Submit manuscript...
eISSN: 2378-315X

Biometrics & Biostatistics International Journal

Brief Report Volume 11 Issue 4

Correlation analysis for different types of variables and relationship between different correlation coefficients

Shimin Zheng,1 Yan Cao2

1Department of Biostatistics, East Tennessee State University, USA
2Center for Nursing Research, East Tennessee State University, USA

Correspondence: Shimin Zheng, Department of Biostatistics and Epidemiology, East Tennessee State University, USA

Received: September 04, 2022 | Published: September 20, 2022

Citation: Zheng S, Cao Y. Correlation analysis for different types of variables and relationship between different correlation coefficients. Biom Biostat Int J. 2022;11(4):127-129. DOI: 10.15406/bbij.2022.11.00365

Download PDF

Introduction

The purpose of this article is to provide a summary about statistical correlation analysis and relationship between simple, multiple and partial correlation coefficients.

Statistical correlation analysis and regression analysis are related, but different. Correlation analysis quantifies the strength of the linear relationship between two variables or between two sets of variables, most often two continuous variables, or between two sets of continuous variables, whereas regression analysis is used to determine the relationship in the form of an equation between two variables or two sets of variables. Unlike regression analysis, to do correlation analysis, we don’t have to distinguish cause and effect, or dependent and independent variables.Most often, the simple correlation coefficient is used. It is also called Pearson product-moment correlation coefficient.1 It is a measure of the strength and direction of association between two variables measured on at least an interval scale. It can range from -1 to 1. However, maximum (or minimum) values of some simple correlations cannot reach unity (i.e., 1 or -1)

Correlation analysis is not always dealing with one-to-one correlation, i.e., the correlation between two variables. It can be partial correlation (adjusted one-to-one correlation). It can also be one-to-many, or multiple correlation.2 In statistics, the coefficient of multiple correlation is a measure of how well a given variable can be predicted using a linear function of a set of other variables. It is the correlation between the variable’s values and the best predictions that can be computed linearly from the predictive variables.

Relationship between simple and multiple correlation coefficients

  1. The formula to compute the simple correlation coefficient between variables x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEaaaa@382B@ and y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyEaaaa@382C@ is

r= (x x ¯ )( y y ¯ ) (x x ¯ ) 2 ( y y ¯ ) 2 = n xy x y n x 2 ( x ) 2 n y 2 ( y ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamOCai abg2da9maalaaabaWaaabqaeaacaGGOaGaamiEaiabgkHiTiqadIha gaqeaiaacMcadaqadaqaaiaadMhacqGHsislceWG5bGbaebaaiaawI cacaGLPaaaaSqabeqaniabggHiLdaakeaadaGcaaqaamaaqaeabaGa aiikaiaadIhacqGHsislceWG4bGbaebacaGGPaWaaWbaaSqabeaaca aIYaaaaaqabeqaniabggHiLdaaleqaaOWaaOaaaeaadaaeabqaamaa bmaabaGaamyEaiabgkHiTiqadMhagaqeaaGaayjkaiaawMcaamaaCa aaleqabaGaaGOmaaaaaeqabeqdcqGHris5aaWcbeaaaaaakeaacqGH 9aqpdaWcaaqaaiaad6gadaaeabqaaiaadIhacaWG5bGaeyOeI0Yaaa bqaeaacaWG4bWaaabqaeaacaWG5baaleqabeqdcqGHris5aaWcbeqa b0GaeyyeIuoaaSqabeqaniabggHiLdaakeaadaGcaaqaaiaad6gada aeabqaaiaadIhadaahaaWcbeqaaiaaikdaaaGccqGHsisldaqadaqa amaaqaeabaGaamiEaaWcbeqab0GaeyyeIuoaaOGaayjkaiaawMcaaa Wcbeqab0GaeyyeIuoaaSqabaGcdaahaaWcbeqaaiaaikdaaaGcdaGc aaqaaiaad6gadaaeabqaaiaadMhadaahaaWcbeqaaiaaikdaaaGccq GHsisldaqadaqaamaaqaeabaGaamyEaaWcbeqab0GaeyyeIuoaaOGa ayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaeqabeqdcqGHris5aa Wcbeaaaaaaaaa@7787@ (1)

The t-statistic r 1 r 2 n2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaaeaacaWGYbaabaWaaOaaaeaacaaIXaGaeyOeI0IaamOCamaa CaaaleqabaGaaGOmaaaaaeqaaaaakmaakaaabaGaamOBaiabgkHiTi aaikdaaSqabaaaaa@3E8E@ (df=n-2) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaabIcacaqGKb GaaeOzaiaab2dacaqGUbGaaeylaiaabkdacaqGPaaaaa@3D4B@ is used to conduct hypothesis test   H 0 :ρ=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaiiOaiaadIeapaWaaSbaaSqaa8qacaaIWaaapaqabaGcpeGaaiOo aiabeg8aYjabg2da9iaaicdaaaa@3E8B@ vs H a :ρ0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamisa8aadaWgaaWcbaWdbiaadggaa8aabeaak8qacaGG6aGaeqyW di3daiabgcMi5+qacaaIWaGaaiOlaaaa@3F25@ The formula to compute the multiple correlation coefficient between y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyEaaaa@382C@ and x 1 , x 2 ...., x k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEamaaBaaaleaacaaIXaaabeaakiaacYcacaWG4bWaaSbaaSqa aiaaikdaaeqaaOGaaiOlaiaac6cacaGGUaGaaiOlaiaacYcacaWG4b WaaSbaaSqaaiaadUgaaeqaaaaa@414C@ is

r= R 2 = 1 (y y ^ ) 2 (y y ¯ ) 2 = 1 SSE SST = SSR SST MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOCaiabg2da9maakaaabaGaamOuamaaCaaaleqabaGaaGOmaaaa aeqaaOGaeyypa0ZaaOaaaeaacaaIXaGaeyOeI0YaaSaaaeaadaaeab qaaiaacIcacaWG5bGaeyOeI0IabmyEayaajaGaaiykamaaCaaaleqa baGaaGOmaaaaaeqabeqdcqGHris5aaGcbaWaaabqaeaacaGGOaGaam yEaiabgkHiTiqadMhagaqeaiaacMcadaahaaWcbeqaaiaaikdaaaaa beqab0GaeyyeIuoaaaaaleqaaOGaeyypa0ZaaOaaaeaacaaIXaGaey OeI0YaaSaaaeaacaWGtbGaam4uaiaadweaaeaacaWGtbGaam4uaiaa dsfaaaaaleqaaOGaeyypa0ZaaOaaaeaadaWcaaqaaiaadofacaWGtb GaamOuaaqaaiaadofacaWGtbGaamivaaaaaSqabaaaaa@5AA9@ (2)

