Submit manuscript...
eISSN: 2378-315X

Biometrics & Biostatistics International Journal

Research Article Volume 10 Issue 1

Bound lengths for type-I progressive hybrid burr type-XII censored data under SS-PALT

Gyan Prakash

Department of Community Medicine, Moti Lal Nehru Medical College, India

Correspondence: Gyan Prakash, Department of Community Medicine, Moti Lal Nehru Medical College, Allahabad, U. P., India

Received: June 07, 2020 | Published: February 23, 2021

Citation: Prakash G. Bound lengths for type-I progressive hybrid burr type-XII censored data under SS-PALT. Biom Biostat Int J. 2021;10(1):4-22. DOI: 10.15406/bbij.2021.10.00325

Download PDF

Abstract

Our main focus on combining two different approaches, Step-Stress Partially Accelerated Life Test and Type-I Progressive Hybrid censoring criteria in the present article. The fruitfulness of this combination has been investigated by bound lengths for unknown parameters of the Burr Type-XII distribution. Approximate confidence intervals, Bootstrap confidence intervals and One-Sample Bayes prediction bound lengths have been obtained under the above scenario. Particular cases of Type-I Progressive Hybrid censoring (Type-I and Progressive Type-II censoring) has also evaluated under SS-PALT. Optimal stress change time also measured by minimizing the asymptotic variance of ML Estimation. A simulation study based on Metropolis-Hastings algorithm have carried out along with a real data set example.

Keywords: Progressive Type-II, probability, Burr Type-XII distribution, chemical engineering, quality control

Abbreviations

SS-PALT, step-stress partially accelerated life test; T-IPH, Type-I progressive hybrid; BPBL, bayes prediction bound lengths; BCL, bootstrap confidence lengths; ACL, approximate confidence lengths; T-I, Type-I censoring; PT-II, Progressive Type-II

Introduction

A family of distributions, which includes twelve different cumulative distribution functions, was suggested by Burr.1 The suggested distribution was named as Burr distribution, having a variety of density shapes. Burr Type-XII distribution have been considered in the present discussion due to its applicability on several applied fields. For example, business, chemical engineering, quality control, duration analysis, failure time modeling and reliability studies etc. The probability density function and cumulative density function along with Hazard rate function and Reliability function of Burr Type-XII distribution are given as

f( y;α,β )=β α  y β1 ( 1+ y β ) α1 ;α>0, β>0, y0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaqada qaaiaadMhacaGG7aGaeqySdeMaaiilaiabek7aIbGaayjkaiaawMca aiabg2da9iabek7aIjaabccacqaHXoqycaqGGaGaamyEamaaCaaale qabaGaeqOSdiMaeyOeI0IaaGymaaaakmaabmaabaGaaGymaiabgUca RiaadMhadaahaaWcbeqaaiabek7aIbaaaOGaayjkaiaawMcaamaaCa aaleqabaGaeyOeI0IaeqySdeMaeyOeI0IaaGymaaaakiaacUdacqaH XoqycqGH+aGpcaaIWaGaaiilaiaabccacqaHYoGycqGH+aGpcaaIWa GaaiilaiaabccacaWG5bGaeyyzImRaaGimaiaacYcaaaa@61F7@                                                      (1)

F( y;α,β )=1 ( 1+ y β ) α ;α>0, β>0, y0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaqada qaaiaadMhacaGG7aGaeqySdeMaaiilaiabek7aIbGaayjkaiaawMca aiabg2da9iaaigdacqGHsisldaqadaqaaiaaigdacqGHRaWkcaWG5b WaaWbaaSqabeaacqaHYoGyaaaakiaawIcacaGLPaaadaahaaWcbeqa aiabgkHiTiabeg7aHbaakiaacUdacqaHXoqycqGH+aGpcaaIWaGaai ilaiaabccacqaHYoGycqGH+aGpcaaIWaGaaiilaiaabccacaWG5bGa eyyzImRaaGimaiaacYcaaaa@58D3@                                                                   (2)

ρ(y)=β α  y β1 1+ y β ;α>0, β>0, y0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg8aYjaacI cacaWG5bGaaiykaiabg2da9iabek7aIjaabccacqaHXoqycaqGGaWa aSaaaeaacaWG5bWaaWbaaSqabeaacqaHYoGycqGHsislcaaIXaaaaa GcbaGaaGymaiabgUcaRiaadMhadaahaaWcbeqaaiabek7aIbaaaaGc caGG7aGaeqySdeMaeyOpa4JaaGimaiaacYcacaqGGaGaeqOSdiMaey Opa4JaaGimaiaacYcacaqGGaGaamyEaiabgwMiZkaaicdaaaa@5759@                                                                                                (3)

and

R(y)= ( 1+ y β )  α ;α>0, β>0, y0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkfacaGGOa GaamyEaiaacMcacqGH9aqpdaqadaqaaiaaigdacqGHRaWkcaWG5bWa aWbaaSqabeaacqaHYoGyaaaakiaawIcacaGLPaaadaahaaWcbeqaai abgkHiTiaabccacqaHXoqyaaGccaGG7aGaeqySdeMaeyOpa4JaaGim aiaacYcacaqGGaGaeqOSdiMaeyOpa4JaaGimaiaacYcacaqGGaGaam yEaiabgwMiZkaaicdaaaa@524B@                                                                                                (4)

Parameter α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHbaa@38AD@ and β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek7aIbaa@38AF@ are denoted by the shape parameters of the Burr Type-XII distribution. The underlying distribution is selected for the present discussion because it covers a wide range of values of skewness and kurtosis and is fit for any general lifetime data model.

A massive amount of references available for concerned distribution, only few important and recent references is included here. Abd-Elfattah et al.2 presents some estimation problems under step-stress partially accelerated life tests for the Burr Type-XII distribution on Type-I censoring pattern. Khalaf et al.3 discussed about the finite mixture of Burr Type-XII distribution with its reciprocal and proposed failure rate for the new model, covers several types of failure rates.  Soliman et al.4 deals Bayesian inference and prediction problems by using a Gibbs sampling procedure in Burr Type-XII distribution on progressive first failure censoring criteria.

Jang et al.5 discussed properties of the estimation on a Bayesian setup by using progressive censoring on underlying distribution. A multi-component stress strength reliability model was proposed by Rao et al.6 for Burr Type-XII distribution. Panahi & Sayyareh7 presents the statistical inference and prediction on unified hybrid-censored Burr Type-XII data by using Lindley's approximation.

Prakash8 discussed different confidence limits on constant stress partially accelerated life test for Burr Type-XII distribution under progressive Type-II censoring. Asl et al.9 studied the properties of maximum likelihood and Bayes estimators on progressive Type-II hybrid censored samples for underlying distribution by using expectation -maximization algorithm. Recently, Prakash9 studied the properties of Bayes estimators by using constant stress partially accelerated life test, assuming that the lifetimes of test items follow Burr Type-XII distribution on progressive Type-II censored data.

The usefulness of censoring and/or accelerated life test criteria is, minimizes the test expenditures and length of testing. In the present study, we considered both, the Type-I progressive hybrid censoring and step-stress partially accelerated life test. No such study has found for the combination of these two along with Bayes prediction in the literature. So, the main objective of the study is to combine these two for investigating the fruitfulness in terms of bounds lengths for the unknown parameters. One-Sample Bayes prediction bound lengths along with Approximate and Bootstrap confidence lengths are obtained for the study.

T-IPH censoring with their special cases viz., Type-I (T-I) and Progressive Type-II (PT-II) has also been investigated in terms of bound lengths under SS-PALT in the present discussion. Asymptotic variance of ML estimation was minimized for determining an optimal stress change time for refining the quality of the inference. Metropolis–Hastings (M-H) algorithm has been used in the simulation study along with real data examples.

Type-I Progressive hybrid (T-IPH) censoring

Following Prakash,11 let us suppose total n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOBaaaa@36E7@ live test units are placed on a life test with T 1 ,  T 2 ,...,  T n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfadaWgaa WcbaGaaGymaaqabaGccaGGSaGaaeiiaiaadsfadaWgaaWcbaGaaGOm aaqabaGccaGGSaGaaiOlaiaac6cacaGGUaGaaiilaiaabccacaWGub WaaSbaaSqaaiaad6gaaeqaaaaa@4207@ corresponding lifetimes respectively. Units under test are identical and independently distributed Eq. (1). It is noted further that, T-IPH censoring is the mixture of Type-I censoring and Progressive Type-II censoring pattern. Hence, in T-IPH censoring, the test stops either at pre-considered number of failure m (n) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gacaqGGa GaaiikaiabgsMiJkaad6gacaGGPaaaaa@3CA4@ or at pre-considered time t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamiDaa aa@3896@ , which one occurred earlier, and both are pre-fixed at the time of life test start.

Now, there arises two circumstances, first, if the trial stops at m th MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gadaahaa WcbeqaaiaadshacaWGObaaaaaa@3A13@ failure then the observed samples are X 1 , X 2 ,..., X ε , X ε+1 ,..., X m ;  X m <t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfadaWgaa WcbaGaaGymaaqabaGccaGGSaGaamiwamaaBaaaleaacaaIYaaabeaa kiaacYcacaGGUaGaaiOlaiaac6cacaGGSaGaamiwamaaBaaaleaacq aH1oqzaeqaaOGaaiilaiaadIfadaWgaaWcbaGaeqyTduMaey4kaSIa aGymaaqabaGccaGGSaGaaiOlaiaac6cacaGGUaGaaiilaiaadIfada WgaaWcbaGaamyBaaqabaGccaGG7aGaaeiiaiaadIfadaWgaaWcbaGa amyBaaqabaGccqGH8aapcaWG0baaaa@5171@  with assumed censoring pattern R( R 1 ,  R 2 ,...,  R m ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkfacqGHfj cqdaqadaqaaiaadkfadaWgaaWcbaGaaGymaaqabaGccaGGSaGaaeii aiaadkfadaWgaaWcbaGaaGOmaaqabaGccaGGSaGaaiOlaiaac6caca GGUaGaaiilaiaabccacaWGsbWaaSbaaSqaaiaad2gaaeqaaaGccaGL OaGaayzkaaaaaa@459D@ and must be satisfied nm= R 1 + R 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6gacqGHsi slcaWGTbGaeyypa0JaamOuamaaBaaaleaacaaIXaaabeaakiabgUca RiaadkfadaWgaaWcbaGaaGOmaaqabaaaaa@3F4F@ +...+ R m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgUcaRiaac6 cacaGGUaGaaiOlaiabgUcaRiaadkfadaWgaaWcbaGaamyBaaqabaaa aa@3CDD@ , and is called progressive Type-II censoring. In the second state, if the experiment stops at time t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeiDaaaa@36ED@  with a number of failures X j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfadaWgaa WcbaGaamOAaaqabaaaaa@3906@ , then they must satisfy the condition X j <t< X j+1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfadaWgaa WcbaGaamOAaaqabaGccqGH8aapcaWG0bGaeyipaWJaamiwamaaBaaa leaacaWGQbGaey4kaSIaaGymaaqabaaaaa@3FA6@  and remaining all the live test units are removed from the test. So, the observed samples are X 1 , X 2 ,..., X ε , X ε+1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfadaWgaa WcbaGaaGymaaqabaGccaGGSaGaamiwamaaBaaaleaacaaIYaaabeaa kiaacYcacaGGUaGaaiOlaiaac6cacaGGSaGaamiwamaaBaaaleaacq aH1oqzaeqaaOGaaiilaiaadIfadaWgaaWcbaGaeqyTduMaey4kaSIa aGymaaqabaaaaa@4688@ ,..., X j , if  X j <t< X j+1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacYcacaGGUa GaaiOlaiaac6cacaGGSaGaamiwamaaBaaaleaacaWGQbaabeaakiaa cYcacaqGGaGaamyAaiaadAgacaqGGaGaamiwamaaBaaaleaacaWGQb aabeaakiabgYda8iaadshacqGH8aapcaWGybWaaSbaaSqaaiaadQga cqGHRaWkcaaIXaaabeaaaaa@48ED@  with n R 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6gacqGHsi slcaWGsbWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0caaa@3BA3@ R 2 ... R j j=R* MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkfadaWgaa WcbaGaaGOmaaqabaGccqGHsislcaGGUaGaaiOlaiaac6cacqGHsisl caWGsbWaaSbaaSqaaiaadQgaaeqaaOGaeyOeI0IaamOAaiabg2da9i aadkfacaGGQaaaaa@432A@ (say). Hence, in T-IPH censoring pattern the observed samples have drawn from following two ways

{ I  :  ( X 1 , X 2 ,..., X ε , X ε+1 ,..., X m ), if  X m <t II:  ( X 1 , X 2 ,..., X ε , X ε+1 ,..., X j ), if  X j <t< X j+1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaceaaeaqabe aacaWGjbGaaeiiaiaabccacaGG6aGaaeiiaiaabccadaqadaqaaiaa dIfadaWgaaWcbaGaaGymaaqabaGccaGGSaGaamiwamaaBaaaleaaca aIYaaabeaakiaacYcacaGGUaGaaiOlaiaac6cacaGGSaGaamiwamaa BaaaleaacqaH1oqzaeqaaOGaaiilaiaadIfadaWgaaWcbaGaeqyTdu Maey4kaSIaaGymaaqabaGccaGGSaGaaiOlaiaac6cacaGGUaGaaiil aiaadIfadaWgaaWcbaGaamyBaaqabaaakiaawIcacaGLPaaacaGGSa GaaeiiaiaadMgacaWGMbGaaeiiaiaadIfadaWgaaWcbaGaamyBaaqa baGccqGH8aapcaWG0baabaGaamysaiaadMeacaGG6aGaaeiiaiaabc cadaqadaqaaiaadIfadaWgaaWcbaGaaGymaaqabaGccaGGSaGaamiw amaaBaaaleaacaaIYaaabeaakiaacYcacaGGUaGaaiOlaiaac6caca GGSaGaamiwamaaBaaaleaacqaH1oqzaeqaaOGaaiilaiaadIfadaWg aaWcbaGaeqyTduMaey4kaSIaaGymaaqabaGccaGGSaGaaiOlaiaac6 cacaGGUaGaaiilaiaadIfadaWgaaWcbaGaamOAaaqabaaakiaawIca caGLPaaacaGGSaGaaeiiaiaadMgacaWGMbGaaeiiaiaadIfadaWgaa WcbaGaamOAaaqabaGccqGH8aapcaWG0bGaeyipaWJaamiwamaaBaaa leaacaWGQbGaey4kaSIaaGymaaqabaaaaOGaay5Eaaaaaa@8136@

Numerous literatures on progressive hybrid censoring has available, a little few important studies are discussed here, however, no any such study has found on above considered scenario. Some classical estimation of unknown parameters was discussed by Lin et al.12 for two-parameter Weibull distribution on Type-II progressive hybrid censored pattern. Lin & Huang13 discussed adaptive Type-I progressive hybrid censoring scheme and derived the exact distribution of the maximum likelihood estimator of the mean lifetime of an Exponential distribution. Singh et al.14 discussed about the properties of Bayes estimation for unknown parameters of the Lindley distribution under Type-II hybrid censored data.

