Markov case, where I ^ =61, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiqadMeaga qcaiaai2dacaaI2aGaaGymaiaaiYcaaaa@3BC5@ the semi-Markov case gave us much lower number of infectious, namely I ^ =43. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiqadMeaga qcaiaai2dacaaI0aGaaG4maiaai6caaaa@3BC7@ Thus, the result crucially depends on a distribution of time the chain spent in a state. In our case, we compared two distributions, exponential and Weibull. Similar numerical examples can be prepared for other distributions G i (x), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadEeakm aaBaaajuaGbaqcLbsacaWGPbaajuaGbeaajugibiaaiIcacaWG4bGa aGykaiaaiYcaaaa@3F26@ such as Gamma or Beta, etc. Krishnamoorthy.11,12

Discussion: numerical examples with real data (dengue fever disease (Indonesia and malaysia (2009)) and cholera outbreak in Zimbabwe (2008-2009))

In this section we discuss two numerical examples involving real data: 1) Dengue Fever Disease (Indonesia and Malaysia (2009)) and 2) Cholera Outbreak in Zimbabwe (2008-2009). We show how to construct two-state Markov and semi-Markov chains and to obtain some estimations associated with these real data. In the first case we use two countries, Indonesia and Malaysia, and in the second case we use one country, Zimbabwe, but with many (in fact, 10) regions, and take two regions to get the two state Markov or semi-Markov chains. These real data sets were borrowed from respectively.8,9 Crucial problems in the real data examples are: 1) determine the matrix P of transition probabilities between different countries or different regions for one country, which are the states of our Markov or semi-Markov chains; 2) determine whether we have Markov or semi-Markov chain.

Spread of dengue fever disease (south sulawesi, indonesia, and selangor, malaysia (2009))

As long as the dengue fever disease was spread in two countries, Indonesia and Malaysia, we can consider these two countries as two states of our Markov or semi-Markov chains. Let us take state ’0’ for Indonesia and state ’1’ for Malaysia. As long as we do not have any data for migration between those two countries, which we need to create our matrix P we will use our matrix from sec. 6.1: P=( 0.7 0.3 0.4 0.6 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadcfaca aI9aGcdaqadaqaaKqzGeqbaeqabiGaaaGcbaqcLbsacaaIWaGaaGOl aiaaiEdaaOqaaKqzGeGaaGimaiaai6cacaaIZaaakeaajugibiaaic dacaaIUaGaaGinaaGcbaqcLbsacaaIWaGaaGOlaiaaiAdaaaaakiaa wIcacaGLPaaaaaa@46EF@ ,

with the stationary probabilities π =( π 0 π 1 )=( 0.571 0.429 ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiqbec8aWz aalaGaaGypaOWaaeWaaKqbagaajugibuaabeqaceaaaKqbagaajugi biabec8aWPWaaSbaaKqbagaajugibiaaicdaaKqbagqaaaqaaKqzGe GaeqiWdaNcdaWgaaqcfayaaKqzGeGaaGymaaqcfayabaaaaaGaayjk aiaawMcaaKqzGeGaaGypaOWaaeWaaKqbagaajugibuaabeqadeaaaK qbagaajugibiaaicdacaaIUaGaaGynaiaaiEdacaaIXaaajuaGbaqc LbsacaaIWaGaaGOlaiaaisdacaaIYaGaaGyoaaqcfayaaaaaaiaawI cacaGLPaaajugibiaai6caaaa@5709@