The F-statistic SSR/k SSE/(nk1) = MSR MSE = (nk1) R 2 k(1 R 2 ) F(k,nk1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiaabofacaqGtbGaaeOuaiaac+cacaWGRbaapaqa a8qacaqGtbGaae4uaiaabweacaGGVaGaaiikaiaad6gacqGHsislca WGRbGaeyOeI0IaaGymaiaacMcaaaGaeyypa0ZaaSaaa8aabaWdbiaa b2eacaqGtbGaaeOuaaWdaeaapeGaaeytaiaabofacaqGfbaaaiabg2 da9maalaaapaqaa8qacaGGOaGaamOBaiabgkHiTiaadUgacqGHsisl caaIXaGaaiykaiaadkfapaWaaWbaaSqabeaapeGaaGOmaaaaaOWdae aapeGaam4AaiaacIcacaaIXaGaeyOeI0IaamOua8aadaahaaWcbeqa a8qacaaIYaaaaOGaaiykaaaacqGH8iIFcaWGgbGaaiikaiaadUgaca GGSaGaamOBaiabgkHiTiaadUgacqGHsislcaaIXaGaaiykaaaa@6361@ is used to conduct hypothesis test H 0 : ρ 2 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamisa8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacaGG6aGaeqyW di3damaaCaaaleqabaWdbiaaikdaaaGccqGH9aqpcaaIWaaaaa@3E79@ vs H a : ρ 2 0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamisa8aadaWgaaWcbaWdbiaadggaa8aabeaak8qacaGG6aGaeqyW di3damaaCaaaleqabaWdbiaaikdaaaGcpaGaeyiyIK7dbiaaicdaca GGUaaaaa@4037@

Multiple correlation coefficient between y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyEaaaa@382C@ and x 1 , x 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEamaaBaaaleaacaaIXaaabeaakiaacYcacaWG4bWaaSbaaSqa aiaaikdaaeqaaaaa@3BB1@ can be calculated using simple correlation coefficients

r= r y x 1 2 + r y x 2 2 2 r y x 1 r y x 2 r x 1 x 2 1 r x 1 x 2 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOCaiabg2da9maakaaapaqaa8qadaWcaaWdaeaapeGaamOCa8aa daqhaaWcbaWdbiaadMhacaWG4bWdamaaBaaameaapeGaaGymaaWdae qaaaWcbaWdbiaaikdaaaGccqGHRaWkcaWGYbWdamaaDaaaleaapeGa amyEaiaadIhapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleaapeGaaG OmaaaakiabgkHiTiaaikdacaWGYbWdamaaBaaaleaapeGaamyEaiaa dIhapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadkhapa WaaSbaaSqaa8qacaWG5bGaamiEa8aadaWgaaadbaWdbiaaikdaa8aa beaaaSqabaGcpeGaamOCa8aadaWgaaWcbaWdbiaadIhapaWaaSbaaW qaa8qacaaIXaaapaqabaWcpeGaamiEa8aadaWgaaadbaWdbiaaikda a8aabeaaaSqabaaakeaapeGaaGymaiabgkHiTiaadkhapaWaa0baaS qaa8qacaWG4bWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaadIha paWaaSbaaWqaa8qacaaIYaaapaqabaaaleaapeGaaGOmaaaaaaaabe aakiaac6caaaa@5DD9@ (3)

Generally, the multiple correlation coefficient between y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyEaaaa@382C@ and x 1 , x 2 ,, x k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGGSaGaamiE a8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacaGGSaGaeS47IWKaai ilaiaadIhapaWaaSbaaSqaa8qacaWGRbaapaqabaaaaa@41CC@ can be calculated using simple correlation coefficients.3,4,5

, r= 1 det(R) R 11 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOCaiabg2da9maakaaapaqaa8qacaaIXaGaeyOeI0YaaSaaa8aa baWdbiaadsgacaWGLbGaamiDaiaacIcacaWGsbGaaiykaaWdaeaape GaamOua8aadaWgaaWcbaWdbiaaigdacaaIXaaapaqabaaaaaWdbeqa aaaa@4303@ (4)

where R=[ 1 r 01 r 02 r 0k r 01 1 r 12 r 1k r 02 r 12 1 r 2k r 0k r 1k r 2k 1 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOuaiabg2da9maadmaapaqaauaabeqafuaaaaaabaWdbiaaigda a8aabaWdbiaadkhapaWaaSbaaSqaa8qacaaIWaGaaGymaaWdaeqaaa GcbaWdbiaadkhapaWaaSbaaSqaa8qacaaIWaGaaGOmaaWdaeqaaaGc baWdbiabgAci8cWdaeaapeGaamOCa8aadaWgaaWcbaWdbiaaicdaca WGRbaapaqabaaakeaapeGaamOCa8aadaWgaaWcbaWdbiaaicdacaaI XaaapaqabaaakeaapeGaaGymaaWdaeaapeGaamOCa8aadaWgaaWcba WdbiaaigdacaaIYaaapaqabaaakeaapeGaeyOjGWlapaqaa8qacaWG YbWdamaaBaaaleaapeGaaGymaiaadUgaa8aabeaaaOqaa8qacaWGYb WdamaaBaaaleaapeGaaGimaiaaikdaa8aabeaaaOqaa8qacaWGYbWd amaaBaaaleaapeGaaGymaiaaikdaa8aabeaaaOqaa8qacaaIXaaapa qaa8qacqGHMacVa8aabaWdbiaadkhapaWaaSbaaSqaa8qacaaIYaGa am4AaaWdaeqaaaGcbaWdbiabl6UinbWdaeaapeGaeSO7I0eapaqaa8 qacqWIUlsta8aabaWdbiablgVipbWdaeaapeGaeSO7I0eapaqaa8qa caWGYbWdamaaBaaaleaapeGaaGimaiaadUgaa8aabeaaaOqaa8qaca WGYbWdamaaBaaaleaapeGaaGymaiaadUgaa8aabeaaaOqaa8qacaWG YbWdamaaBaaaleaapeGaaGOmaiaadUgaa8aabeaaaOqaa8qacqGHMa cVa8aabaWdbiaaigdaaaaacaGLBbGaayzxaaaaaa@7354@