For more informative literature on hybrid censoring one may go with Balakrishnan & Cramer.15 Elshahhat & Ashour16 discussed about the Bayesian and non-Bayesian estimation under the generalized Type-II progressive hybrid censoring scheme for Weibull parameters. Some inferences on Burr Type-XII distribution have recently discussed by Kayal et al.17 under Type-I progressive hybrid censoring.

Step - stress partially accelerated life test

Due to the reliability of the products, there occurred few failures at the end of several life tests. In such lifetime test, the test on normal stress condition more expensive and time intense. In such cases, accelerated life test is used for getting information about the lifetime distribution of item shortly and less expensive by test units kept at higher than usual stress conditions. In step stress accelerated life test, usually the test starts at a low stress (normal) condition, if the units do not fail at a pre-specified time, stress on its elevated and held at specified times. Stress is recurrently increased until the test unit fails or censoring time is reached.18 A great amount of literature available on SS-PALT, see Prakash19 for recent studies on SS-PALT.

All live units are verified first at normal stress condition in SS-PALT, if test units do not fail for a pre-assumed time ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaabw7aaaa@3849@  (say), then the test is swapped at higher stress and continued until test units fail. A reformed random variable model was discussed by DeGroot & Goel20 for the management of such issue, and defined here by the help of stress change time parameter ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabew7aLbaa@38B5@  and acceleration factor parameter λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSbaa@38C2@  as

X={ Y ; 0<Yε ε+ Yε λ ; Y>ε . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfacqGH9a qpdaGabaqaauaabeqaciaaaeaacaWGzbaabaGaai4oaiaadccacaWG GaGaamiiaiaadccacaWGGaGaaGimaiabgYda8iaadMfacqGHKjYOca WG1oaabaGaamyTdiabgUcaRmaalaaabaGaamywaiabgkHiTiaadw7a aeaacaWG7oaaaaqaaiaacUdacaWGGaGaamiiaiaadccacaWGGaGaam iiaiaadccacaWGGaGaamiiaiaadccacaWGGaGaamiiaiaadMfacqGH +aGpcaWG1oGaaeiiaiaac6caaaaacaGL7baaaaa@5747@                                                                                                             (5)

Here, the normal stress and higher stress conditions are denoted by “I” and “II” respectively for SS-PALT. If  is assumed as the total lifetime of a test item, then Eq. (5) is rewritten as

f( x;α,β )={ I: f 1 =β α  x β1 ( 1+ x β ) α1 ; 0<xε II:  f 2 =β α λ  x ˜ β1 ( 1+ x ˜ β ) α1 x>ε,  x ˜ =(xε)λ+ε. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaqada qaaiaadIhacaGG7aGaeqySdeMaaiilaiabek7aIbGaayjkaiaawMca aiabg2da9maaceaabaqbaeqabiGaaaqaaiaabMeacaqG6aGaamOzam aaBaaaleaacaaIXaaabeaakiabg2da9iabek7aIjaabccacqaHXoqy caqGGaGaamiEamaaCaaaleqabaGaeqOSdiMaeyOeI0IaaGymaaaakm aabmaabaGaaGymaiabgUcaRiaadIhadaahaaWcbeqaaiabek7aIbaa aOGaayjkaiaawMcaamaaCaaaleqabaGaeyOeI0IaeqySdeMaeyOeI0 IaaGymaaaaaOqaaiaacUdacaqGGaGaiqhGicdacWaDaAipaWJaiqhG dIhacWaDaAizImQamqhGew7aLbqaaiaabMeacaqGjbGaaeOoaiaabc cacaWGMbWaaSbaaSqaaiaaikdaaeqaaOGaeyypa0JaeqOSdiMaaeii aiabeg7aHjaabccacqaH7oaBcaqGGaGabmiEayaaiaWaaWbaaSqabe aacqaHYoGycqGHsislcaaIXaaaaOWaaeWaaeaacaaIXaGaey4kaSIa bmiEayaaiaWaaWbaaSqabeaacqaHYoGyaaaakiaawIcacaGLPaaada ahaaWcbeqaaiabgkHiTiabeg7aHjabgkHiTiaaigdaaaaakeaacaqG 7aGaaeiiaiaadIhacqGH+aGpcqaH1oqzcaGGSaGaaeiiaiqadIhaga acaiabg2da9iaacIcacaWG4bGaeyOeI0IaeqyTduMaaiykaiabeU7a SjabgUcaRiabew7aLjaac6caaaaacaGL7baaaaa@939B@            (6)

Under T-IPH censoring, the joint probability density (likelihood) function is now written by using Eq. (6) as

{ I:L i=1 k ( f 1 ( 1 F 1 ) R i ) × i=k+1 m ( f 2 ( 1 F 2 ) R i ) II:L i=1 l ( f 1 ( 1 F 1 ) R i ( 1 F 1 (t) ) R* ) × i=l+1 j ( f 2 ( 1 F 2 ) R i ( 1 F 2 (t) ) R* ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaceaaeaqabe aacaqGjbGaaeOoaiaadYeacqGHDisTdaqeWbqaamaabmaabaGaamOz amaaBaaaleaacaaIXaaabeaakmaabmaabaGaaGymaiabgkHiTiaadA eadaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaadaahaaWcbeqa aiaadkfadaWgaaadbaGaamyAaaqabaaaaaGccaGLOaGaayzkaaaale aacaWGPbGaeyypa0JaaGymaaqaaiaadUgaa0Gaey4dIunakiabgEna 0oaarahabaWaaeWaaeaacaWGMbWaaSbaaSqaaiaaikdaaeqaaOWaae WaaeaacaaIXaGaeyOeI0IaamOramaaBaaaleaacaaIYaaabeaaaOGa ayjkaiaawMcaamaaCaaaleqabaGaamOuamaaBaaameaacaWGPbaabe aaaaaakiaawIcacaGLPaaaaSqaaiaadMgacqGH9aqpcaWGRbGaey4k aSIaaGymaaqaaiaad2gaa0Gaey4dIunaaOqaaiaabMeacaqGjbGaae OoaiaadYeacqGHDisTdaqeWbqaamaabmaabaGaamOzamaaBaaaleaa caaIXaaabeaakmaabmaabaGaaGymaiabgkHiTiaadAeadaWgaaWcba GaaGymaaqabaaakiaawIcacaGLPaaadaahaaWcbeqaaiaadkfadaWg aaadbaGaamyAaaqabaaaaOWaaeWaaeaacaaIXaGaeyOeI0IaamOram aaBaaaleaacaaIXaaabeaakiaacIcacaWG0bGaaiykaaGaayjkaiaa wMcaamaaCaaaleqabaGaamOuaiaacQcaaaaakiaawIcacaGLPaaaaS qaaiaadMgacqGH9aqpcaaIXaaabaGaamiBaaqdcqGHpis1aOGaey41 aq7aaebCaeaadaqadaqaaiaadAgadaWgaaWcbaGaaGOmaaqabaGcda qadaqaaiaaigdacqGHsislcaWGgbWaaSbaaSqaaiaaikdaaeqaaaGc caGLOaGaayzkaaWaaWbaaSqabeaacaWGsbWaaSbaaWqaaiaadMgaae qaaaaakmaabmaabaGaaGymaiabgkHiTiaadAeadaWgaaWcbaGaaGOm aaqabaGccaGGOaGaamiDaiaacMcaaiaawIcacaGLPaaadaahaaWcbe qaaiaadkfacaGGQaaaaaGccaGLOaGaayzkaaaaleaacaWGPbGaeyyp a0JaamiBaiabgUcaRiaaigdaaeaacaWGQbaaniabg+GivdaaaOGaay 5Eaaaaaa@9BD3@               (7)

Solving Eq. (7), we get

L β d α d λ dδ ω 0   ω 1   e α ω d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeacqGHDi sTcqaHYoGydaahaaWcbeqaaiaadsgaaaGccqaHXoqydaahaaWcbeqa aiaadsgaaaGccqaH7oaBdaahaaWcbeqaaiaadsgacqGHsislcqaH0o azaaGccqaHjpWDdaWgaaWcbaGaaGimaaqabaGccaqGGaGaeqyYdC3a aSbaaSqaaiaaigdaaeqaaOGaaeiiaiaadwgadaahaaWcbeqaaiabgk HiTiabeg7aHjabeM8a3naaBaaameaacaWGKbaabeaaaaaaaa@518C@ ;                                                                                                                  (8)

where ω 0 = i=1 δ ( ξ (i)   x (i) 1+ R i )  , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3naaBa aaleaacaaIWaaabeaakiabg2da9maarahabaWaaeWaaeaadaWcaaqa aiabe67a4naaBaaaleaacaqGOaGaaeyAaiaabMcaaeqaaOGaaeiiai aadIhadaWgaaWcbaGaaiikaiaadMgacaGGPaaabeaaaOqaaiaaigda cqGHRaWkcaWGsbWaaSbaaSqaaiaadMgaaeqaaaaaaOGaayjkaiaawM caaaWcbaGaamyAaiabg2da9iaaigdaaeaacqaH0oaza0Gaey4dIuna kiaabccacaGGSaaaaa@503D@ W 1 = i=1 k ( 1+ R i )log( 1+ x (i) β )  , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEfadaWgaa WcbaGaaGymaaqabaGccqGH9aqpdaaeWbqaamaabmaabaGaaGymaiab gUcaRiaadkfadaWgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaaci GGSbGaai4BaiaacEgadaqadaqaaiaaigdacqGHRaWkcaWG4bWaa0ba aSqaaiaacIcacaWGPbGaaiykaaqaaiabek7aIbaaaOGaayjkaiaawM caaaWcbaGaamyAaiabg2da9iaaigdaaeaacaWGRbaaniabggHiLdGc caqGGaGaaiilaaaa@5152@ d={ I:m II:j  , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsgacqGH9a qpdaGabaabaeqabaGaaeysaiaacQdacaWGTbaabaGaaeysaiaabMea caGG6aGaamOAaaaacaGL7baacaqGGaGaaiilaaaa@4132@ δ={ I:k II:l  , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjabg2 da9maaceaaeaqabeaacaqGjbGaaiOoaiaadUgaaeaacaqGjbGaaeys aiaacQdacaWGSbaaaiaawUhaaiaabccacaGGSaaaaa@41EE@

ω 1 = i=1+δ d ( ξ ˜ (i)   x ˜ (i) 1+ R i )  , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3naaBa aaleaacaaIXaaabeaakiabg2da9maarahabaWaaeWaaeaadaWcaaqa aiqbe67a4zaaiaWaaSbaaSqaaiaabIcacaqGPbGaaeykaaqabaGcca qGGaGabmiEayaaiaWaaSbaaSqaaiaacIcacaWGPbGaaiykaaqabaaa keaacaaIXaGaey4kaSIaamOuamaaBaaaleaacaWGPbaabeaaaaaaki aawIcacaGLPaaaaSqaaiaadMgacqGH9aqpcaaIXaGaey4kaSIaeqiT dqgabaGaamizaaqdcqGHpis1aOGaaeiiaiaacYcaaaa@5227@ ω d ={ I: W 1 + W 2 II: W 3 + W 4  , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3naaBa aaleaacaWGKbaabeaakiabg2da9maaceaaeaqabeaacaqGjbGaaiOo aiaadEfadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGxbWaaSbaaS qaaiaaikdaaeqaaaGcbaGaaeysaiaabMeacaGG6aGaam4vamaaBaaa leaacaaIZaaabeaakiabgUcaRiaadEfadaWgaaWcbaGaaGinaaqaba aaaOGaay5EaaGaaeiiaiaacYcaaaa@4A52@ W 3 = i=1 l ( 1+ R i )log ( 1+ x (i) β )+R* log ( 1+ t β ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEfadaWgaa WcbaGaaG4maaqabaGccqGH9aqpdaaeWbqaamaabmaabaGaaGymaiab gUcaRiaadkfadaWgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaaci GGSbGaai4BaiaacEgacaqGGaWaaeWaaeaacaaIXaGaey4kaSIaamiE amaaDaaaleaacaGGOaGaamyAaiaacMcaaeaacqaHYoGyaaaakiaawI cacaGLPaaacqGHRaWkcaWGsbGaaiOkaaWcbaGaamyAaiabg2da9iaa igdaaeaacaWGSbaaniabggHiLdGcciGGSbGaai4BaiaacEgacaqGGa WaaeWaaeaacaaIXaGaey4kaSIaamiDamaaDaaaleaaaeaacqaHYoGy aaaakiaawIcacaGLPaaacaqGGaGaaiilaaaa@5DC9@

W 2 = i=1+k m ( 1+ R i )log( 1+ x ˜ (i) β )  , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEfadaWgaa WcbaGaaGOmaaqabaGccqGH9aqpdaaeWbqaamaabmaabaGaaGymaiab gUcaRiaadkfadaWgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaaci GGSbGaai4BaiaacEgadaqadaqaaiaaigdacqGHRaWkceWG4bGbaGaa daqhaaWcbaGaaiikaiaadMgacaGGPaaabaGaeqOSdigaaaGccaGLOa GaayzkaaaaleaacaWGPbGaeyypa0JaaGymaiabgUcaRiaadUgaaeaa caWGTbaaniabggHiLdGccaqGGaGaaiilaaaa@5336@ W 4 = i=l+1 j ( 1+ R i )log ( 1+ x ˜ (i) β )+R* log ( 1+ t ˜ β ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEfadaWgaa WcbaGaaGinaaqabaGccqGH9aqpdaaeWbqaamaabmaabaGaaGymaiab gUcaRiaadkfadaWgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaaci GGSbGaai4BaiaacEgacaqGGaWaaeWaaeaacaaIXaGaey4kaSIabmiE ayaaiaWaa0baaSqaaiaacIcacaWGPbGaaiykaaqaaiabek7aIbaaaO GaayjkaiaawMcaaiabgUcaRiaadkfacaGGQaaaleaacaWGPbGaeyyp a0JaamiBaiabgUcaRiaaigdaaeaacaWGQbaaniabggHiLdGcciGGSb Gaai4BaiaacEgacaqGGaWaaeWaaeaacaaIXaGaey4kaSIabmiDayaa iaWaaWbaaSqabeaacqaHYoGyaaaakiaawIcacaGLPaaacaGGSaaaaa@5F16@ ξ (i) = x (i) β1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabe67a4naaBa aaleaacaqGOaGaaeyAaiaabMcaaeqaaOGaeyypa0JaamiEamaaDaaa leaacaGGOaGaamyAaiaacMcaaeaacqaHYoGycqGHsislcaaIXaaaaa aa@430A@  

( 1+ R i 1+ x (i) β ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaWaaS aaaeaacaaIXaGaey4kaSIaamOuamaaBaaaleaacaWGPbaabeaaaOqa aiaaigdacqGHRaWkcaWG4bWaa0baaSqaaiaacIcacaWGPbGaaiykaa qaaiabek7aIbaaaaaakiaawIcacaGLPaaacaGGSaaaaa@43A8@ ξ ˜ (i) =( 1+ R i 1+ x ˜ (i) β ) x ˜ (i) β1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbe67a4zaaia WaaSbaaSqaaiaabIcacaqGPbGaaeykaaqabaGccqGH9aqpdaqadaqa amaalaaabaGaaGymaiabgUcaRiaadkfadaWgaaWcbaGaamyAaaqaba aakeaacaaIXaGaey4kaSIabmiEayaaiaWaa0baaSqaaiaacIcacaWG PbGaaiykaaqaaiabek7aIbaaaaaakiaawIcacaGLPaaaceWG4bGbaG aadaqhaaWcbaGaaiikaiaadMgacaGGPaaabaGaeqOSdiMaeyOeI0Ia aGymaaaaaaa@4F21@ and t ˜ =(tε)λ+ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadshagaacai abg2da9iaacIcacaWG0bGaeyOeI0IaeqyTduMaaiykaiabeU7aSjab gUcaRiabew7aLbaa@423F@ .  