If we had the migration information then the matrix P MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadcfaaa a@38C4@ could be calculated easily using law of large numbers. Probabilities in matrix P MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadcfaaa a@38C4@ can be interpreted as follows: 0.7 means probability to stay in Indonesia, 0.3-probability to move from Indonesia to Malaysia, 0.4 -probability to move from Malaysia to Indonesia,0.6 and -probability to stay in Malaysia. Meaning of stationary probabilities: 0.571 -probability to stay in Indonesia on the long time interval,0.429 -probability to stay in Malaysia on the long time interval. Further, again, as long as we do not know the migration information we cannot judge about the intensity of the migration, where it follows exponential distribution or any non-exponential distribution. If we knew this migration information then we could calculate/calibrate the intensity of migration and make a decision about the parameters of exponential distribution or non-exponential. Now, we will take the data from Side et al.8 for Indonesia (see page 101): μ(0)=0.000046,γ(0)=0.328833,β(0)=0.75; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabeY7aTj aaiIcacaaIWaGaaGykaiaai2dacaaIWaGaaGOlaiaaicdacaaIWaGa aGimaiaaicdacaaI0aGaaGOnaiaaiYcacqaHZoWzcaaIOaGaaGimai aaiMcacaaI9aGaaGimaiaai6cacaaIZaGaaGOmaiaaiIdacaaI4aGa aG4maiaaiodacaaISaGaeqOSdiMaaGikaiaaicdacaaIPaGaaGypai aaicdacaaIUaGaaG4naiaaiwdacaaI7aaaaa@5683@ for Malaysia (see page 102): μ(1)=0.0045,γ(1)=0.15,β(1)=0.75. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabeY7aTj aaiIcacaaIXaGaaGykaiaai2dacaaIWaGaaGOlaiaaicdacaaIWaGa aGinaiaaiwdacaaISaGaeq4SdCMaaGikaiaaigdacaaIPaGaaGypai aaicdacaaIUaGaaGymaiaaiwdacaaISaGaeqOSdiMaaGikaiaaigda caaIPaGaaGypaiaaicdacaaIUaGaaG4naiaaiwdacaaIUaaaaa@5207@ We consider, again, two cases: 1) migration intensity follows exponential distribution and ii) migration intensity follows non-exponential distribution. We take again Weibull distribution in case 2) because we have already shown how to use it in sec. 6.2.

Exponential case

We suppose that λ(0)=10 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabeU7aSj aaiIcacaaIWaGaaGykaiaai2dacaaIXaGaaGimaaaa@3DFE@  and λ(1)=10. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabeU7aSj aaiIcacaaIXaGaaGykaiaai2dacaaIXaGaaGimaiaai6caaaa@3EB7@ We note, that m=0.1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaad2gaca aI9aGaaGimaiaai6cacaaIXaaaaa@3BD5@  then. Then our averaged parameters have the following values (see sec. 6.1 for calculations formulas): μ ^ =0.00183, γ ^ =0.258, β ^ =0.75. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiqbeY7aTz aajaGaaGypaiaaicdacaaIUaGaaGimaiaaicdacaaIXaGaaGioaiaa iodacaaISaGafq4SdCMbaKaacaaI9aGaaGimaiaai6cacaaIYaGaaG ynaiaaiIdacaaISaGafqOSdiMbaKaacaaI9aGaaGimaiaai6cacaaI 3aGaaGynaiaai6caaaa@4D57@ The the averaged reproductive number is R ^ 0 =2.8>1, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiqadkfaga qcaKqbaoaaBaaajuaibaqcLbmacaaIWaaajuaibeaajugibiaai2da caaIYaGaaGOlaiaaiIdacaaI+aGaaGymaiaaiYcaaaa@418E@ and we have the case of endemic situation. Thus, if the intensity of migration is high then we can get the endemic situation.To avoid it, we have to restrict migration between those two countries during epidemic of dengue fever disease.