and R 11 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOua8aadaWgaaWcbaWdbiaaigdacaaIXaaapaqabaaaaa@39D5@ is the cofactor of the th element of matrix R,det(R) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOuaiaacYcacaWGKbGaamyzaiaadshacaGGOaGaamOuaiaacMca aaa@3DB1@ is the determinant of matrix R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOuaaaa@3805@ ,   r 0j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeiiaiaadkhadaWgaaWcbaGaaGimaiaadQgaaeqaaaaa@3A9D@ is the correlation coefficient between y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyEaaaa@382C@ and x j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEamaaBaaaleaacaWGQbaabeaaaaa@3946@ , j = 1, 2, . . . , k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOAaiaabccacqGH9aqpcaqGGaGaaGymaiaacYcacaqGGaGaaGOm aiaacYcacaqGGaGaaiOlaiaabccacaGGUaGaaeiiaiaac6cacaqGGa GaaiilaiaabccacaWGRbaaaa@44C8@ , r ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOCamaaBaaaleaacaWGPbGaamOAaaqabaaaaa@3A2E@ is the correlation coefficient between x i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEamaaBaaaleaacaWGPbaabeaaaaa@3945@ and x j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEamaaBaaaleaacaWGQbaabeaaaaa@3946@ , i, j =1, 2, . . . , k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyAaiaacYcacaqGGaGaamOAaiaabccacqGH9aqpcaaIXaGaaiil aiaabccacaaIYaGaaiilaiaabccacaGGUaGaaeiiaiaac6cacaqGGa GaaiOlaiaabccacaGGSaGaaeiiaiaadUgaaaa@4666@ . Let r 1  ij  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOCamaaCaaaleqabaGaeyOeI0IaaGymaaaakmaaBaaaleaacaqG GaGaamyAaiaadQgacaqGGaaabeaaaaa@3D53@ =,  ( r ij ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaaeiia8aadaqadaqaa8qacaWGYbWaaWbaaSqabeaacaWGPbGaamOA aaaaaOWdaiaawIcacaGLPaaaaaa@3C93@ then we have

r= 1 1 r 00 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOCaiabg2da9maakaaapaqaa8qacaaIXaGaeyOeI0YaaSaaa8aa baWdbiaaigdaa8aabaWdbiaadkhapaWaaWbaaSqabeaapeGaaGimai aaicdaaaaaaaqabaaaaa@3EC2@ (5)

Let ( q ij ) 0i,jk MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaiikaiaadghapaWaaSbaaSqaa8qacaWGPbGaamOAaaWdaeqaaOWd biaacMcacaGGGcGaaGimamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHr hAGq1DVbacfaGae8xFQqOaamyAaiaacYcacaWGQbGae8xFQqOaam4A aaaa@4E2C@ be the dispersion matrix of y, x 1 , x 2 ,, x k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyEaiaacYcacaWG4bWdamaaBaaaleaapeGaaGymaaWdaeqaaOWd biaacYcacaWG4bWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiaacY cacqGHMacVcaGGSaGaamiEa8aadaWgaaWcbaWdbiaadUgaa8aabeaa aaa@431A@ and , ( q ij ) 1 =( q ij ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaiikaiaadghapaWaaSbaaSqaa8qacaWGPbGaamOAaaWdaeqaaOWd biaacMcapaWaaWbaaSqabeaapeGaeyOeI0IaaGymaaaakiabg2da9i aacIcacaWGXbWdamaaCaaaleqabaWdbiaadMgacaWGQbaaaOGaaiyk aaaa@4354@ then we have

r= 1 1 q 00 q 00 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOCaiabg2da9maakaaabaGaaGymaiabgkHiTmaalaaapaqaa8qa caaIXaaapaqaa8qacaWGXbWdamaaBaaaleaapeGaaGimaiaaicdaa8 aabeaak8qacaWGXbWdamaaCaaaleqabaWdbiaaicdacaaIWaaaaaaa aeqaaaaa@4180@ (6)

Relationship between simple, multiple and partial correlation coefficients

Multiple correlation coefficient can be also calculated using simple and partial correlation coefficients Kendall. 3

. 1 r y x 1 x 2 x k 2 =(1 r y x 1 2 )(1 r y x 2 x 1 2 )(1 r y x 3 x 1 x 2 2 )(1 r y x k x 1 x 2 x k1 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGymaiabgkHiTiaadkhapaWaa0baaSqaa8qacaWG5bGaeyyXICTa amiEa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaWG4bWdamaaBa aameaapeGaaGOmaaWdaeqaaSWdbiabgAci8kaadIhapaWaaSbaaWqa a8qacaWGRbaapaqabaaaleaapeGaaGOmaaaakiabg2da9iaacIcaca aIXaGaeyOeI0IaamOCa8aadaqhaaWcbaWdbiaadMhacaWG4bWdamaa BaaameaapeGaaGymaaWdaeqaaaWcbaWdbiaaikdaaaGccaGGPaGaai ikaiaaigdacqGHsislcaWGYbWdamaaDaaaleaapeGaamyEaiaadIha paWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaeyyXICTaamiEa8aada WgaaadbaWdbiaaigdaa8aabeaaaSqaa8qacaaIYaaaaOGaaiykaiaa cIcacaaIXaGaeyOeI0IaamOCa8aadaqhaaWcbaWdbiaadMhacaWG4b WdamaaBaaameaapeGaaG4maaWdaeqaaSWdbiabgwSixlaadIhapaWa aSbaaWqaa8qacaaIXaaapaqabaWcpeGaamiEa8aadaWgaaadbaWdbi aaikdaa8aabeaaaSqaa8qacaaIYaaaaOGaaiykaiabgAci8kaacIca caaIXaGaeyOeI0IaamOCa8aadaqhaaWcbaWdbiaadMhacaWG4bWdam aaBaaameaapeGaam4AaaWdaeqaaSWdbiabgwSixlaadIhapaWaaSba aWqaa8qacaaIXaaapaqabaWcpeGaamiEa8aadaWgaaadbaWdbiaaik daa8aabeaal8qacqGHMacVcaWG4bWdamaaBaaameaapeGaam4Aaiab gkHiTiaaigdaa8aabeaaaSqaa8qacaaIYaaaaOGaaiykaaaa@8178@ (7)