Optimization criterion in SS-PALT

The optimization criterion provided the optimum time duration for the lower stress level. This design is important for improving the precision in estimating the life distribution at design stress and for refining the quality of the inference. The proposed optimization criterion is based on the maximization of the determinant of Fisher's information matrix which is equivalent to reducing the generalized asymptotic variance of the maximum likelihood estimate of the model parameters. The generalized asymptotic variance is the reciprocal of the determinant of Fisher's information matrix. The Fisher’s information matrix is given here as

F=( 2 α 2 Log L 2 αβ Log L 2 αλ Log L 2 βα Log L 2 β 2 Log L 2 βλ Log L 2 λα Log L 2 λβ Log L 2 λ 2 Log L ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeacqGH9a qpcqGHsisldaqadaqaauaabeqadmaaaeaadaWcaaqaaiabgkGi2oaa CaaaleqabaGaaGOmaaaaaOqaaiabgkGi2kabeg7aHnaaCaaaleqaba GaaGOmaaaaaaGccaWGmbGaam4BaiaadEgacaqGGaGaamitaaqaamaa laaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaaGcbaGaeyOaIyRaeq ySdeMaeyOaIyRaeqOSdigaaiaadYeacaWGVbGaam4zaiaabccacaWG mbaabaWaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaaakeaacq GHciITcqaHXoqycqGHciITcqaH7oaBaaGaamitaiaad+gacaWGNbGa aeiiaiaadYeaaeaadaWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaa aaaOqaaiabgkGi2kabek7aIjabgkGi2kabeg7aHbaacaWGmbGaam4B aiaadEgacaqGGaGaamitaaqaamaalaaabaGaeyOaIy7aaWbaaSqabe aacaaIYaaaaaGcbaGaeyOaIyRaeqOSdi2aaWbaaSqabeaacaaIYaaa aaaakiaadYeacaWGVbGaam4zaiaabccacaWGmbaabaWaaSaaaeaacq GHciITdaahaaWcbeqaaiaaikdaaaaakeaacqGHciITcqaHYoGycqGH ciITcqaH7oaBaaGaamitaiaad+gacaWGNbGaaeiiaiaadYeaaeaada WcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaaaOqaaiabgkGi2kab eU7aSjabgkGi2kabeg7aHbaacaWGmbGaam4BaiaadEgacaqGGaGaam itaaqaamaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaaGcbaGa eyOaIyRaeq4UdWMaeyOaIyRaeqOSdigaaiaadYeacaWGVbGaam4zai aabccacaWGmbaabaWaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikda aaaakeaacqGHciITcqaH7oaBdaahaaWcbeqaaiaaikdaaaaaaOGaam itaiaad+gacaWGNbGaaeiiaiaadYeaaaaacaGLOaGaayzkaaaaaa@A701@ .                                                           (9)

The components of the matrix given in Eq. (9) are obtained as

2 α 2 Log L= d α 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaey OaIy7aaWbaaSqabeaacaaIYaaaaaGcbaGaeyOaIyRaeqySde2aaWba aSqabeaacaaIYaaaaaaakiaadYeacaWGVbGaam4zaiaabccacaWGmb Gaeyypa0JaeyOeI0YaaSaaaeaacaWGKbaabaGaeqySde2aaWbaaSqa beaacaaIYaaaaaaaaaa@4708@

2 β 2 Log L= d β 2 + i=1 δ ( ( 1+ x (i) β β 2 x (i) β1 ) x (i) ( 1+ x (i) β ) 2 ) + i=δ+1 d ( ( 1+ x ˜ (i) β β 2 x ˜ (i) β1 ) x ˜ (i) ( 1+ x ˜ (i) β ) 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaey OaIy7aaWbaaSqabeaacaaIYaaaaaGcbaGaeyOaIyRaeqOSdi2aaWba aSqabeaacaaIYaaaaaaakiaadYeacaWGVbGaam4zaiaabccacaWGmb Gaeyypa0JaeyOeI0YaaSaaaeaacaWGKbaabaGaeqOSdi2aaWbaaSqa beaacaaIYaaaaaaakiabgUcaRmacmcieWbqaiWiGdGaJagWaaeacmc 4aiWiGlaaabGaJaoacmcyadaqaiWiGcGaJaIymaiadmcOHRaWkcGaJ aoiEamacmcyhaaWcbGaJakacmcOGOaGaiWiGdMgacGaJakykaaqaiW iGcWaJasOSdigaaOGaeyOeI0IaeqOSdi2aaWbaaSqabeaacaaIYaaa aOGaiWiGdIhadGaJa2baaSqaiWiGcGaJakikaiacmc4GPbGaiWiGcM caaeacmcOamWiGek7aIjabgkHiTiaaigdaaaaakiacmcOLOaGaiWiG wMcaaaqaiWiGcGaJaoiEamacmcyhaaWcbGaJakacmcOGOaGaiWiGdM gacGaJakykaaqaiWiGaaGcdGaJagWaaeacmcOaiWiGigdacWaJaA4k aSIaiWiGdIhadGaJa2baaSqaiWiGcGaJakikaiacmc4GPbGaiWiGcM caaeacmcOamWiGek7aIbaaaOGaiWiGwIcacGaJaAzkaaWaaWbaaSqa beaacaaIYaaaaaaaaOGaiWiGwIcacGaJaAzkaaaaleacmcOaiWiGdM gacWaJaAypa0JaiWiGigdaaeacmcOamWiGes7aKbqdcWaJaAyeIuoa kiabgUcaRmacmcieWbqaiWiGdGaJagWaaeacmc4aiWiGlaaabGaJao acmcyadaqaiWiGcGaJaIymaiadmcOHRaWkcKaJaoiEayacmcicamac mcyhaaWcbGaJakacmcOGOaGaiWiGdMgacGaJakykaaqaiWiGcWaJas OSdigaaOGaeyOeI0IaeqOSdi2aaWbaaSqabeaacaaIYaaaaOGajWiG dIhagGaJaIaadGaJa2baaSqaiWiGcGaJakikaiacmc4GPbGaiWiGcM caaeacmcOamWiGek7aIjabgkHiTiaaigdaaaaakiacmcOLOaGaiWiG wMcaaaqaiWiGcKaJaoiEayacmcicamacmcyhaaWcbGaJakacmcOGOa GaiWiGdMgacGaJakykaaqaiWiGaaGcdGaJagWaaeacmcOaiWiGigda cWaJaA4kaSIajWiGdIhagGaJaIaadGaJa2baaSqaiWiGcGaJakikai acmc4GPbGaiWiGcMcaaeacmcOamWiGek7aIbaaaOGaiWiGwIcacGaJ aAzkaaWaaWbaaSqabeaacaaIYaaaaaaaaOGaiWiGwIcacGaJaAzkaa aaleacmcOaiWiGdMgacWaJaAypa0JaeqiTdqMaey4kaSIaiWiGigda aeacmcOaamizaaqdcWaJaAyeIuoaaaa@1C2B@

α{ I: i=1 k ξ (i) + i=k+1 m ξ ˜ (i) II: i=1 l ξ (i) + i=l+1 j ξ ˜ (i) +t*+ t ˜ * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgkHiTiabeg 7aHnaaceaaeaqabeaacaqGjbGaaiOoamaaqahabaGaeqOVdG3aaSba aSqaaiaabIcacaqGPbGaaeykaaqabaaabaGaamyAaiabg2da9iaaig daaeaacaWGRbaaniabggHiLdGccqGHRaWkdaaeWbqaaiqbe67a4zaa iaWaaSbaaSqaaiaabIcacaqGPbGaaeykaaqabaaabaGaamyAaiabg2 da9iaadUgacqGHRaWkcaaIXaaabaGaamyBaaqdcqGHris5aaGcbaGa aeysaiaabMeacaGG6aWaaabCaeaacqaH+oaEdaWgaaWcbaGaaeikai aabMgacaqGPaaabeaaaeaacaWGPbGaeyypa0JaaGymaaqaaiaadYga a0GaeyyeIuoakiabgUcaRmaaqahabaGafqOVdGNbaGaadaWgaaWcba GaaeikaiaabMgacaqGPaaabeaakiabgUcaRiaadshacaGGQaGaey4k aSIabmiDayaaiaGaaiOkaaWcbaGaamyAaiabg2da9iaadYgacqGHRa WkcaaIXaaabaGaamOAaaqdcqGHris5aaaakiaawUhaaaaa@71A2@ +αβ{ I: i=1 k ξ (i) 2 + i=k+1 m ξ ˜ (i) 2 II: i=1 l ξ (i) 2 + i=l+1 j ξ ˜ (i) 2 + t 2* + t ˜ 2* MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgUcaRiabeg 7aHjabek7aInaaceaaeaqabeaacaqGjbGaaiOoamaaqahabaGaeqOV dG3aa0baaSqaaiaacIcacaWGPbGaaiykaaqaaiaaikdaaaaabaGaam yAaiabg2da9iaaigdaaeaacaWGRbaaniabggHiLdGccqGHRaWkdaae Wbqaaiqbe67a4zaaiaWaa0baaSqaaiaacIcacaWGPbGaaiykaaqaai aaikdaaaaabaGaamyAaiabg2da9iaadUgacqGHRaWkcaaIXaaabaGa amyBaaqdcqGHris5aaGcbaGaaeysaiaabMeacaGG6aWaaabCaeaacq aH+oaEdaqhaaWcbaGaaiikaiaadMgacaGGPaaabaGaaGOmaaaaaeaa caWGPbGaeyypa0JaaGymaaqaaiaadYgaa0GaeyyeIuoakiabgUcaRm aaqahabaGafqOVdGNbaGaadaqhaaWcbaGaaiikaiaadMgacaGGPaaa baGaaGOmaaaakiabgUcaRiaadshadaahaaWcbeqaaiaaikdacaGGQa aaaOGaey4kaSIabmiDayaaiaWaaWbaaSqabeaacaaIYaGaaiOkaaaa aeaacaWGPbGaeyypa0JaamiBaiabgUcaRiaaigdaaeaacaWGQbaani abggHiLdaaaOGaay5Eaaaaaa@780D@

2 λ 2 Log L= dδ λ 2 i=δ+1 d ( β ( x (i) ε ) 2 1+ x ˜ (i) β +β x ˜ (i) β x ˜ (i) 2 ( 1+ x ˜ (i) β ) 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaey OaIy7aaWbaaSqabeaacaaIYaaaaaGcbaGaeyOaIyRaeq4UdW2aaWba aSqabeaacaaIYaaaaaaakiaadYeacaWGVbGaam4zaiaabccacaWGmb Gaeyypa0JaeyOeI0YaaSaaaeaacaWGKbGaeyOeI0IaeqiTdqgabaGa eq4UdW2aaWbaaSqabeaacaaIYaaaaaaakiabgkHiTmaarahabaWaae WaaeaacqaHYoGydaqadaqaaiaadIhadaWgaaWcbaGaaiikaiaadMga caGGPaaabeaakiabgkHiTiabew7aLbGaayjkaiaawMcaamaaCaaale qabaGaaGOmaaaakmaalaaabaGaaGymaiabgUcaRiqadIhagaacamaa DaaaleaacaGGOaGaamyAaiaacMcaaeaacqaHYoGyaaGccqGHRaWkcq aHYoGyceWG4bGbaGaadaqhaaWcbaGaaiikaiaadMgacaGGPaaabaGa eqOSdigaaaGcbaGabmiEayaaiaWaa0baaSqaaiaacIcacaWGPbGaai ykaaqaaiaaikdaaaGcdaqadaqaaiaaigdacqGHRaWkceWG4bGbaGaa daqhaaWcbaGaaiikaiaadMgacaGGPaaabaGaeqOSdigaaaGccaGLOa GaayzkaaWaaWbaaSqabeaacaaIYaaaaaaaaOGaayjkaiaawMcaaaWc baGaamyAaiabg2da9iabes7aKjabgUcaRiaaigdaaeaacaWGKbaani abg+Givdaaaa@7ACF@