Non-exponential case: weibull distribution

For the Weibull distribution (see sec. 6.2) of intensity of migration we consider again two cases:  i) K(i)=2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadUeaca aIOaGaamyAaiaaiMcacaaI9aGaaGOmaaaa@3C95@ and  ii) K(i)=1/2,i=0,1. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadUeaca aIOaGaamyAaiaaiMcacaaI9aGaaGymaiaai+cacaaIYaGaaGilaiaa dMgacaaI9aGaaGimaiaaiYcacaaIXaGaaGOlaaaa@4357@ Using the real data from Side  et al. (2013): for Indonesia (see page 101): μ(0)=0.000046,γ(0)=0.328833,β(0)=0.75; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabeY7aTj aaiIcacaaIWaGaaGykaiaai2dacaaIWaGaaGOlaiaaicdacaaIWaGa aGimaiaaicdacaaI0aGaaGOnaiaaiYcacqaHZoWzcaaIOaGaaGimai aaiMcacaaI9aGaaGimaiaai6cacaaIZaGaaGOmaiaaiIdacaaI4aGa aG4maiaaiodacaaISaGaeqOSdiMaaGikaiaaicdacaaIPaGaaGypai aaicdacaaIUaGaaG4naiaaiwdacaaI7aaaaa@5683@  for Malaysia (see page 102): μ(1)=0.0045,γ(1)=0.15,β(1)=0.75, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabeY7aTj aaiIcacaaIXaGaaGykaiaai2dacaaIWaGaaGOlaiaaicdacaaIWaGa aGinaiaaiwdacaaISaGaeq4SdCMaaGikaiaaigdacaaIPaGaaGypai aaicdacaaIUaGaaGymaiaaiwdacaaISaGaeqOSdiMaaGikaiaaigda caaIPaGaaGypaiaaicdacaaIUaGaaG4naiaaiwdacaaISaaaaa@5205@ we have (see sec. 6.2 for calculation formulas): i) K(i)=2,i=0,1. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadUeaca aIOaGaamyAaiaaiMcacaaI9aGaaGOmaiaaiYcacaWGPbGaaGypaiaa icdacaaISaGaaGymaiaai6caaaa@41E3@  We note that m=0.88 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaad2gaca aI9aGaaGimaiaai6cacaaI4aGaaGioaaaa@3C9E@  here. Then, the averaged numbers are μ ^ =0.0001827, γ ^ =0.0255, β ^ =0.075. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiqbeY7aTz aajaGaaGypaiaaicdacaaIUaGaaGimaiaaicdacaaIWaGaaGymaiaa iIdacaaIYaGaaG4naiaaiYcacuaHZoWzgaqcaiaai2dacaaIWaGaaG OlaiaaicdacaaIYaGaaGynaiaaiwdacaaISaGafqOSdiMbaKaacaaI 9aGaaGimaiaai6cacaaIWaGaaG4naiaaiwdacaaIUaaaaa@5042@ Then, the averaged reproductive number R ^ 0 =3>1, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiqadkfaga qcaOWaaSbaaKqbGeaajugWaiaaicdaaKqbGeqaaKqzGeGaaGypaiaa iodacaaI+aGaaGymaiaaiYcaaaa@3F91@ and we have endemic situation again. ii) K(i)=1/2,i=0,1. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadUeaca aIOaGaamyAaiaaiMcacaaI9aGaaGymaiaai+cacaaIYaGaaGilaiaa dMgacaaI9aGaaGimaiaaiYcacaaIXaGaaGOlaaaa@4357@ We note that m0.2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaad2gacq GHsislcaaIWaGaaGOlaiaaikdaaaa@3BFC@  here. Then, the averaged numbers are μ ^ =0.00036552, γ ^ =0.258, β ^ =0.75. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiqbeY7aTz aajaGaaGypaiaaicdacaaIUaGaaGimaiaaicdacaaIWaGaaG4maiaa iAdacaaI1aGaaGynaiaaikdacaaISaGafq4SdCMbaKaacaaI9aGaaG imaiaai6cacaaIYaGaaGynaiaaiIdacaaISaGafqOSdiMbaKaacaaI 9aGaaGimaiaai6cacaaI3aGaaGynaiaai6caaaa@4F8E@  Then, the averaged reproductive number R ^ 0 =2.1>1, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiqadkfaga qcaOWaaSbaaKqbGeaajugWaiaaicdaaKqbagqaaKqzGeGaaGypaiaa ikdacaaIUaGaaGymaiaai6dacaaIXaGaaGilaaaa@4163@ and we have endemic situation again, even when K(i)=1/2<1. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadUeaca aIOaGaamyAaiaaiMcacaaI9aGaaGymaiaai+cacaaIYaGaaGipaiaa igdacaaIUaaaaa@4042@ In all three cases we have endemic situation. To avoid it, we must restrict migration between those two countries.

Cholera outbreak in zimbabwe (2008-2009)