Formally, the partial correlation between x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEaaaa@382B@ and y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyEaaaa@382C@ given   z 1 , z 2 ....., z n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaiiOaiaadQhadaWgaaWcbaGaaGymaaqabaGccaGGSaGaamOEamaa BaaaleaacaaIYaaabeaakiaac6cacaGGUaGaaiOlaiaac6cacaGGUa GaaiilaiaadQhadaWgaaWcbaGaamOBaaqabaaaaa@432B@ is written as r xy.z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOCamaaBaaaleaacaWG4bGaamyEaiaac6cacaWG6baabeaaaaa@3BFD@ , where z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOEaaaa@382D@ is an n-dimensional vector, z={ z 1 , z 2 ....., z n } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOEaiabg2da9iaacUhacaWG6bWaaSbaaSqaaiaaigdaaeqaaOGa aiilaiaadQhadaWgaaWcbaGaaGOmaaqabaGccaGGUaGaaiOlaiaac6 cacaGGUaGaaiOlaiaacYcacaWG6bWaaSbaaSqaaiaad6gaaeqaaOGa aiyFaaaa@4616@ . Let denote the number of observations, then

r xy z _ = N i=1 N e x,i e y,i i=1 N e x,i i=1 N e y,i N i=1 N e x,i 2 ( i=1 N e x,i ) 2 N i=1 N e y,i 2 ( i=1 N e y,i ) 2 = N i=1 N e x,i e y,i N i=1 N e x,i 2 N i=1 N e y,i 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOCa8aadaWgaaWcbaWdbiaadIhacaWG5bGaeyyXICTabmOEayaa DaaapaqabaGcpeGaeyypa0ZaaSaaa8aabaWdbiaad6eadaaeWbWdae aapeGaamyza8aadaWgaaWcbaWdbiaadIhacaGGSaGaamyAaaWdaeqa aaqaa8qacaWGPbGaeyypa0JaaGymaaWdaeaapeGaamOtaaqdcqGHri s5aOGaamyza8aadaWgaaWcbaWdbiaadMhacaGGSaGaamyAaaWdaeqa aOWdbiabgkHiTmaaqahapaqaa8qacaWGLbWdamaaBaaaleaapeGaam iEaiaacYcacaWGPbaapaqabaaabaWdbiaadMgacqGH9aqpcaaIXaaa paqaa8qacaWGobaaniabggHiLdGcdaaeWbWdaeaapeGaamyza8aada WgaaWcbaWdbiaadMhacaGGSaGaamyAaaWdaeqaaaqaa8qacaWGPbGa eyypa0JaaGymaaWdaeaapeGaamOtaaqdcqGHris5aaGcpaqaa8qada GcaaWdaeaapeGaamOtamaaqahapaqaa8qacaWGLbWdamaaDaaaleaa peGaamiEaiaacYcacaWGPbaapaqaa8qacaaIYaaaaaWdaeaapeGaam yAaiabg2da9iaaigdaa8aabaWdbiaad6eaa0GaeyyeIuoakiabgkHi TiaacIcadaaeWbWdaeaapeGaamyza8aadaWgaaWcbaWdbiaadIhaca GGSaGaamyAaaWdaeqaaaqaa8qacaWGPbGaeyypa0JaaGymaaWdaeaa peGaamOtaaqdcqGHris5aOGaaiyka8aadaahaaWcbeqaa8qacaaIYa aaaaqabaGcdaGcaaWdaeaapeGaamOtamaaqahapaqaa8qacaWGLbWd amaaDaaaleaapeGaamyEaiaacYcacaWGPbaapaqaa8qacaaIYaaaaa WdaeaapeGaamyAaiabg2da9iaaigdaa8aabaWdbiaad6eaa0Gaeyye IuoakiabgkHiTiaacIcadaaeWbWdaeaapeGaamyza8aadaWgaaWcba WdbiaadMhacaGGSaGaamyAaaWdaeqaaaqaa8qacaWGPbGaeyypa0Ja aGymaaWdaeaapeGaamOtaaqdcqGHris5aOGaaiyka8aadaahaaWcbe qaa8qacaaIYaaaaaqabaaaaOGaeyypa0ZaaSaaa8aabaWdbiaad6ea daaeWbWdaeaapeGaamyza8aadaWgaaWcbaWdbiaadIhacaGGSaGaam yAaaWdaeqaaaqaa8qacaWGPbGaeyypa0JaaGymaaWdaeaapeGaamOt aaqdcqGHris5aOGaamyza8aadaWgaaWcbaWdbiaadMhacaGGSaGaam yAaaWdaeqaaaGcbaWdbmaakaaapaqaa8qacaWGobWaaabCa8aabaWd biaadwgapaWaa0baaSqaa8qacaWG4bGaaiilaiaadMgaa8aabaWdbi aaikdaaaaapaqaa8qacaWGPbGaeyypa0JaaGymaaWdaeaapeGaamOt aaqdcqGHris5aaWcbeaakmaakaaapaqaa8qacaWGobWaaabCa8aaba WdbiaadwgapaWaa0baaSqaa8qacaWG5bGaaiilaiaadMgaa8aabaWd biaaikdaaaaapaqaa8qacaWGPbGaeyypa0JaaGymaaWdaeaapeGaam OtaaqdcqGHris5aaWcbeaaaaaaaa@BCA9@ (8)