+αβ{ I: i=k+1 m ξ ˜ (i) 2 ( x (i) ε ) 2 II: i=l+1 j ξ ˜ (i) 2 ( x (i) ε ) 2   t ˜ 2* ( tε ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgUcaRiabeg 7aHjabek7aInaaceaaeaqabeaacaqGjbGaaiOoamaaqahabaGafqOV dGNbaGaadaqhaaWcbaGaaiikaiaadMgacaGGPaaabaGaaGOmaaaakm aabmaabaGaamiEamaaBaaaleaacaGGOaGaamyAaiaacMcaaeqaaOGa eyOeI0IaeqyTdugacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaa qaaiaadMgacqGH9aqpcaWGRbGaey4kaSIaaGymaaqaaiaad2gaa0Ga eyyeIuoaaOqaaiaabMeacaqGjbGaaiOoamaaqahabaGafqOVdGNbaG aadaqhaaWcbaGaaiikaiaadMgacaGGPaaabaGaaGOmaaaakmaabmaa baGaamiEamaaBaaaleaacaGGOaGaamyAaiaacMcaaeqaaOGaeyOeI0 IaeqyTdugacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaqaaiaa dMgacqGH9aqpcaWGSbGaey4kaSIaaGymaaqaaiaadQgaa0GaeyyeIu oakiaabccacqGHsislceWG0bGbaGaadaahaaWcbeqaaiaaikdacaGG QaaaaOWaaeWaaeaacaWG0bGaeyOeI0IaeqyTdugacaGLOaGaayzkaa WaaWbaaSqabeaacaaIYaaaaaaakiaawUhaaaaa@74F1@

2 αβ Log L= 2 βα Log L=β{ I: i=1 k ξ (i) + i=k+1 m ξ ˜ (i) II: i=1 l ξ (i) + i=l+1 j ξ ˜ (i) +t*+ t ˜ * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaey OaIy7aaWbaaSqabeaacaaIYaaaaaGcbaGaeyOaIyRaeqySdeMaeyOa IyRaeqOSdigaaiaadYeacaWGVbGaam4zaiaabccacaWGmbGaeyypa0 ZaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaaakeaacqGHciIT cqaHYoGycqGHciITcqaHXoqyaaGaamitaiaad+gacaWGNbGaaeiiai aadYeacqGH9aqpcqGHsislcqaHYoGydaGabaabaeqabaGaaeysaiaa cQdadaaeWbqaaiabe67a4naaBaaaleaacaqGOaGaaeyAaiaabMcaae qaaaqaaiaadMgacqGH9aqpcaaIXaaabaGaam4AaaqdcqGHris5aOGa ey4kaSYaaabCaeaacuaH+oaEgaacamaaBaaaleaacaqGOaGaaeyAai aabMcaaeqaaaqaaiaadMgacqGH9aqpcaWGRbGaey4kaSIaaGymaaqa aiaad2gaa0GaeyyeIuoaaOqaaiaabMeacaqGjbGaaiOoamaaqahaba GaeqOVdG3aaSbaaSqaaiaabIcacaqGPbGaaeykaaqabaGccqGHRaWk aSqaaiaadMgacqGH9aqpcaaIXaaabaGaamiBaaqdcqGHris5aOWaaa bCaeaacuaH+oaEgaacamaaBaaaleaacaqGOaGaaeyAaiaabMcaaeqa aOGaey4kaSIaamiDaiaacQcacqGHRaWkceWG0bGbaGaacaGGQaaale aacaWGPbGaeyypa0JaamiBaiabgUcaRiaaigdaaeaacaWGQbaaniab ggHiLdaaaOGaay5Eaaaaaa@8CF9@

2 αλ Log L= 2 λα Log L=β{ I: i=k+1 m ( x (i) ε ) ξ ˜ (i) II: i=l+1 j ( x (i) ε ) ξ ˜ (i) +   t ˜ *( tε ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaey OaIy7aaWbaaSqabeaacaaIYaaaaaGcbaGaeyOaIyRaeqySdeMaeyOa IyRaeq4UdWgaaiaadYeacaWGVbGaam4zaiaabccacaWGmbGaeyypa0 ZaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaaakeaacqGHciIT cqaH7oaBcqGHciITcqaHXoqyaaGaamitaiaad+gacaWGNbGaaeiiai aadYeacqGH9aqpcqGHsislcqaHYoGydaGabaabaeqabaGaaeysaiaa cQdadaaeWbqaamaabmaabaGaamiEamaaBaaaleaacaGGOaGaamyAai aacMcaaeqaaOGaeyOeI0IaeqyTdugacaGLOaGaayzkaaGafqOVdGNb aGaadaWgaaWcbaGaaeikaiaabMgacaqGPaaabeaaaeaacaWGPbGaey ypa0Jaam4AaiabgUcaRiaaigdaaeaacaWGTbaaniabggHiLdaakeaa caqGjbGaaeysaiaacQdadaaeWbqaamaabmaabaGaamiEamaaBaaale aacaGGOaGaamyAaiaacMcaaeqaaOGaeyOeI0IaeqyTdugacaGLOaGa ayzkaaGafqOVdGNbaGaadaWgaaWcbaGaaeikaiaabMgacaqGPaaabe aakiabgUcaRaWcbaGaamyAaiabg2da9iaadYgacqGHRaWkcaaIXaaa baGaamOAaaqdcqGHris5aOGaaeiiaiqadshagaacaiaacQcadaqada qaaiaadshacqGHsislcqaH1oqzaiaawIcacaGLPaaaaaGaay5Eaaaa aa@897F@

βλ Log L= λβ Log L=β i=δ+1 d ( 1+(1+β) x ˜ (i) β x ˜ (i) 2 ( 1+ x ˜ (i) β ) 2 )  ( x (i) ε ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaey OaIylabaGaeyOaIyRaeqOSdiMaeyOaIyRaeq4UdWgaaiaadYeacaWG VbGaam4zaiaabccacaWGmbGaeyypa0ZaaSaaaeaacqGHciITaeaacq GHciITcqaH7oaBcqGHciITcqaHYoGyaaGaamitaiaad+gacaWGNbGa aeiiaiaadYeacqGH9aqpcqGHsislcqaHYoGydaaeWbqaamaabmaaba WaaSaaaeaacaaIXaGaey4kaSIaaiikaiaaigdacqGHRaWkcqaHYoGy caGGPaGabmiEayaaiaWaa0baaSqaaiaacIcacaWGPbGaaiykaaqaai abek7aIbaaaOqaaiqadIhagaacamaaDaaaleaacaGGOaGaamyAaiaa cMcaaeaacaaIYaaaaOWaaeWaaeaacaaIXaGaey4kaSIabmiEayaaia Waa0baaSqaaiaacIcacaWGPbGaaiykaaqaaiabek7aIbaaaOGaayjk aiaawMcaamaaCaaaleqabaGaaGOmaaaaaaaakiaawIcacaGLPaaaaS qaaiaadMgacqGH9aqpcqaH0oazcqGHRaWkcaaIXaaabaGaamizaaqd cqGHris5aOGaaeiiamaabmaabaGaamiEamaaBaaaleaacaGGOaGaam yAaiaacMcaaeqaaOGaeyOeI0IaeqyTdugacaGLOaGaayzkaaaaaa@7E47@

+αβ{ I: i=k+1 m ξ ˜ (i) 2 ( x (i) ε )  II:  i=l+1 j ξ ˜ (i) 2 ( x (i) ε ) + t ˜ 2* (tε) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgUcaRiabeg 7aHjabek7aInaaceaaeaqabeaacaqGjbGaaiOoamaaqahabaGafqOV dGNbaGaadaqhaaWcbaGaaiikaiaadMgacaGGPaaabaGaaGOmaaaakm aabmaabaGaamiEamaaBaaaleaacaGGOaGaamyAaiaacMcaaeqaaOGa eyOeI0IaeqyTdugacaGLOaGaayzkaaGaaeiiaaWcbaGaamyAaiabg2 da9iaadUgacqGHRaWkcaaIXaaabaGaamyBaaqdcqGHris5aaGcbaGa aeysaiaabMeacaGG6aGaaeiiamaaqahabaGafqOVdGNbaGaadaqhaa WcbaGaaiikaiaadMgacaGGPaaabaGaaGOmaaaakmaabmaabaGaamiE amaaBaaaleaacaGGOaGaamyAaiaacMcaaeqaaOGaeyOeI0IaeqyTdu gacaGLOaGaayzkaaaaleaacaWGPbGaeyypa0JaamiBaiabgUcaRiaa igdaaeaacaWGQbaaniabggHiLdGccqGHRaWkceWG0bGbaGaadaahaa WcbeqaaiaaikdacaGGQaaaaOGaaeikaiaadshacqGHsislcqaH1oqz caGGPaaaaiaawUhaaaaa@72A9@ .

where ξ (i) 2 = ξ (i) ( x (i) β +1β ( 1+ x (i) β ) x (i) ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabe67a4naaDa aaleaacaGGOaGaamyAaiaacMcaaeaacaaIYaaaaOGaeyypa0JaeqOV dG3aa0baaSqaaiaacIcacaWGPbGaaiykaaqaaaaakmaabmaabaWaaS aaaeaacaWG4bWaa0baaSqaaiaacIcacaWGPbGaaiykaaqaaiabek7a IbaakiabgUcaRiaaigdacqGHsislcqaHYoGyaeaadaqadaqaaiaaig dacqGHRaWkcaWG4bWaa0baaSqaaiaacIcacaWGPbGaaiykaaqaaiab ek7aIbaaaOGaayjkaiaawMcaaiaadIhadaqhaaWcbaGaaiikaiaadM gacaGGPaaabaaaaaaaaOGaayjkaiaawMcaaiaabccacaGGSaaaaa@5942@ ξ ˜ (i) 2 = ξ ˜ (i) ( x ˜ (i) β +1β ( 1+ x ˜ (i) β ) x ˜ (i) ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbe67a4zaaia Waa0baaSqaaiaacIcacaWGPbGaaiykaaqaaiaaikdaaaGccqGH9aqp cuaH+oaEgaacamaaDaaaleaacaGGOaGaamyAaiaacMcaaeaaaaGcda qadaqaamaalaaabaGabmiEayaaiaWaa0baaSqaaiaacIcacaWGPbGa aiykaaqaaiabek7aIbaakiabgUcaRiaaigdacqGHsislcqaHYoGyae aadaqadaqaaiaaigdacqGHRaWkceWG4bGbaGaadaqhaaWcbaGaaiik aiaadMgacaGGPaaabaGaeqOSdigaaaGccaGLOaGaayzkaaGabmiEay aaiaWaa0baaSqaaiaacIcacaWGPbGaaiykaaqaaaaaaaaakiaawIca caGLPaaacaGGSaaaaa@58EA@ t*= R* 1+ t β t β1 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadshacaGGQa Gaeyypa0ZaaSaaaeaacaWGsbGaaiOkaaqaaiaaigdacqGHRaWkcaWG 0bWaa0baaSqaaaqaaiabek7aIbaaaaGccaWG0bWaa0baaSqaaaqaai abek7aIjabgkHiTiaaigdaaaGccaGGSaaaaa@44E7@ t ˜ *= R* 1+ t ˜ β t ˜ β1 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadshagaacai aacQcacqGH9aqpdaWcaaqaaiaadkfacaGGQaaabaGaaGymaiabgUca RiqadshagaacamaaDaaaleaaaeaacqaHYoGyaaaaaOGabmiDayaaia Waa0baaSqaaaqaaiabek7aIjabgkHiTiaaigdaaaGccaGGSaaaaa@4514@ t 2* =t*( t β +1β t( 1+ t β ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadshadaahaa WcbeqaaiaaikdacaGGQaaaaOGaeyypa0JaamiDaiaacQcadaqadaqa amaalaaabaGaamiDamaaCaaaleqabaGaeqOSdigaaOGaey4kaSIaaG ymaiabgkHiTiabek7aIbqaaiaadshadaqadaqaaiaaigdacqGHRaWk caWG0bWaaWbaaSqabeaacqaHYoGyaaaakiaawIcacaGLPaaaaaaaca GLOaGaayzkaaaaaa@4BDA@ and t ˜ 2* = t ˜ *( t ˜ β +1β t ˜ ( 1+ t ˜ β ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadshagaacam aaCaaaleqabaGaaGOmaiaacQcaaaGccqGH9aqpceWG0bGbaGaacaGG QaWaaeWaaeaadaWcaaqaaiqadshagaacamaaCaaaleqabaGaeqOSdi gaaOGaey4kaSIaaGymaiabgkHiTiabek7aIbqaaiqadshagaacamaa bmaabaGaaGymaiabgUcaRiqadshagaacamaaCaaaleqabaGaeqOSdi gaaaGccaGLOaGaayzkaaaaaaGaayjkaiaawMcaaaaa@4C25@ .

The generalized asymptotic variance is the reciprocal of | F | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaemaabaGaam OraaGaay5bSlaawIa7aaaa@3AFB@ . Following Ismail & Aly,21 the optimum stress change time ε* MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabew7aLjaacQ caaaa@3963@  is obtained by maximizing | F | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaemaabaGaam OraaGaay5bSlaawIa7aaaa@3AFB@  and is obtained by

|F| ε* =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaey OaIyRaaiiFaiaadAeacaGG8baabaGaeyOaIyRaeqyTduMaaiOkaaaa cqGH9aqpcaaIWaaaaa@40CA@ .                                                                                                                                                    (10)

The solution of Eq. (10) is not in a closed form, numerical solution have been obtained by using Wolfram Mathematica software 10.0.

Approximate confidence lengths

The variance covariance matrix can be approximated by the reciprocal of Fisher’s information matrix. All the elements of Fisher’s information matrix involved unknown parameters. Hence, an estimate of the variance covariance matrix can be obtained by replacing the parameters by their ML estimate.