In this case of cholera outbreak in Zimbabwe, we use the real data from Mukandavire et al.9 We have 10 provinces in Zimbabwe with different population size, total infected sizes, attack rates per 10,000, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaaigdaca aIWaGaaGilaiaaicdacaaIWaGaaGimaiaaiYcaaaa@3CFE@  total deaths ( page 8769) and estimates for the basic reproductive numbers R 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadkfakm aaBaaajuaibiqaaSUajugWaiaaicdaaKqbagqaaaaa@3C85@ for all 10 provinces (8th row, page 8769). In all 10 cases the reproductive numbers are greater than 1, meaning that endemicity is possible. Now, if we suppose that there is migration between 10 provinces then the situation does not change. Again, we do not have any migration information between 10 provinces, thus we can use our matrix P MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadcfaaa a@38C4@ for transition probabilities between any of two provinces and stationary probabilities π MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiqbec8aWz aalaaaaa@39BE@  from previous sections again. Suppose that we take 2 provinces, Mashonaland East and Balawayo, with the smallest reproductive numers, 1.11 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaaigdaca aIUaGaaGymaiaaigdaaaa@3AD8@ and 1.36 respectively. Then, on the long time interval, the averaged reproductive number is R ^ 0 =1.21>1, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNC HbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiqadkfaga qcaOWaaSbaaKazfa4=baqcLbmacaaIWaaajuaybeaajugibiaai2da caaIXaGaaGOlaiaaikdacaaIXaGaaGOpaiaaigdacaaISaaaaa@43C1@  meaning endemicity again. The situation is similar for the rest of the provinces. To reduce the reproductive number below 1, we must restrict the migration between provinces thast have cholera outbreak.

Remark

We considered only the case of two-state Markov or semi-Markov chains. However, we could consider the case of three- or more states Markov or semi-Markov chains, and pursue with analogical calculations to get the averaged results.

Conclusion and future work

In this paper, we considered a random media as a semi-Markov process because in some cases the distribution functions of being in states (for models, for example, for birds migrating between some islands, or people migrating between several cities, etc.) are not exponentially distributed.6 From the other side, it is more general mathematical model than Markov model. The main result of the paper is the averaging principle for endemic SIR model in semi-Markov random media. Under stationary conditions of semi-Markov media we shown that the perturbed endemic SIR model converges to the classic SIR model with averaged coefficients. We also considered numerical examples with two-state Markov and semi-Markov chains and gave interpretation of the obtained results. We also discussed two numerical examples involving real data: 1) Dengue Fever Disease (Indonesia and Malaysia (2009)) and 2) Cholera Outbreak in Zimbabwe (2008-2009). We have shown how to construct two-state Markov and semi-Markov chains and to obtain some estimations associated with these real data. In the first case we used two countries, Indonesia and Malaysia, and in the second case we use one country, Zimbabwe, but with two regions, to get the two state Markov or semi-Markov chains. This research paper is just a first step in the investigation of endemic SIR model in random media. The future work will be devoted to the merging, diffusion approximation, normal deviations and stability of endemic SIR models in semi-Markov random media.

Acknowledgement

None.

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

References

  1. Nasel I. The threshold concept in stochastic epidemic and endemic models. In Epidemic Models: Their Structure and Relation to data. USA: Cambridge University Press, 1985;71–83.
  2. Nasel I. Stochastic models of some endemic infections. Math Biosci. 2002;179(1):1–19.
  3. Ball F, Lyne O. Stochastic multi-type SIR epidemics among a population partitioned into households. Advances in Applied Probability. 2001;33(1):99–123.
  4. Hethcote HW. The mathematics of infectious diseases. SIAM review 2000;42(4):599–653.
  5. Allen L, Burguin A. Comparison of deterministic and stochastic SIS and SIR models in discrete time. Math Biosci. 2000;163(1):1–23.
  6. Swishchuk A, Wu J. Evolution of Biological Systems in Random Media: Limit Theorems and Stability. USA: Kluwer Academic Publishers, 2003.
  7. Derouchi M, Boutayeb A, Twizell EH, et al. A model of dengue fever. BioMedical Engineering Online. 2003;2(4).
  8. Side S, Noorani S. A SIR model for spread of dengue fever disease (Simulation for South Sulawesi, Indonesia and Selangor, Malaisia). World J Model & Simul. 2013;9(2):96–105.
  9. Mukandavire Z, Liao S, Wang J, et al. Estimating the reproductive numbers for the 2008-2009 cholera outbreaks in Zimbabwe. PNAS 2011;108(21):8767–8772.
  10. Wang J, Liao S. A generalized cholera model and epidemic-endemic analysis. J Biol Dyn. 2012;62:568–589.
  11. Krishnamoorthy K. Handbook of Statistical Distributions with Applications. USA: Chapman & Hall/CRC Press; 2006.
  12. Isham V, Medley G. Models for Infectious Human diseases: their Structure and Relation to Data. USA: Cambridge University Press; 1996.
Creative Commons Attribution License

©2018 Swishchuk, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.