where   e x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaiiOaiaadwgadaWgaaWcbaGaamiEaaqabaaaaa@3A65@ and e y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyzamaaBaaaleaacaWG5baabeaaaaa@3942@ are residuals resulting from the linear regression x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEaaaa@382B@ of with z _ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmOEayaaDaaaaa@3851@ and of y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyEaaaa@382C@ with z _ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmOEayaaDaaaaa@3851@ respectively.
Especially, if we have z 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOEamaaBaaaleaacaaIXaaabeaaaaa@3914@ only, the partial correlation between x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEaaaa@382B@ and y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyEaaaa@382C@ given z 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOEamaaBaaaleaacaaIXaaabeaaaaa@3914@ is

r xy z 1 = r xy r x z 1 r y z 1 (1 r x z 1 2 )(1 r y z 1 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOCa8aadaWgaaWcbaWdbiaadIhacaWG5bGaeyyXICTaamOEa8aa daWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaeyypa0ZaaSaaae aacaWGYbWdamaaBaaaleaapeGaamiEaiaadMhaa8aabeaak8qacqGH sislcaWGYbWdamaaBaaaleaapeGaamiEaiaadQhapaWaaSbaaWqaa8 qacaaIXaaapaqabaaaleqaaOWdbiaadkhapaWaaSbaaSqaa8qacaWG 5bGaamOEa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaaak8qaba WaaOaaaeaacaGGOaGaaGymaiabgkHiTiaadkhapaWaa0baaSqaa8qa caWG4bGaamOEa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqaa8qaca aIYaaaaOGaaiykaiaacIcacaaIXaGaeyOeI0IaamOCa8aadaqhaaWc baWdbiaadMhacaWG6bWdamaaBaaameaapeGaaGymaaWdaeqaaaWcba WdbiaaikdaaaGccaGGPaaaleqaaaaaaaa@5DD5@ (9)

The partial correlation between x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEaaaa@382B@ and y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyEaaaa@382C@ given   z 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaiiOaiaadQhadaWgaaWcbaGaaGymaaqabaaaaa@3A38@ and z 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOEamaaBaaaleaacaaIYaaabeaaaaa@3915@ is

r xy z 1 z 2 = r xy z 1 r x z 2 z 1 r y z 2 z 1 (1 r x z 2 z 1 2 )(1 r y z 2 z 1 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOCa8aadaWgaaWcbaWdbiaadIhacaWG5bGaeyyXICTaamOEa8aa daWgaaadbaWdbiaaigdaa8aabeaal8qacaWG6bWdamaaBaaameaape GaaGOmaaWdaeqaaaWcbeaak8qacqGH9aqpdaWcaaWdaeaapeGaamOC a8aadaWgaaWcbaWdbiaadIhacaWG5bGaeyyXICTaamOEa8aadaWgaa adbaWdbiaaigdaa8aabeaaaSqabaGcpeGaeyOeI0IaamOCa8aadaWg aaWcbaWdbiaadIhacaWG6bWdamaaBaaameaapeGaaGOmaaWdaeqaaS WdbiabgwSixlaadQhapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqa aOWdbiaadkhapaWaaSbaaSqaa8qacaWG5bGaamOEa8aadaWgaaadba Wdbiaaikdaa8aabeaal8qacqGHflY1caWG6bWdamaaBaaameaapeGa aGymaaWdaeqaaaWcbeaaaOqaa8qadaGcaaWdaeaapeGaaiikaiaaig dacqGHsislcaWGYbWdamaaDaaaleaapeGaamiEaiaadQhapaWaaSba aWqaa8qacaaIYaaapaqabaWcpeGaeyyXICTaamOEa8aadaWgaaadba Wdbiaaigdaa8aabeaaaSqaa8qacaaIYaaaaOGaaiykaiaacIcacaaI XaGaeyOeI0IaamOCa8aadaqhaaWcbaWdbiaadMhacaWG6bWdamaaBa aameaapeGaaGOmaaWdaeqaaSWdbiabgwSixlaadQhapaWaaSbaaWqa a8qacaaIXaaapaqabaaaleaapeGaaGOmaaaakiaacMcaaSqabaaaaa aa@768B@ (10)

The formula (10) can be extended to more general case: the partial correlation between x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEaaaa@382B@ and y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyEaaaa@382C@ given z 1 , z 2 ,, z k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOEa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGGSaGaamOE a8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacaGGSaGaeyOjGWRaai ilaiaadQhapaWaaSbaaSqaa8qacaWGRbaapaqabaaaaa@4172@ Kendall.3 is

r xy z 1 z 2 z k = r xy z 2 z 3 z k r x z 1 z 2 z 3 z k r y z 1 z 2 z 3 z k (1 r x z 1 z 2 z 3 z k 2 ) (1 r y z 1 z 2 z 3 z k 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOCa8aadaWgaaWcbaWdbiaadIhacaWG5bGaeyyXICTaamOEa8aa daWgaaadbaWdbiaaigdaa8aabeaal8qacaWG6bWdamaaBaaameaape GaaGOmaaWdaeqaaSWdbiabgAci8kaadQhapaWaaSbaaWqaa8qacaWG RbaapaqabaaaleqaaOWdbiabg2da9maalaaapaqaa8qacaWGYbWdam aaBaaaleaapeGaamiEaiaadMhacqGHflY1caWG6bWdamaaBaaameaa peGaaGOmaaWdaeqaaSWdbiaadQhapaWaaSbaaWqaa8qacaaIZaaapa qabaWcpeGaeyOjGWRaamOEa8aadaWgaaadbaWdbiaadUgaa8aabeaa aSqabaGcpeGaeyOeI0IaamOCa8aadaWgaaWcbaWdbiaadIhacaWG6b WdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiabgwSixlaadQhapaWa aSbaaWqaa8qacaaIYaaapaqabaWcpeGaamOEa8aadaWgaaadbaWdbi aaiodaa8aabeaal8qacqGHMacVcaWG6bWdamaaBaaameaapeGaam4A aaWdaeqaaaWcbeaak8qacaWGYbWdamaaBaaaleaapeGaamyEaiaadQ hapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaeyyXICTaamOEa8aa daWgaaadbaWdbiaaikdaa8aabeaal8qacaWG6bWdamaaBaaameaape GaaG4maaWdaeqaaSWdbiabgAci8kaadQhapaWaaSbaaWqaa8qacaWG RbaapaqabaaaleqaaaGcbaWdbmaakaaapaqaa8qacaGGOaGaaGymai abgkHiTiaadkhapaWaa0baaSqaa8qacaWG4bGaamOEa8aadaWgaaad baWdbiaaigdaa8aabeaal8qacqGHflY1caWG6bWdamaaBaaameaape GaaGOmaaWdaeqaaSWdbiaadQhapaWaaSbaaWqaa8qacaaIZaaapaqa baWcpeGaeyOjGWRaamOEa8aadaWgaaadbaWdbiaadUgaa8aabeaaaS qaa8qacaaIYaaaaOGaaiykaaWcbeaakmaakaaapaqaa8qacaGGOaGa aGymaiabgkHiTiaadkhapaWaa0baaSqaa8qacaWG5bGaamOEa8aada WgaaadbaWdbiaaigdaa8aabeaal8qacqGHflY1caWG6bWdamaaBaaa meaapeGaaGOmaaWdaeqaaSWdbiaadQhapaWaaSbaaWqaa8qacaaIZa aapaqabaWcpeGaeyOjGWRaamOEa8aadaWgaaadbaWdbiaadUgaa8aa beaaaSqaa8qacaaIYaaaaOGaaiykaaWcbeaaaaaaaa@997C@ (11)