Therefore, for obtaining the ML estimators, the first derivatives of the logarithm of the joint probability likelihood function (Eq. (8)) with respect to the corresponding parameters are obtained as

α Log L= d α ω d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaey OaIylabaGaeyOaIyRaeqySdegaaiaadYeacaWGVbGaam4zaiaabcca caWGmbGaeyypa0ZaaSaaaeaacaWGKbaabaGaeqySdegaaiabgkHiTi abeM8a3naaBaaaleaacaWGKbaabeaaaaa@471B@                                                                                                                                     (11)

β Log L= d β +β{ i=1 δ ξ (i) ( 1+ R i ) x (i) β + i=δ+1 d ξ ˜ (i) ( 1+ R i ) x ˜ (i) β } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaey OaIylabaGaeyOaIyRaeqOSdigaaiaadYeacaWGVbGaam4zaiaabcca caWGmbGaeyypa0ZaaSaaaeaacaWGKbaabaGaeqOSdigaaiabgUcaRi admciHYoGydaGadaqaamacmcieWbqaiWiGdaWcaaqaaiabe67a4naa BaaaleaacaqGOaGaaeyAaiaabMcaaeqaaaGcbaWaaeWaaeaacaaIXa Gaey4kaSIaamOuamaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMca aiaadIhadaqhaaWcbaGaaiikaiaadMgacaGGPaaabaGaeqOSdigaaa aaaeacmcOaiWiGdMgacWaJaAypa0JaiWiGigdaaeacmcOamWiGes7a KbqdcWaJaAyeIuoakiabgUcaRmaaqahabaWaaSaaaeaacuaH+oaEga acamaaBaaaleaacaqGOaGaaeyAaiaabMcaaeqaaaGcbaWaaeWaaeaa caaIXaGaey4kaSIaamOuamaaBaaaleaacaWGPbaabeaaaOGaayjkai aawMcaaiqadIhagaacamaaDaaaleaacaGGOaGaamyAaiaacMcaaeaa cqaHYoGyaaaaaaqaaiaadMgacqGH9aqpcqaH0oazcqGHRaWkcaaIXa aabaGaamizaaqdcqGHris5aaGccaGL7bGaayzFaaaaaa@7FBF@

αβ{ I: i=1 k ξ (i) + i=k+1 m ξ ˜ (i) II: i=1 l ξ (i) + i=l+1 j ξ ˜ (i) +t* + t ˜ *, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgkHiTiabeg 7aHjabek7aInaaceaaeaqabeaacaqGjbGaaiOoamaaqahabaGaeqOV dG3aaSbaaSqaaiaabIcacaqGPbGaaeykaaqabaaabaGaamyAaiabg2 da9iaaigdaaeaacaWGRbaaniabggHiLdGccqGHRaWkdaaeWbqaaiqb e67a4zaaiaWaaSbaaSqaaiaabIcacaqGPbGaaeykaaqabaaabaGaam yAaiabg2da9iaadUgacqGHRaWkcaaIXaaabaGaamyBaaqdcqGHris5 aaGcbaGaaeysaiaabMeacaGG6aWaaabCaeaacqaH+oaEdaWgaaWcba GaaeikaiaabMgacaqGPaaabeaakiabgUcaRmaaqahabaGafqOVdGNb aGaadaWgaaWcbaGaaeikaiaabMgacaqGPaaabeaaaeaacaWGPbGaey ypa0JaamiBaiabgUcaRiaaigdaaeaacaWGQbaaniabggHiLdGccqGH RaWkcaWG0bGaaiOkaaWcbaGaamyAaiabg2da9iaaigdaaeaacaWGSb aaniabggHiLdGccqGHRaWkceWG0bGbaGaacaGGQaGaaiilaaaacaGL 7baaaaa@73F3@                                                             (12)

and 

λ Log L= dδ λ + i=δ+1 d ( β( x (i) ε ) x ˜ (i) 1 1+ x ˜ (i) β ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaey OaIylabaGaeyOaIyRaeq4UdWgaaiaadYeacaWGVbGaam4zaiaabcca caWGmbGaeyypa0ZaaSaaaeaacaWGKbGaeyOeI0IaeqiTdqgabaGaeq 4UdWgaaiabgUcaRmaarahabaWaaeWaaeaacqaHYoGydaqadaqaaiaa dIhadaWgaaWcbaGaaiikaiaadMgacaGGPaaabeaakiabgkHiTiabew 7aLbGaayjkaiaawMcaamaalaaabaGabmiEayaaiaWaa0baaSqaaiaa cIcacaWGPbGaaiykaaqaaiabgkHiTiaaigdaaaaakeaacaaIXaGaey 4kaSIabmiEayaaiaWaa0baaSqaaiaacIcacaWGPbGaaiykaaqaaiab ek7aIbaaaaaakiaawIcacaGLPaaaaSqaaiaadMgacqGH9aqpcqaH0o azcqGHRaWkcaaIXaaabaGaamizaaqdcqGHpis1aaaa@6605@   αβ{ I: i=k+1 m ξ ˜ (i) ( x (i) ε ) II: i=l+1 j ξ ˜ (i) ( x (i) ε )+ t ˜ *( tε ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgkHiTiabeg 7aHjabek7aInaaceaaeaqabeaacaqGjbGaaiOoamaaqahabaGafqOV dGNbaGaadaWgaaWcbaGaaiikaiaadMgacaGGPaaabeaakmaabmaaba GaamiEamaaBaaaleaacaGGOaGaamyAaiaacMcaaeqaaOGaeyOeI0Ia eqyTdugacaGLOaGaayzkaaaaleaacaWGPbGaeyypa0Jaam4AaiabgU caRiaaigdaaeaacaWGTbaaniabggHiLdaakeaacaqGjbGaaeysaiaa cQdadaaeWbqaaiqbe67a4zaaiaWaaSbaaSqaaiaacIcacaWGPbGaai ykaaqabaGcdaqadaqaaiaadIhadaWgaaWcbaGaaiikaiaadMgacaGG PaaabeaakiabgkHiTiabew7aLbGaayjkaiaawMcaaiabgUcaRiqads hagaacaiaacQcadaqadaqaaiaadshacqGHsislcqaH1oqzaiaawIca caGLPaaaaSqaaiaadMgacqGH9aqpcaWGSbGaey4kaSIaaGymaaqaai aadQgaa0GaeyyeIuoaaaGccaGL7baaaaa@6F32@   

(13)

Now, α ^ Ml , β ^ Ml MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeg7aHzaaja WaaSbaaSqaaiaad2eacaWGSbaabeaakiaacYcacuaHYoGygaqcamaa BaaaleaacaWGnbGaamiBaaqabaaaaa@3F06@ and λ ^ Ml MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeU7aSzaaja WaaSbaaSqaaiaad2eacaWGSbaabeaaaaa@3AC1@  are denoted the ML estimators corresponding to the parameters α,β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHjaabY cacqaHYoGyaaa@3AFD@  and λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSbaa@38C2@  respectively. The ML estimate corresponding to parameter α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHbaa@38AD@  is obtained from Eq. (11) as

α ^ Ml = d ω d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeg7aHzaaja WaaSbaaSqaaiaad2eacaWGSbaabeaakiabg2da9maalaaabaGaamiz aaqaaiabeM8a3naaBaaaleaacaWGKbaabeaaaaaaaa@3F97@                                                                                                                                                     (14)

Consequently, by substituting for  into Eq. (12) & Eq. (13), the corresponding equations are reduced into two nonlinear equations. The Newton-Raphson method is applied here for simultaneously solving these nonlinear equations for ML estimate β ^ Ml MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbek7aIzaaja WaaSbaaSqaaiaad2eacaWGSbaabeaaaaa@3AAE@ and λ ^ Ml MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeU7aSzaaja WaaSbaaSqaaiaad2eacaWGSbaabeaaaaa@3AC1@ , and an iterative procedure is applied to solve these equations numerically by Mathcad statistical package.22

The applicability of normal approximation of ML Estimation is in small sample size. A log-transformation can be considered for improvements in the performance of the normal approximation. Hence, based on the normal approximation, 100(1τ)% MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaigdacaaIWa GaaGimaiaacIcacaaIXaGaeyOeI0IaeqiXdqNaaiykaiaacwcaaaa@3EAC@ approximate confidence lengths are obtained respectively as

, α Acl = α ^ Ml { exp( Z τ/2 Var( α ^ Ml ) α ^ Ml )exp( Z τ/2 Var( α ^ Ml ) α ^ Ml ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHnaaBa aaleaacaWGbbGaam4yaiaadYgaaeqaaOGaeyypa0JafqySdeMbaKaa daWgaaWcbaGaamytaiaadYgaaeqaaOWaaiWaaeaaciGGLbGaaiiEai aacchadaqadaqaamaalaaabaGaamOwamaaBaaaleaadaWcgaqaaiab es8a0bqaaiaaikdaaaaabeaakmaakaaabaGaamOvaiaadggacaWGYb WaaeWaaeaacuaHXoqygaqcamaaBaaaleaacaWGnbGaamiBaaqabaaa kiaawIcacaGLPaaaaSqabaaakeaacuaHXoqygaqcamaaBaaaleaaca WGnbGaamiBaaqabaaaaaGccaGLOaGaayzkaaGaeyOeI0Iaciyzaiaa cIhacaGGWbWaaeWaaeaacqGHsisldaWcaaqaaiaadQfadaWgaaWcba WaaSGbaeaacqaHepaDaeaacaaIYaaaaaqabaGcdaGcaaqaaiaadAfa caWGHbGaamOCamaabmaabaGafqySdeMbaKaadaWgaaWcbaGaamytai aadYgaaeqaaaGccaGLOaGaayzkaaaaleqaaaGcbaGafqySdeMbaKaa daWgaaWcbaGaamytaiaadYgaaeqaaaaaaOGaayjkaiaawMcaaaGaay 5Eaiaaw2haaaaa@6BE7@                                (15)

β Acl = β ^ Ml { exp( Z τ/2 Var( β ^ Ml ) β ^ Ml )exp( Z τ/2 Var( β ^ Ml ) β ^ Ml ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek7aInaaBa aaleaacaWGbbGaam4yaiaadYgaaeqaaOGaeyypa0JafqOSdiMbaKaa daWgaaWcbaGaamytaiaadYgaaeqaaOWaaiWaaeaaciGGLbGaaiiEai aacchadaqadaqaamaalaaabaGaamOwamaaBaaaleaadaWcgaqaaiab es8a0bqaaiaaikdaaaaabeaakmaakaaabaGaamOvaiaadggacaWGYb WaaeWaaeaacuaHYoGygaqcamaaBaaaleaacaWGnbGaamiBaaqabaaa kiaawIcacaGLPaaaaSqabaaakeaacuaHYoGygaqcamaaBaaaleaaca WGnbGaamiBaaqabaaaaaGccaGLOaGaayzkaaGaeyOeI0Iaciyzaiaa cIhacaGGWbWaaeWaaeaacqGHsisldaWcaaqaaiaadQfadaWgaaWcba WaaSGbaeaacqaHepaDaeaacaaIYaaaaaqabaGcdaGcaaqaaiaadAfa caWGHbGaamOCamaabmaabaGafqOSdiMbaKaadaWgaaWcbaGaamytai aadYgaaeqaaaGccaGLOaGaayzkaaaaleqaaaGcbaGafqOSdiMbaKaa daWgaaWcbaGaamytaiaadYgaaeqaaaaaaOGaayjkaiaawMcaaaGaay 5Eaiaaw2haaaaa@6BF3@                                 (16)

and

λ Acl = λ ^ Ml { exp( Z τ/2 Var( λ ^ Ml ) λ ^ Ml )exp( Z τ/2 Var( λ ^ Ml ) λ ^ Ml ) }. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSnaaBa aaleaacaWGbbGaam4yaiaadYgaaeqaaOGaeyypa0Jafq4UdWMbaKaa daWgaaWcbaGaamytaiaadYgaaeqaaOWaaiWaaeaaciGGLbGaaiiEai aacchadaqadaqaamaalaaabaGaamOwamaaBaaaleaadaWcgaqaaiab es8a0bqaaiaaikdaaaaabeaakmaakaaabaGaamOvaiaadggacaWGYb WaaeWaaeaacuaH7oaBgaqcamaaBaaaleaacaWGnbGaamiBaaqabaaa kiaawIcacaGLPaaaaSqabaaakeaacuaH7oaBgaqcamaaBaaaleaaca WGnbGaamiBaaqabaaaaaGccaGLOaGaayzkaaGaeyOeI0Iaciyzaiaa cIhacaGGWbWaaeWaaeaacqGHsisldaWcaaqaaiaadQfadaWgaaWcba WaaSGbaeaacqaHepaDaeaacaaIYaaaaaqabaGcdaGcaaqaaiaadAfa caWGHbGaamOCamaabmaabaGafq4UdWMbaKaadaWgaaWcbaGaamytai aadYgaaeqaaaGccaGLOaGaayzkaaaaleqaaaGcbaGafq4UdWMbaKaa daWgaaWcbaGaamytaiaadYgaaeqaaaaaaOGaayjkaiaawMcaaaGaay 5Eaiaaw2haaiaac6caaaa@6D17@                                 (17)

Bootstrap confidence lengths

Another method for obtaining the confidence intervals is considered in this section proposed by Efron & Tibshirani.23 They have developed a technique that can be routinely applied without any hefty theoretical thought. This method is very useful in such cases when an assumption regarding the normality is invalid. Kreiss & Paparoditis24 stated that, this method is a re-sampling method for estimating biases, risks and confidence intervals in the statistical inference. Following, Kundu et al.,25 the bootstrap confidence limits are obtained for the underlying parameters. The bootstrap samples are obtained as

Step 1: Generate a sample of size d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsgaaaa@37F7@  from an underlying model given in Eq. (1) by using inversion method. The estimated distribution has obtained by using generated samples x (1) , x (2) ,..., x (d) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa WcbaGaaiikaiaaigdacaGGPaaabeaakiaacYcacaWG4bWaaSbaaSqa aiaacIcacaaIYaGaaiykaaqabaGccaGGSaGaaiOlaiaac6cacaGGUa GaaiilaiaadIhadaWgaaWcbaGaaiikaiaadsgacaGGPaaabeaaaaa@452E@ .

Step 2: From the estimated distribution obtained in Step 1, generate a bootstrap sample x (1) * , x (2) * ,..., x (d) * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaqhaa WcbaGaaiikaiaaigdacaGGPaaabaGaaiOkaaaakiaacYcacaWG4bWa a0baaSqaaiaacIcacaaIYaGaaiykaaqaaiaacQcaaaGccaGGSaGaai Olaiaac6cacaGGUaGaaiilaiaadIhadaqhaaWcbaGaaiikaiaadsga caGGPaaabaGaaiOkaaaaaaa@473B@ . Using T-IPH censoring patterns, the ML estimate α ^ Ml , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeg7aHzaaja WaaSbaaSqaaiaad2eacaWGSbaabeaakiaacYcaaaa@3B66@ β ^ Ml MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbek7aIzaaja WaaSbaaSqaaiaad2eacaWGSbaabeaaaaa@3AAE@  and λ ^ Ml MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeU7aSzaaja WaaSbaaSqaaiaad2eacaWGSbaabeaaaaa@3AC1@  say α ^ ^ Ml MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeg7aHzaajy aajaWaaSbaaSqaaiaad2eacaWGSbaabeaaaaa@3ABB@ , β ^ ^ Ml MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbek7aIzaajy aajaWaaSbaaSqaaiaad2eacaWGSbaabeaaaaa@3ABD@ and λ ^ ^ Ml MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeU7aSzaajy aajaWaaSbaaSqaaiaad2eacaWGSbaabeaaaaa@3AD0@ are computed for the estimated distribution.

Step 3: Repeat the above step up N(=1,000) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6eacaGGOa Gaeyypa0JaaGymaiaacYcacaaIWaGaaGimaiaaicdacaGGPaaaaa@3DD9@ times to obtain N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6eaaaa@37E1@ different bootstrap samples. Arrange all these samples ( α ^ ^ Ml MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeg7aHzaajy aajaWaaSbaaSqaaiaad2eacaWGSbaabeaaaaa@3ABB@ β ^ ^ Ml MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbek7aIzaajy aajaWaaSbaaSqaaiaad2eacaWGSbaabeaaaaa@3ABD@ , β ^ ^ Ml MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbek7aIzaajy aajaWaaSbaaSqaaiaad2eacaWGSbaabeaaaaa@3ABD@ and λ ^ ^ Ml MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeU7aSzaajy aajaWaaSbaaSqaaiaad2eacaWGSbaabeaaaaa@3AD0@ ) in ascending order  to obtain a final sample of the form

υ α 1 υ α 2 ... υ α N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabew8a1naaDa aaleaacqaHXoqyaeaacaaIXaaaaOGaeyizImQaeqyXdu3aa0baaSqa aiabeg7aHbqaaiaaikdaaaGccqGHKjYOcaGGUaGaaiOlaiaac6cacq GHKjYOcqaHfpqDdaqhaaWcbaGaeqySdegabaGaamOtaaaaaaa@4B5A@ for α ^ ^ Ml MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeg7aHzaajy aajaWaaSbaaSqaaiaad2eacaWGSbaabeaaaaa@3ABB@

υ β 1 υ β 2 ... υ β N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabew8a1naaDa aaleaacqaHYoGyaeaacaaIXaaaaOGaeyizImQaeqyXdu3aa0baaSqa aiabek7aIbqaaiaaikdaaaGccqGHKjYOcaGGUaGaaiOlaiaac6cacq GHKjYOcqaHfpqDdaqhaaWcbaGaeqOSdigabaGaamOtaaaaaaa@4B60@ for β ^ ^ Ml MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbek7aIzaajy aajaWaaSbaaSqaaiaad2eacaWGSbaabeaaaaa@3ABD@

and

υ λ 1 υ λ 2 ... υ λ N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabew8a1naaDa aaleaacqaH7oaBaeaacaaIXaaaaOGaeyizImQaeqyXdu3aa0baaSqa aiabeU7aSbqaaiaaikdaaaGccqGHKjYOcaGGUaGaaiOlaiaac6cacq GHKjYOcqaHfpqDdaqhaaWcbaGaeq4UdWgabaGaamOtaaaaaaa@4B99@ for λ ^ ^ Ml MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeU7aSzaajy aajaWaaSbaaSqaaiaad2eacaWGSbaabeaaaaa@3AD0@ .

Step 4: If H(y)=P( υ Θ * y) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIeacaGGOa GaamyEaiaacMcacqGH9aqpcaWGqbGaaiikaiabew8a1naaDaaaleaa cqqHyoquaeaacaGGQaaaaOGaeyizImQaamyEaiaacMcaaaa@443C@ be the cumulative density function of υ Θ * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabew8a1naaDa aaleaacqqHyoquaeaacaGGQaaaaaaa@3B27@ ; Θ=α,β,λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacUdacqGHai IicaqGGaGaeuiMdeLaeyypa0JaeqySdeMaaiilaiabek7aIjaacYca cqaH7oaBaaa@4211@  from final bootstrap samples. Then 100(1τ)% MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaigdacaaIWa GaaGimaiaacIcacaaIXaGaeyOeI0IaeqiXdqNaaiykaiaacwcaaaa@3EAC@  approximate bootstrap confidence limits (BCL) are given for Θ( =α,β,λ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfI5arnaabm aabaGaeyypa0JaeqySdeMaaiilaiabek7aIjaacYcacqaH7oaBaiaa wIcacaGLPaaaaaa@4168@

[ υ Θ * ( ε 2 ),  υ Θ * ( 2ε 2 ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaadmaabaGaeq yXdu3aa0baaSqaaiabfI5arbqaaiaacQcaaaGcdaqadaqaamaalaaa baGaeqyTdugabaGaaGOmaaaaaiaawIcacaGLPaaacaGGSaGaaeiiai abew8a1naaDaaaleaacqqHyoquaeaacaGGQaaaaOWaaeWaaeaadaWc aaqaaiaaikdacqGHsislcqaH1oqzaeaacaaIYaaaaaGaayjkaiaawM caaaGaay5waiaaw2faaaaa@4C3A@                                                                                                                 (18)

where υ Θ * = H 1 (y) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabew8a1naaDa aaleaacqqHyoquaeaacaGGQaaaaOGaeyypa0JaamisamaaCaaaleqa baGaeyOeI0IaaGymaaaakiaacIcacaWG5bGaaiykaaaa@413A@  for given y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMhaaaa@380C@ .

One-sample bayes prediction bound length

In lacks of any authentic advice for selection of prior distribution, it’s completely depends on individual interest, belief and objective in Bayesian methodology. Our major objective is to study the fruitfulness of the combination of T-IPH censoring and SS-PALT in terms of bound lengths under Bayesian setup. Prakash8 assumed the vague prior for all unknown parameters, so that the prior does not play any significant role in the analyses that follow. Hence, the joint prior probability density function is given as

π ( α,β,λ ) 1 αβλ ,α>0, β>0, λ>0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabec8aWnaaBa aaleaadaqadaqaaiabeg7aHjaabYcacqaHYoGycaqGSaGaeq4UdWga caGLOaGaayzkaaaabeaakiabg2Hi1oaalaaabaGaaGymaaqaaiabeg 7aHjabek7aIjabeU7aSbaacaqGSaGaeqySdeMaeyOpa4Jaaeimaiaa bYcacaqGGaGaeqOSdiMaeyOpa4JaaeimaiaabYcacaqGGaGaeq4UdW MaeyOpa4Jaaeimaiaab6caaaa@5644@                                                                            (19)

Based on Bayesian theorem, the joint and marginal posterior densities corresponding to parameters are obtained respectively as

π ( α,β,λ ) * = π ( α,β,λ ) ×L β λ α π ( α,β,λ ) ×L dα dλ dβ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabec8aWnaaDa aaleaadaqadaqaaiabeg7aHjaabYcacqaHYoGycaqGSaGaeq4UdWga caGLOaGaayzkaaaabaGaaiOkaaaakiabg2da9maalaaabaGaeqiWda 3aaSbaaSqaamaabmaabaGaeqySdeMaaeilaiabek7aIjaabYcacqaH 7oaBaiaawIcacaGLPaaaaeqaaOGaey41aqRaamitaaqaamaapefaba Waa8quaeaadaWdrbqaaiabec8aWnaaBaaaleaadaqadaqaaiabeg7a HjaabYcacqaHYoGycaqGSaGaeq4UdWgacaGLOaGaayzkaaaabeaaki abgEna0kaadYeacaqGGaGaamizaiabeg7aHjaabccacaWGKbGaeq4U dWMaaeiiaiaadsgacqaHYoGyaSqaaiabeg7aHbqab0Gaey4kIipaaS qaaiabeU7aSbqab0Gaey4kIipaaSqaaiabek7aIbqab0Gaey4kIipa aaaaaa@7177@

β d1 α d1 λ dδ1 ω 0   ω 1   e α ω d β β d1 ω 0 λ λ dδ1 ω 1 α α d1   e α ω d  dα dλ dβ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabg2Hi1oaala aabaGaeqOSdi2aaWbaaSqabeaacaWGKbGaeyOeI0IaaGymaaaakiab eg7aHnaaCaaaleqabaGaamizaiabgkHiTiaaigdaaaGccqaH7oaBda ahaaWcbeqaaiaadsgacqGHsislcqaH0oazcqGHsislcaaIXaaaaOGa eqyYdC3aaSbaaSqaaiaaicdaaeqaaOGaaeiiaiabeM8a3naaBaaale aacaaIXaaabeaakiaabccacaWGLbWaaWbaaSqabeaacqGHsislcqaH XoqycqaHjpWDdaWgaaadbaGaamizaaqabaaaaaGcbaWaa8quaeaacq aHYoGydaahaaWcbeqaaiaadsgacqGHsislcaaIXaaaaOGaeqyYdC3a aSbaaSqaaiaaicdaaeqaaOWaa8quaeaacqaH7oaBdaahaaWcbeqaai aadsgacqGHsislcqaH0oazcqGHsislcaaIXaaaaOGaeqyYdC3aaSba aSqaaiaaigdaaeqaaOWaa8quaeaacqaHXoqydaahaaWcbeqaaiaads gacqGHsislcaaIXaaaaOGaaeiiaiaadwgadaahaaWcbeqaaiabgkHi Tiabeg7aHjabeM8a3naaBaaameaacaWGKbaabeaaaaGccaqGGaGaam izaiabeg7aHjaabccacaWGKbGaeq4UdWMaaeiiaiaadsgacqaHYoGy aSqaaiabeg7aHbqab0Gaey4kIipaaSqaaiabeU7aSbqab0Gaey4kIi paaSqaaiabek7aIbqab0Gaey4kIipaaaaaaa@87C3@

π ( α,β,λ ) * Ω  β d1 α d1 λ dδ1 ω 0   ω 1   e α ω d  ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgkDiElabec 8aWnaaDaaaleaadaqadaqaaiabeg7aHjaabYcacqaHYoGycaqGSaGa eq4UdWgacaGLOaGaayzkaaaabaGaaiOkaaaakiabg2Hi1kabfM6axj aabccacqaHYoGydaahaaWcbeqaaiaadsgacqGHsislcaaIXaaaaOGa eqySde2aaWbaaSqabeaacaWGKbGaeyOeI0IaaGymaaaakiabeU7aSn aaCaaaleqabaGaamizaiabgkHiTiabes7aKjabgkHiTiaaigdaaaGc cqaHjpWDdaWgaaWcbaGaaGimaaqabaGccaqGGaGaeqyYdC3aaSbaaS qaaiaaigdaaeqaaOGaaeiiaiaadwgadaahaaWcbeqaaiabgkHiTiab eg7aHjabeM8a3naaBaaameaacaWGKbaabeaaaaGccaqGGaGaae4oaa aa@6629@                                                            (20)

where Ω= { Γ(d) β β d1 ω 0 λ λ dδ1 ω 1 ( ω d ) d dλ dβ } 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfM6axjabg2 da9maacmaabaGaeu4KdCKaaeikaiaabsgacaqGPaWaa8quaeaacqaH YoGydaahaaWcbeqaaiaadsgacqGHsislcaaIXaaaaOGaeqyYdC3aaS baaSqaaiaaicdaaeqaaOWaa8quaeaacqaH7oaBdaahaaWcbeqaaiaa dsgacqGHsislcqaH0oazcqGHsislcaaIXaaaaOWaaSaaaeaacqaHjp WDdaWgaaWcbaGaaGymaaqabaaakeaadaqadaqaaiabeM8a3naaBaaa leaacaWGKbaabeaaaOGaayjkaiaawMcaamaaCaaaleqabaGaamizaa aaaaGccaWGKbGaeq4UdWMaaeiiaiaadsgacqaHYoGyaSqaaiabeU7a Sbqab0Gaey4kIipaaSqaaiabek7aIbqab0Gaey4kIipaaOGaay5Eai aaw2haamaaCaaaleqabaGaeyOeI0Iaaeymaaaaaaa@659B@ .

Corresponding to parameters α, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHjaacY caaaa@395D@ β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek7aIbaa@38AF@  and λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSbaa@38C2@ , marginal posteriors densities are obtained as

π ( α ) * Ω  α d1   β β d1 ω 0 λ ω 1   λ dδ1   e α ω d dλ dβ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabec8aWnaaDa aaleaadaqadaqaaiabeg7aHbGaayjkaiaawMcaaaqaaiaacQcaaaGc cqGHDisTcqqHPoWvcaqGGaGaeqySde2aaWbaaSqabeaacaWGKbGaey OeI0IaaGymaaaakiaabccadaWdrbqaaiabek7aInaaCaaaleqabaGa amizaiabgkHiTiaaigdaaaGccqaHjpWDdaWgaaWcbaGaaGimaaqaba GcdaWdrbqaaiabeM8a3naaBaaaleaacaaIXaaabeaakiaabccacqaH 7oaBdaahaaWcbeqaaiaadsgacqGHsislcqaH0oazcqGHsislcaaIXa aaaOGaaeiiaiaadwgadaahaaWcbeqaaiabgkHiTiabeg7aHjabeM8a 3naaBaaameaacaWGKbaabeaaaaGccaWGKbGaeq4UdWMaaeiiaiaads gacqaHYoGyaSqaaiabeU7aSbqab0Gaey4kIipaaSqaaiabek7aIbqa b0Gaey4kIipaaaa@6C0E@ ,                                                                      (21)

π ( β ) * Ω Γ(d) β d1 ω 0 λ ω 1   λ dδ1 ( ω d ) d dλ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabec8aWnaaDa aaleaadaqadaqaaiabek7aIbGaayjkaiaawMcaaaqaaiaacQcaaaGc cqGHDisTcqqHPoWvcaqGGaGaeu4KdCKaaeikaiaabsgacaqGPaGaeq OSdi2aaWbaaSqabeaacaWGKbGaeyOeI0IaaGymaaaakiabeM8a3naa BaaaleaacaaIWaaabeaakmaapefabaGaeqyYdC3aaSbaaSqaaiaaig daaeqaaOGaaeiiaiabeU7aSnaaCaaaleqabaGaamizaiabgkHiTiab es7aKjabgkHiTiaaigdaaaGcdaqadaqaaiabeM8a3naaBaaaleaaca WGKbaabeaaaOGaayjkaiaawMcaamaaCaaaleqabaGaeyOeI0Iaamiz aaaakiaadsgacqaH7oaBaSqaaiabeU7aSbqab0Gaey4kIipaaaa@62E3@                                                                               (22)

and

π ( λ ) * Ω Γ(d) λ dδ1 β ω 0   ω 1   β d1 ( ω d ) d dβ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabec8aWnaaDa aaleaadaqadaqaaiabeU7aSbGaayjkaiaawMcaaaqaaiaacQcaaaGc cqGHDisTcqqHPoWvcaqGGaGaeu4KdCKaaeikaiaabsgacaqGPaGaeq 4UdW2aaWbaaSqabeaacaWGKbGaeyOeI0IaeqiTdqMaeyOeI0IaaGym aaaakmaapefabaGaeqyYdC3aaSbaaSqaaiaaicdaaeqaaOGaaeiiai abeM8a3naaBaaaleaacaaIXaaabeaakiaabccacqaHYoGydaahaaWc beqaaiaadsgacqGHsislcaaIXaaaaOWaaeWaaeaacqaHjpWDdaWgaa WcbaGaamizaaqabaaakiaawIcacaGLPaaadaahaaWcbeqaaiabgkHi TiaadsgaaaGccaWGKbGaeqOSdigaleaacqaHYoGyaeqaniabgUIiYd aaaa@6373@ .                                                             (23)

Prediction of the future observations based on informative sample is an interesting topic in Bayesian analysis and have used in various purposes. Several applications can be found in actuarial studies, rainfall extremes, guarantee data analysis and highest water levels. For example, in guarantee data analysis, setting up warranty period for a product, a manufacturer would use some of the known previous failure times to predict a suitable warranty period of the product. Several applications of Bayes prediction were discussed by Al-Hussaini,26 in different areas of applied statistics.