The partial correlation can also be calculated using multiple correlation. For example, the partial correlation between x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEaaaa@382B@ and y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyEaaaa@382C@ given z 1 , z 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOEa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGGSaGaamOE a8aadaWgaaWcbaWdbiaaikdaa8aabeaaaaa@3C21@ is

r xy z 1 z 2 = r 2 x.y z 1 z 2 r 2 x. z 1 z 2 1 r 2 x. z 1 z 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOCa8aadaWgaaWcbaWdbiaadIhacaWG5bGaeyyXICTaamOEa8aa daWgaaadbaWdbiaaigdaa8aabeaal8qacaWG6bWdamaaBaaameaape GaaGOmaaWdaeqaaaWcbeaak8qacqGH9aqpdaGcaaqaamaalaaabaGa amOCamaaCaaaleqabaGaaGOmaaaakmaaBaaaleaacaWG4bGaaiOlai aadMhacaWG6bWaaSbaaWqaaiaaigdaaeqaaSGaamOEamaaBaaameaa caaIYaaabeaaaSqabaGccqGHsislcaWGYbWaaWbaaSqabeaacaaIYa aaaOWaaSbaaSqaaiaadIhacaGGUaGaamOEamaaBaaameaacaaIXaaa beaaliaadQhadaWgaaadbaGaaGOmaaqabaaaleqaaaGcbaGaaGymai abgkHiTiaadkhadaahaaWcbeqaaiaaikdaaaGcdaWgaaWcbaGaamiE aiaac6cacaWG6bWaaSbaaWqaaiaaigdaaeqaaSGaamOEamaaBaaame aacaaIYaaabeaaaSqabaaaaaqabaaaaa@5CEB@ (12)

The partial correlation between x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEaaaa@382B@ and y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyEaaaa@382C@ given z 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOEamaaBaaaleaacaaIXaaabeaaaaa@3914@ , z 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOEamaaBaaaleaacaaIYaaabeaaaaa@3915@ and z 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOEamaaBaaaleaacaaIZaaabeaaaaa@3916@ is

r xy z 1 z 2 z 3 = r xy z 1 z 2 z 3 2 r x z 1 z 2 z 3 2 1 r x z 1 z 2 z 3 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOCa8aadaWgaaWcbaWdbiaadIhacaWG5bGaeyyXICTaamOEa8aa daWgaaadbaWdbiaaigdaa8aabeaal8qacaWG6bWdamaaBaaameaape GaaGOmaaWdaeqaaSWdbiaadQhapaWaaSbaaWqaa8qacaaIZaaapaqa baaaleqaaOWdbiabg2da9maakaaapaqaa8qadaWcaaWdaeaapeGaam OCa8aadaqhaaWcbaWdbiaadIhacqGHflY1caWG5bGaamOEa8aadaWg aaadbaWdbiaaigdaa8aabeaal8qacaWG6bWdamaaBaaameaapeGaaG OmaaWdaeqaaSWdbiaadQhapaWaaSbaaWqaa8qacaaIZaaapaqabaaa leaapeGaaGOmaaaakiabgkHiTiaadkhapaWaa0baaSqaa8qacaWG4b GaeyyXICTaamOEa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaWG 6bWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaadQhapaWaaSbaaW qaa8qacaaIZaaapaqabaaaleaapeGaaGOmaaaaaOWdaeaapeGaaGym aiabgkHiTiaadkhapaWaa0baaSqaa8qacaWG4bGaeyyXICTaamOEa8 aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaWG6bWdamaaBaaameaa peGaaGOmaaWdaeqaaSWdbiaadQhapaWaaSbaaWqaa8qacaaIZaaapa qabaaaleaapeGaaGOmaaaaaaaabeaaaaa@6C07@ (13)