Now, let us assume X _ ( = x (1) , x (2) ,..., x (d) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaamaaabaGaam iwaaaadaqadaqaaiabg2da9iaadIhadaWgaaWcbaGaaiikaiaaigda caGGPaaabeaakiaacYcacaWG4bWaaSbaaSqaaiaacIcacaaIYaGaai ykaaqabaGccaGGSaGaaiOlaiaac6cacaGGUaGaaiilaiaadIhadaWg aaWcbaGaaiikaiaadsgacaGGPaaabeaaaOGaayjkaiaawMcaaaaa@48B4@  be the first ordered observed items from Burr Type-XII distribution under above considered scenario. If Z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadQfaaaa@37ED@ is assumed as future random variable following underlying model having independent ordered sample Z _ ( = z (1) , z (2) ,..., z (d) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaamaaabaGaam Owaaaadaqadaqaaiabg2da9iaadQhadaWgaaWcbaGaaiikaiaaigda caGGPaaabeaakiaacYcacaWG6bWaaSbaaSqaaiaacIcacaaIYaGaai ykaaqabaGccaGGSaGaaiOlaiaac6cacaGGUaGaaiilaiaadQhadaWg aaWcbaGaaiikaiaadsgacaGGPaaabeaaaOGaayjkaiaawMcaaaaa@48BC@ under similar scenario. Then the Bayes predictive density function corresponding to a variable Z, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadQfacaGGSa aaaa@389D@ is denoted and defined as

h( z| x _ )= Θ f( z;α,β )× π ( Θ ) *  dΘ ; Θ=α,β,λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIgadaqada qaaiaadQhacaGG8bWaaWaaaeaacaWG4baaaaGaayjkaiaawMcaaiab g2da9maapefabaGaamOzamaabmaabaGaamOEaiaacUdacqaHXoqyca GGSaGaeqOSdigacaGLOaGaayzkaaGaey41aqRaeqiWda3aa0baaSqa amaabmaabaGaeuiMdefacaGLOaGaayzkaaaabaGaaiOkaaaakiaabc cacaWGKbGaeuiMdeLaaeiiaiaacUdacaqGGaGaeuiMdeLaeyypa0Ja eqySdeMaaeilaiabek7aIjaabYcacqaH7oaBaSqaaiabfI5arbqab0 Gaey4kIipaaaa@5F09@ .                                                           (24)

The Eq. (24) is known as Bayes predictive density function, defined for the parameters α,β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHjaabY cacqaHYoGyaaa@3AFD@ and acceleration factor λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSbaa@38C2@ separately. No explicit solution of Eq. (24) exist for either parameter. We continue with Eq. (24) numerically for all parameters respectively. The lower and upper Bayes prediction bound limits are denoted by l 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYgadaWgaa WcbaGaaGymaaqabaaaaa@38E6@  and l 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYgadaWgaa WcbaGaaGOmaaqabaaaaa@38E7@ respectively. Thus, the 100 (1τ)% MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaigdacaaIWa GaaGimaiaabccacaGGOaGaaGymaiabgkHiTiabes8a0jaacMcacaGG Laaaaa@3F4F@  BPBL for Z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadQfaaaa@37ED@ corresponding to the parameter Θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfI5arbaa@3885@ , under the considered censoring scenario is obtained by solving following equation

L=[ P( Z l 2 )= τ 2 ][ P( Z l 1 )= τ 2 ] . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeacqGH9a qpdaWadaqaaiaadcfadaqadaqaaiaadQfacqGHLjYScaWGSbWaaSba aSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaGaeyypa0ZaaSaaaeaacq aHepaDaeaacaaIYaaaaaGaay5waiaaw2faaiabgkHiTmaadmaabaGa amiuamaabmaabaGaamOwaiabgsMiJkaadYgadaWgaaWcbaGaaGymaa qabaaakiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiabes8a0bqaaiaa ikdaaaaacaGLBbGaayzxaaGaaeiiaiaac6caaaa@53F3@                                                                                    (25)

Simplifying Eq. (25), we get the non-simplified expressions for the lower and upper Bayes prediction bound limits as

( 1 τ 2 )= Θ ( 1 l 1 α )× π ( Θ ) *  dΘ ; Θ=α,β,λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaaG ymaiabgkHiTmaalaaabaGaeqiXdqhabaGaaGOmaaaaaiaawIcacaGL PaaacqGH9aqpdaWdrbqaamaabmaabaGaaGymaiabgkHiTiaadYgada qhaaWcbaGaaGymaaqaaiabgkHiTiabeg7aHbaaaOGaayjkaiaawMca aiabgEna0kabec8aWnaaDaaaleaadaqadaqaaiabfI5arbGaayjkai aawMcaaaqaaiaacQcaaaGccaqGGaGaamizaiabfI5arjaabccacaGG 7aGaaeiiaiabfI5arjabg2da9iabeg7aHjaabYcacqaHYoGycaqGSa Gaeq4UdWgaleaacqqHyoquaeqaniabgUIiYdaaaa@5EC7@                                                                                (26)

and

( τ 2 )= Θ ( 1 l 2 α )× π ( Θ ) *  dΘ ; Θ=α,β,λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaWaaS aaaeaacqaHepaDaeaacaaIYaaaaaGaayjkaiaawMcaaiabg2da9maa pefabaWaaeWaaeaacaaIXaGaeyOeI0IaamiBamaaDaaaleaacaaIYa aabaGaeyOeI0IaeqySdegaaaGccaGLOaGaayzkaaGaey41aqRaeqiW da3aa0baaSqaamaabmaabaGaeuiMdefacaGLOaGaayzkaaaabaGaai OkaaaakiaabccacaWGKbGaeuiMdeLaaeiiaiaacUdacaqGGaGaeuiM deLaeyypa0JaeqySdeMaaeilaiabek7aIjaabYcacqaH7oaBaSqaai abfI5arbqab0Gaey4kIipaaaa@5D20@ .                                                                                    (27)

Eq. (26) and Eq. (27) has not simplified further for parameters α,β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHjaabY cacqaHYoGyaaa@3AFD@ and λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSbaa@38C2@ separately. Numerical technique is applied herewith for obtaining the BPBL under the above scenario.

Numerical study based on simulated data

A simulation study by using Metropolis-Hastings algorithm has been carried out for analyzing fruitfulness of considered scenario in this section. Metropolis et al.27 and Hastings28 has deliberated this algorithm which was based on the posterior distribution by use of an arbitrary proposal distribution for simulating samples. Mahmoud et al.29 and Kayal et al., recently explored more about the M-H algorithm. The main objective of the present paper is to assess the effect of combining two different approaches SS-PALT and T-IPH censoring on bound lengths. The numerical findings are computed by using Monte Carlo simulations on 10,000 replications followed by Kayal et al.17

Thirty test units (n=30) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaabIcacaqGUb Gaeyypa0Jaae4maiaabcdacaqGPaaaaa@3BC5@ have been fixed for the numerical study in prior. Three different censoring stages 10, 15 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaabgdacaqGWa GaaeilaiaabccacaqGXaGaaeynaaaa@3B33@  and 20 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaabkdacaqGWa aaaa@3876@ along with four pre-assumed different progressive censoring patterns have been designated for the studying of the behavior of censored sample size and censoring patterns. The pre-assumed progressive censoring schemes are (2, 1, 3, 2, 3, 2, 2, 0, 2, 3) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaabIcacaqGYa GaaeilaiaabccacaqGXaGaaeilaiaabccacaqGZaGaaeilaiaabcca caqGYaGaaeilaiaabccacaqGZaGaaeilaiaabccacaqGYaGaaeilai aabccacaqGYaGaaeilaiaabccacaqGWaGaaeilaiaabccacaqGYaGa aeilaiaabccacaqGZaGaaeykaaaa@4B59@ , (0, 1, 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaabIcacaqGWa GaaeilaiaabccacaqGXaGaaeilaiaabccacaqGXaaaaa@3C78@ ,1, 0, 2, 1, 0, 3, 0, 2, 1, 2, 1, 0) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaabYcacaqGXa GaaeilaiaabccacaqGWaGaaeilaiaabccacaqGYaGaaeilaiaabcca caqGXaGaaeilaiaabccacaqGWaGaaeilaiaabccacaqGZaGaaeilai aabccacaqGWaGaaeilaiaabccacaqGYaGaaeilaiaabccacaqGXaGa aeilaiaabccacaqGYaGaaeilaiaabccacaqGXaGaaeilaiaabccaca qGWaGaaeykaaaa@4F60@ (1, 0, 1, 0, 1, 1, 2, 3, 0, 2, 0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaabIcacaqGXa GaaeilaiaabccacaqGWaGaaeilaiaabccacaqGXaGaaeilaiaabcca caqGWaGaaeilaiaabccacaqGXaGaaeilaiaabccacaqGXaGaaeilai aabccacaqGYaGaaeilaiaabccacaqGZaGaaeilaiaabccacaqGWaGa aeilaiaabccacaqGYaGaaeilaiaabccacaqGWaGaaeilaaaa@4D58@ 1, 0, 1, 2) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaabgdacaqGSa GaaeiiaiaabcdacaqGSaGaaeiiaiaabgdacaqGSaGaaeiiaiaabkda caqGPaaaaa@3E80@ and (0, 1, 0, 1, 0, 1, 0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaabIcacaqGWa GaaeilaiaabccacaqGXaGaaeilaiaabccacaqGWaGaaeilaiaabcca caqGXaGaaeilaiaabccacaqGWaGaaeilaiaabccacaqGXaGaaeilai aabccacaqGWaGaaeilaaaa@453C@ 0, 2, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaabcdacaqGSa GaaeiiaiaabkdacaqGSaGaaeiiaiaabcdacaqGSaGaaeiiaiaabgda caqGSaGaaeiiaiaabcdacaqGSaGaaeiiaiaabgdacaqGSaGaaeiiai aabcdacaqGSaGaaeiiaiaabgdacaqGSaGaaeiiaiaabcdacaqGSaGa aeiiaiaabgdacaqGSaGaaeiiaiaabcdacaqGSaGaaeiiaiaabgdaca qGSaGaaeiiaiaabcdacaqGPaaaaa@50B0@ . For perceiving the effect of censoring pattern when other parametric values are fixed a different censoring pattern for m(=15) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaab2gacaqGOa Gaeyypa0JaaeymaiaabwdacaqGPaaaaa@3BC7@ has assumed also.

The stress change time ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaabw7aaaa@3849@  is optimized as discussed in the previous section by the method of minimization of the asymptotic variance of ML estimators for α,β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHjaabY cacqaHYoGyaaa@3AFD@ and λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSbaa@38C2@ . The values for the parameters under study has assumed for numerical extents as α=β=0.50 (0.10) 2.50=λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHjabg2 da9iabek7aIjabg2da9iaaicdacaGGUaGaaGynaiaaicdacaqGGaGa aiikaiaaicdacaGGUaGaaGymaiaaicdacaGGPaGaaeiiaiaaikdaca GGUaGaaGynaiaaicdacqGH9aqpcqaH7oaBaaa@4A60@ . In the present discussion, we also have to find out the optimum values of α,β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHjaabY cacqaHYoGyaaa@3AFD@ and λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSbaa@38C2@ for which the magnitude of bound lengths maximizes numerically when other parametric values considered to be fixed. Therefore, we assumed all possible combinations of values of these three parameters from 0.50 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaabcdacaqGUa Gaaeynaiaabcdaaaa@39DD@ to 2.50 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaabkdacaqGUa Gaaeynaiaabcdaaaa@39DF@ with an increment of 0.10 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaabcdacaqGUa Gaaeymaiaabcdaaaa@39D9@ . The failure time was assumed here as t=05, 09 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaabshacqGH9a qpcaqGWaGaaeynaiaabYcacaqGGaGaaeimaiaabMdaaaa@3D37@ . In the present article, our focus is not only on combining the SS-PALT with T-IPH. We have also studied Type-I censoring & Type-II progressive censoring combined with SS-PALT under similar test situations.