Generally, the partial correlation between x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEaaaa@382B@ and y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyEaaaa@382C@ given   z 1 , z 2 ....., z k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaiiOaiaadQhadaWgaaWcbaGaaGymaaqabaGccaGGSaGaamOEamaa BaaaleaacaaIYaaabeaakiaac6cacaGGUaGaaiOlaiaac6cacaGGUa GaaiilaiaadQhadaWgaaWcbaGaam4Aaaqabaaaaa@4328@ is

r xy z 1 z 2 z k = r xy z 1 z 2 z k 2 r x z 1 z 2 z k 2 1 r x z 1 z 2 z k 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOCa8aadaWgaaWcbaWdbiaadIhacaWG5bGaeyyXICTaamOEa8aa daWgaaadbaWdbiaaigdaa8aabeaal8qacaWG6bWdamaaBaaameaape GaaGOmaaWdaeqaaSWdbiabgAci8kaadQhapaWaaSbaaWqaa8qacaWG RbaapaqabaaaleqaaOWdbiabg2da9maakaaapaqaa8qadaWcaaWdae aapeGaamOCa8aadaqhaaWcbaWdbiaadIhacqGHflY1caWG5bGaamOE a8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaWG6bWdamaaBaaame aapeGaaGOmaaWdaeqaaSWdbiabgAci8kaadQhadaWgaaadbaGaam4A aaqabaaal8aabaWdbiaaikdaaaGccqGHsislcaWGYbWdamaaDaaale aapeGaamiEaiabgwSixlaadQhapaWaaSbaaWqaa8qacaaIXaaapaqa baWcpeGaamOEa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacqGHMa cVcaWG6bWaaSbaaWqaamaaBaaabaGaam4AaaqabaaabeaaaSWdaeaa peGaaGOmaaaaaOWdaeaapeGaaGymaiabgkHiTiaadkhapaWaa0baaS qaa8qacaWG4bGaeyyXICTaamOEa8aadaWgaaadbaWdbiaaigdaa8aa beaal8qacaWG6bWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiabgA ci8kaadQhadaWgaaadbaWaaSbaaeaacaWGRbaabeaaaeqaaaWcpaqa a8qacaaIYaaaaaaaaeqaaaaa@72F0@ (14)

Suppose we have z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOEaaaa@382E@ only, the t-statistic r xy z 1 nυ 1 r xy z 1 2 t(nυ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiaadkhapaWaaSbaaSqaa8qacaWG4bGaamyEaiab gwSixlaadQhapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbm aakaaapaqaa8qacaWGUbGaeyOeI0IaeqyXduhaleqaaaGcpaqaa8qa daGcaaWdaeaapeGaaGymaiabgkHiTiaadkhapaWaa0baaSqaa8qaca WG4bGaamyEaiabgwSixlaadQhapaWaaSbaaWqaa8qacaaIXaaapaqa baaaleaapeGaaGOmaaaaaeqaaaaakiabgYJi+jaadshacaGGOaGaam OBaiabgkHiTiabew8a1jaacMcaaaa@54DE@ is used to conduct hypothesis test H 0 : ρ xy. z 1 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamisa8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacaGG6aGaeqyW di3aaSbaaSqaaiaadIhacaWG5bGaaiOlaiaadQhadaWgaaadbaGaaG ymaaqabaaaleqaaOGaeyypa0JaaGimaaaa@423C@ vs, H a : ρ xy. z 1 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamisa8aadaWgaaWcbaWdbiaadggaa8aabeaak8qacaGG6aGaeqyW di3aaSbaaSqaamaaBaaameaacaWG4bGaamyEaiaac6cacaWG6bWaaS baaeaacaaIXaaabeaaaeqaaaWcbeaak8aacqGHGjsUpeGaaGimaaaa @4369@ where n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBaaaa@3821@ is sample size υ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyXduhaaa@38F5@ , is total number of variables employed in the analysis, here υ=3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyXduNaeyypa0JaaG4maaaa@3AB8@ since we have three variables x,y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEaiaacYcacaWG5baaaa@39D9@ and z 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOEamaaBaaaleaacaaIXaaabeaaaaa@3914@ .

Canonical correlation analysis

In addition, correlation analysis can be used to determine association between many variables and many variables (many-to-many), the canonical correlation analysis (CCA),6 which includes deep CCA, sparse CCA, kernel CCA, generalized CCA, regularized CCA, nonlinear CCA. The canonical correlation analysis (CCA) is a standard tool of multivariate statistical analysis for discovery and quantification of associations between two sets of variables.

Polychoric and tetrachoric correlation

Correlation analysis is not always used to determine association between continuous or ordinary variables. It can also be used to determine the association between two categorical variables, or between one continuous variable and another categorical variable. The polychoric correlation is used to measure the association between ordered-category variables with an assumption of an underlying joint continuous distribution.7,8 A categorical variable is often a rough measurement of an underlying continuous variable. For instance, a dichotomous variable (adult or not) is observed as ‘Yes’ when age is 18 years or above, and as ‘No’ if age  18 years. The underlying variable is age, which is continuous. Hence, it is reasonable to assume that a continuous variable underlies a categorical (dichotomous or polychotomous) observed variable. Therefore, we can conduct the estimation of the polychoric correlation coefficient via Markov chain Monte Carlo methods assuming the underlying distribution is multivariate normal. Especially, the polychoric correlation between two observed binary variables is also known as tetrachoric correlation.9 Suppose we have a 2×2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGOmaiabgEna0kaaikdaaaa@3ABD@ table with two binary variables,  and , then

Tetrachoric correlation = cos(π/(1+ ( n 11 × n 22 )/ n 12 / n 21 )) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaci4yaiaac+gacaGGZbGaaiikaiabec8aWjaac+cacaGGOaGaaGym aiabgUcaRmaakaaapaqaa8qacaGGOaGaamOBa8aadaWgaaWcbaWdbi aaigdacaaIXaaapaqabaGcpeGaey41aqRaamOBa8aadaWgaaWcbaWd biaaikdacaaIYaaapaqabaGcpeGaaiykaiaac+cacaWGUbWdamaaBa aaleaapeGaaGymaiaaikdaa8aabeaak8qacaGGVaGaamOBa8aadaWg aaWcbaWdbiaaikdacaaIXaaapaqabaaapeqabaGccaGGPaGaaiykaa aa@513D@ .

Point biserial correlation and biserial correlation

On the other hand, the point biserial correlation is used to determine an association between one continuous variable and another naturally binary variable.10 For example, the correlation between gender and salary is called point biserial correlation. The formula for the point biserial correlation coefficient is

t pb = Q 1 Q 0 s n pq MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDa8aadaWgaaWcbaWdbiaadchacaWGIbaapaqabaGcpeGaeyyp a0ZaaSaaa8aabaWdbiaadgfapaWaaSbaaSqaa8qacaaIXaaapaqaba GcpeGaeyOeI0Iaamyua8aadaWgaaWcbaWdbiaaicdaa8aabeaaaOqa a8qacaWGZbWdamaaBaaaleaapeGaamOBaaWdaeqaaaaak8qadaGcaa WdaeaapeGaamiCaiaadghaaSqabaaaaa@4526@ (15)

where Q 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyua8aadaWgaaWcbaWdbiaaigdaa8aabeaaaaa@3919@ is the mean of the positive or ‘Yes’ group, defined by the dichotomous variable, Q 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyua8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3918@ is the mean of the negative or ‘No’ group, defined by the

same dichotomous variable, s n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4CamaaBaaaleaacaWGUbaabeaaaaa@3945@ is the standard deviation for all, p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCaaaa@3823@ is the ‘Yes’ proportion and q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyCaaaa@3824@ is the ‘No’ proportion.

Biserial correlation is very close to point biserial correlation, but one of associated variables is dichotomous ordinal and has an underlying continuity.11 For example, depression level can be measured on a continuous scale, such as PHQ-9, the nine-item depression scale of the patient health questionnaire, or the Hamilton rating scale for depression, but can be classified dichotomously as high/low. The formula for biserial correlation coefficient between a dichotomous ordinal variable (W) and one continuous variable (M) is

r b =[( Μ 1 Μ 0 )×(pq/Μ)]/ σ m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOCa8aadaWgaaWcbaWdbiaadkgaa8aabeaak8qacqGH9aqpcaGG BbGaaiikaGGaciab=X5an9aadaWgaaWcbaWdbiaaigdaa8aabeaak8 qacqGHsislcqWFCoqtpaWaaSbaaSqaa8qacaaIWaaapaqabaGcpeGa aiykaiabgEna0kaacIcacaWGWbGaamyCaiaac+cacqWFCoqtcaGGPa Gaaiyxaiaac+cacqaHdpWCdaWgaaWcbaGaamyBaaqabaaaaa@4EEA@ (16)

where M 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eadaWgaa WcbaGaaGimaaqabaaaaa@38C6@ is mean score of M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamytaaaa@3800@ when , W=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4vaiabg2da9iaaigdaaaa@39CB@ is the mean score of M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamytaaaa@3800@ when , W=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4vaiabg2da9iaaigdaaaa@39CB@ q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyCaaaa@3824@ is proportion for , W=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4vaiabg2da9iaaicdaaaa@39CA@ p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCaaaa@3823@ is proportion for W=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4vaiabg2da9iaaigdaaaa@39CB@ , σ m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3aaSbaaSqaaiaad2gaaeqaaaaa@3A0F@ is population standard deviation, M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamytaaaa@3800@ is the height of the standard normal distribution at z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOEaaaa@382D@ , where P( z'<z )=q& P( z'>z )=p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiua8aadaqadaqaa8qacaWG6bGaai4jaiabgYda8iaadQhaa8aa caGLOaGaayzkaaWdbiabg2da9iaadghacaGGMaGaaeiiaiaadcfapa WaaeWaaeaapeGaamOEaiaacEcacqGH+aGpcaWG6baapaGaayjkaiaa wMcaa8qacqGH9aqpcaWGWbaaaa@4908@ .

If point-biserial correlation is known, you can also find biserial correlation with the following formula Sheskin D12

r b =( r pb h ) p 0 (1 p 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOCa8aadaWgaaWcbaWdbiaadkgaa8aabeaak8qacqGH9aqpcaGG OaWaaSaaa8aabaWdbiaadkhapaWaaSbaaSqaa8qacaWGWbGaamOyaa WdaeqaaaGcbaWdbiaadIgaaaGaaiykamaakaaapaqaa8qacaWGWbWd amaaBaaaleaapeGaaGimaaWdaeqaaOWdbiaacIcacaaIXaGaeyOeI0 IaamiCa8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacaGGPaaaleqa aaaa@47C3@ (17)

where

h= e u 2 /2 2π MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiAaiabg2da9maalaaapaqaa8qacaWGLbWdamaaCaaaleqabaWd biabgkHiTiaadwhapaWaaWbaaWqabeaapeGaaGOmaaaaliaac+caca aIYaaaaaGcpaqaa8qadaGcaaWdaeaapeGaaGOmaiabec8aWbWcbeaa aaaaaa@41CC@ (18)

Pr[ZuZ~N(0,1)]= p 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiuaiaadkhacaGGBbGaamOwaiabgwMiZkaadwhatCvAUfeBSn0B KvguHDwzZbqeg0uySDwDUbYrVrhAPngaiuaacaWFJiIaamOwaiaac6 hacaWGobGaaiikaiaaicdacaGGSaGaaGymaiaacMcacaGGDbGaeyyp a0JaamiCa8aadaWgaaWcbaWdbiaaigdaa8aabeaaaaa@532C@ (19)

We can have a natural extension of the model above if we have more than two ordered rating levels.
We can assume that the joint distribution of the quantitative variable and a latent continuous variable underlying the ordinal variable is bivariate normal when we compute a polyserial correlation coefficient (standard error) between a quantitative variable and an ordinal variable. Either the maximum-likelihood (ML) estimator or a quicker ‘two-step’ approximation can be used. For the ML estimator the estimates of the thresholds and the covariance matrix of the estimates are also available.

Conclusion

In this article we have discussed about Pearson product-moment correlation coefficient, simple, multiple, partial correlation, the relationship among them, the concepts and the formulas to compute each specific coefficient. Also, we have discussed the multivariate canonical correlation between many and many variables. In addition, we have discussed about tetrachoric or polychoric correlation between two observed binary variables or between two ordered-multiple-category variables, as well as the polyserial correlation between a quantitative variable and an ordinal variable, point biserial correlation between one continuous variable and one naturally binary variable, and biserial correlation which is very close to point biserial correlation, but one of associated variables is dichotomous ordinal and has an underlying continuity. To extend the relationship between Pearson product-moment correlation coefficient, simple, multiple, partial correlation to the relationship for other kinds of correlation, such as polychoric, polyserial correlation, can be further study.

Acknowledgments

None.

Conflicts of interest

The authors declare no conflicts of interest.

References

Creative Commons Attribution License

©2022 Zheng, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.