The numerical findings in terms of bound lengths on simulated data are presented in Tables 1-3. The Bayes prediction bound length has been obtained for each parameter for all pre-assumed parametric values as discussed above. From all possible combinations of pre-assumed numerical values of α,β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHjaabY cacqaHYoGyaaa@3AFD@ and λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSbaa@38C2@ the widest BPBL have noticed for α=1.40, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHjabg2 da9iaaigdacaGGUaGaaGinaiaaicdacaGGSaaaaa@3D48@ β=0.90 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek7aIjabg2 da9iaaicdacaGGUaGaaGyoaiaaicdaaaa@3C9E@ and λ=1.60 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSjabg2 da9iaaigdacaGGUaGaaGOnaiaaicdaaaa@3CAF@ . Hence, the numerical findings are presented here only for three combinations α=β=λ=0.50 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHjabg2 da9iabek7aIjabg2da9iabeU7aSjabg2da9iaaicdacaGGUaGaaGyn aiaaicdaaaa@41F9@ , α=1.40, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHjabg2 da9iaaigdacaGGUaGaaGinaiaaicdacaGGSaaaaa@3D48@ β=0.90,λ=1.60 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek7aIjabg2 da9iaaicdacaGGUaGaaGyoaiaaicdacaGGSaGaeq4UdWMaeyypa0Ja aGymaiaac6cacaaI2aGaaGimaaaa@42EF@  and α=β=λ=2.50 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHjabg2 da9iabek7aIjabg2da9iabeU7aSjabg2da9iaaikdacaGGUaGaaGyn aiaaicdaaaa@41FB@ .

n=30 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6gacqGH9a qpcaaIZaGaaGimaaaa@3A7E@ t = 05 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadshacqGH9a qpcaaIWaGaaGynaaaa@3A86@

t = 09 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadshacqGH9a qpcaaIWaGaaGyoaaaa@3A8A@

τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgcziSkabes 8a0jabgkziUcaa@3CA9@

τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgcziSkabes 8a0jabgkziUcaa@3CA9@

α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHbaa@38AD@ β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek7aIbaa@38AF@ λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSbaa@38C2@ m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gaaaa@3800@

99%

95%

90%

99%

95%

90%

α Acl MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHnaaBa aaleaacaWGbbGaam4yaiaadYgaaeqaaaaa@3B78@

0.50

0.50

0.50

10

1.7951

1.7634

1.6895

1.5435

1.4626

1.3823

15(I)

1.6252

1.6188

1.5533

1.3542

1.3481

1.3023

15(II)

1.5327

1.5258

1.4431

1.2741

1.2652

1.2078

20

1.2503

1.2477

1.2247

1.0247

1.0181

0.9522

1.40

0.90

1.60

10

2.5754

2.5302

2.4241

2.2447

2.1323

2.0161

15(I)

2.3578

2.3481

2.2529

1.9721

1.9623

1.8975

15(II)

2.2289

2.2196

2.0989

1.8608

1.8386

1.7643

20

1.8716

1.8634

1.7432

1.5411

1.5289

1.4322

2.50

2.50

2.50

10

1.6616

1.6321

1.5638

1.4285

1.3538

1.2799

15(I)

1.5038

1.4896

1.4345

1.2533

1.2474

1.2109

15(II)

1.4186

1.4122

1.3839

1.1792

1.1711

1.1179

20

1.1578

1.1543

1.1327

0.9477

0.9427

0.8831

β Acl MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek7aInaaBa aaleaacaWGbbGaam4yaiaadYgaaeqaaaaa@3B7A@

0.50

0.50

0.50

10

1.7454

1.7126

1.6417

1.4417

1.3707

1.2962

15(I)

1.5817

1.5764

1.5116

1.2813

1.2726

1.2334

15(II)

1.4611

1.4525

1.3747

1.1776

1.1687

1.1157

20

0.9888

0.9878

0.9689

0.7729

0.7684

0.7187

1.40

0.90

1.60

10

2.8585

2.8064

2.6895

2.4225

2.3006

2.1753

15(I)

2.6398

2.6301

2.5227

2.1503

2.1409

2.0695

15(II)

2.4414

2.4292

2.2981

1.9813

1.9571

1.8728

20

1.7295

1.7229

1.6109

1.3626

1.3523

1.2667

2.50

2.50

2.50

10

1.6161

1.5855

1.5199

1.3394

1.2688

1.1997

15(I)

1.4629

1.4501

1.3958

1.1852

1.1804

1.1459

15(II)

1.3528

1.3446

1.3185

1.0999

1.0819

1.0329

20

0.9152

0.9135

0.8957

0.7146

0.7112

0.6647

λ Acl MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSnaaBa aaleaacaWGbbGaam4yaiaadYgaaeqaaaaa@3B8D@

0.50

0.50

0.50

10

1.4666

1.4386

1.3791

1.1736

1.1114

1.0521

15(I)

1.3369

1.3328

1.2777

1.0523

1.0481

1.0123

15(II)

1.2023

1.1956

1.1291

0.9412

0.9318

0.8917

20

0.6789

0.6786

0.6655

0.5057

0.5031

0.4704

1.40

0.90

1.60

10

2.7423

2.6927

2.5806

2.2622

2.1482

2.0314

15(I)

2.5656

2.5563

2.4517

2.0342

2.0255

1.9579

15(II)

2.3117

2.2998

2.1755

1.8252

1.8025

1.7393

20

1.3873

1.3823

1.2921

1.0454

1.0376

0.9718

2.50

2.50

2.50

10

1.3581

1.3319

1.2769

1.0865

1.0293

0.9729

15(I)

1.2364

1.2264

1.1797

0.9733

0.9695

0.9412

15(II)

1.1143

1.1027

1.0855

0.8714

0.8647

0.8254

20

0.6282

0.6274

0.6149

0.4674

0.4655

0.4351

Table 1 Approximate confidence lengths (ACL) for simulated data

n=30 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6gacqGH9a qpcaaIZaGaaGimaaaa@3A7E@ t=05 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadshacqGH9a qpcaaIWaGaaGynaaaa@3A86@

t=09 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadshacqGH9a qpcaaIWaGaaGyoaaaa@3A8A@

τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgcziSkabes 8a0jabgkziUcaa@3CA9@ τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgcziSkabes 8a0jabgkziUcaa@3CA9@
α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHbaa@38AD@ β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek7aIbaa@38AF@ λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSbaa@38C2@ m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gaaaa@3800@

99%

95%

90%

99%

95%

90%

For Parameter α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHbaa@38AD@

0.50

0.50

0.50

10

1.9237

1.8829

1.8102

1.6244

1.5391

1.4546

15(I)

1.7414

1.7375

1.6617

1.4328

1.4265

1.3781

15(II)

1.6262

1.6118

1.5307

1.3313

1.3217

1.2618

20

1.2101

1.2018

1.1855

0.9684

0.9624

0.9443

1.40

0.90

1.60

10

2.9493

2.8968

2.7756

2.5335

2.4079

2.2768

15(I)

2.7132

2.7025

2.5926

2.2394

2.2285

2.1549

15(II)

2.5356

2.5243

2.3874

2.0874

2.0621

1.9789

20

1.6957

1.6589

1.6228

1.4762

1.4614

1.3865

2.50

2.50

2.50

10

1.7809

1.7485

1.6756

1.5035

1.4247

1.3427

15(I)

1.6135

1.5987

1.5393

1.3259

1.3198

1.2813

15(II)

1.5053

1.4977

1.4681

1.2323

1.2235

1.1681

20

1.1203

1.1173

1.0962

0.8955

0.8921

0.8346

For Parameter β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek7aIbaa@38AF@

0.50

0.50

0.50

10

2.0613

2.0234

1.9394

1.7096

1.6196

1.5306

15(I)

1.8717

1.8652

1.7891

1.5161

1.5095

1.4584

15(II)

1.7252

1.7157

1.6235

1.3921

1.3808

1.3182

20

0.9841

0.9694

0.9474

0.7251

0.7196

0.7006

1.40

0.90

1.60

10

3.3771

3.3162

3.1779

2.8627

2.7129

2.5721

15(I)

3.1227

3.1107

2.9839

2.5432

2.5311

2.4475

15(II)

2.8842

2.8705

2.7152

2.3414

2.3127

2.2194

20

1.7195

1.7029

1.5909

1.3526

1.3323

1.2567

2.50

2.50

2.50

10

1.9086

1.8743

1.7952

1.5825

1.4992

1.4175

15(I)

1.7314

1.7146

1.6519

1.4028

1.3965

1.3558

15(II)

1.5972

1.5883

1.5572

1.2878

1.2783

1.2203

20

0.9112

0.9035

0.8907

0.7086

0.7012

0.6547

For Parameter λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSbaa@38C2@

0.50

0.50

0.50

10

1.6272

1.5991

1.5335

1.3033

1.2351

1.1686

15(I)

1.4875

1.4812

1.4203

1.1704

1.1655

1.1257

15(II)

1.3342

1.3259

1.2557

1.0451

1.0422

0.9913

20

0.6598

0.6578

0.6565

0.4997

0.4887

0.4674

1.40

0.90

1.60

10

3.0458

2.9928

2.8691

2.5132

2.3873

2.2568

15(I)

2.8531

2.8412

2.7215

2.2619

2.2515

2.1758

15(II)

2.5664

2.5562

2.4187

2.0274

2.0032

1.9253

20

1.3453

1.3243

1.2791

1.0324

1.0306

0.9688

2.50

2.50

2.50

10

1.5066

1.4804

1.4201

1.2065

1.1437

1.0817

15(I)

1.3759

1.3631

1.3113

1.0827

1.0781

1.0457

15(II)

1.2357

1.2306

1.2074

0.9674

0.9607

0.9178

20

0.6122

0.6094

0.5914

0.4564

0.4555

0.4235

Table 2 Bootstrap confidence lengths (BCL) for simulated data

n=30 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6gacqGH9a qpcaaIZaGaaGimaaaa@3A7E@

t=05

t=09
τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgcziSkabes 8a0jabgkziUcaa@3CA9@ τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgcziSkabes 8a0jabgkziUcaa@3CA9@
α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHbaa@38AD@ β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek7aIbaa@38AF@ λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSbaa@38C2@ m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gaaaa@3800@

99%

95%

90%

99%

95%

90%

For Parameter α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHbaa@38AD@

0.50

0.50

0.50

10

2.5541

2.5107

2.4047

2.2368

2.1201

2.0045

15(I)

2.3126

2.3027

2.2097

1.9541

1.9449

1.8799

15(II)

2.2023

2.1942

2.0746

1.8597

1.8472

1.7633

20

1.9728

1.9677

1.9321

1.6553

1.6443

1.5379

1.40

0.90

1.60

10

3.4295

3.3709

3.2289

3.0319

2.8804

2.7234

15(I)

3.1281

3.1146

2.9889

2.6512

2.6384

2.5504

15(II)

2.9877

2.9768

2.8141

2.5303

2.5005

2.3995

20

2.7328

2.7199

2.5452

2.3002

2.2815

2.1372

2.50

2.50

2.50

10

2.3639

2.3235

2.2256

2.0701

1.9621

1.8549

15(I)

2.1402

2.1193

2.0415

1.8085

1.7999

1.7471

15(II)

2.0382

2.0307

1.9892

1.7209

1.7098

1.6319

20

1.8273

1.8209

1.7872

1.5312

1.5227

1.4233

For Parameter β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek7aIbaa@38AF@

0.50

0.50

0.50

10

3.2855

3.2279

3.0923

2.7762

2.6309

2.4875

15(I)

2.9889

2.9727

2.8561

2.4545

2.4435

2.3618

15(II)

2.7765

2.7644

2.6145

2.2749

2.2519

2.1565

20

2.0752

2.0707

2.0327

1.6599

1.6493

1.5426

1.40

0.90

1.60

10

5.0395

4.9515

4.7437

4.3337

4.1167

3.8924

15(I)

4.6469

4.6279

4.4403

3.8347

3.8167

3.6895

15(II)

4.3312

4.3143

4.0794

3.5679

3.5253

3.3831

20

3.3532

3.3382

3.1223

2.6999

2.6784

2.5089

2.50

2.50

2.50

10

3.0412

2.9875

2.8623

2.5695

2.4349

2.3021

15(I)

2.7655

2.7395

2.6382

2.2713

2.2611

2.1947

15(II)

2.5701

2.5587

2.5071

2.1053

2.0911

1.9959

20

1.9217

1.9159

1.8798

1.5353

1.5271

1.4274

For Parameter λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSbaa@38C2@

0.50

0.50

0.50

10

3.1472

3.0912

2.9617

2.6123

2.4754

2.3405

15(I)

2.8703

2.8593

2.7429

2.3237

2.3135

2.2361

15(II)

2.6323

2.6207

2.4729

2.1251

2.1191

2.0143

20

1.7976

1.7941

1.7609

1.4039

1.3951

1.3048

1.40

0.90

1.60

10

5.1594

5.0685

4.8561

4.3761

4.1568

3.9303

15(I)

4.7846

4.7654

4.5719

3.8958

3.8777

3.7485

15(II)

4.4055

4.3867

4.1482

3.5784

3.5354

3.3928

20

3.1375

3.1239

2.9221

2.4708

2.4512

2.2961

2.50

2.50

2.50

10

2.9134

2.8611

2.7416

2.4179

2.2921

2.1661

15(I)

2.6556

2.6321

2.5334

2.1501

2.1406

2.0779

15(II)

2.4374

2.4258

2.3772

1.9668

1.9532

1.8643

20

1.6644

1.6598

1.6283

1.2983

1.2916

1.2072

Table 3 Bayes prediction bound lengths for simulated data.

One-sample Bayes prediction bound lengths have been present in Table 03 for selected parametric values as discussed in the above paragraphs. It has been observed that, BPBL getting wider as the level of significance increases. Further, the bound lengths getting narrower when censored sample size m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gaaaa@3800@ increases. For fixed m=15 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gacqGH9a qpcaaIXaGaaGynaaaa@3A80@ , two different censoring patterns have been used and it has observed that, the different censoring patterns play a significant role in BPBL. The magnitude of BPBL has observed wider for first censoring pattern when they compared with second one for fixed m=15 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gacqGH9a qpcaaIXaGaaGynaaaa@3A80@ . The BPBL also has seen wider for small t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadshaaaa@3807@ . It has been already discussed that, the BPBL increases first when values of parameter under consideration increases from α=β=λ=0.50 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHjabg2 da9iabek7aIjabg2da9iabeU7aSjabg2da9iaaicdacaGGUaGaaGyn aiaaicdaaaa@41F9@ and touches maximum at α=1.40,β=0.90, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHjabg2 da9iaaigdacaGGUaGaaGinaiaaicdacaGGSaGaeqOSdiMaeyypa0Ja aGimaiaac6cacaaI5aGaaGimaiaacYcaaaa@4388@ λ=1.60 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSjabg2 da9iaaigdacaGGUaGaaGOnaiaaicdaaaa@3CAF@ , then the bound lengths decreases for other values of parameter under consideration.

The Table 01 & Table 02 presents the approximate confidence lengths (ACL) and bootstrap confidence lengths (BCL) respectively for selected parametric values. All properties have been seen similar as discussed in above for BPBL. In terms of the bound lengths, the BPBL has seen wider when they compared with BCL and ACL. On the other hand, magnitudes of bootstrap confidence length have seen wider when they compared with ACL. However, for large sample (m=20) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacIcacaWGTb Gaeyypa0JaaGOmaiaaicdacaGGPaaaaa@3BD5@ the inverse effect has been observed.

In the present discussion, we also appraise two different censoring patterns (Progressive Type-II (PT-II) and Type-I censoring (T-I)) separately under above supposed settings combined with SS-PAT. The numerical findings are obtained for all pre-assumed values; however, avoiding a number of tables, the numerical findings are presented here for selected values only.

Table 04, shows the bound lengths under PT-II censoring on SS-PALT for all parameters under consideration. The numerical findings are reported similar behavior as discussed above in the case of T-IPH censoring pattern. The remarkable point is that, the magnitude of bound lengths was noted narrower for PT-II censoring when they compared with T-IPH censoring pattern (other parametric values assumed to be fixed).

PT-II Censoring

n=30 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6gacqGH9a qpcaaIZaGaaGimaaaa@3A7E@ t=05 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadshacqGH9a qpcaaIWaGaaGynaaaa@3A86@ t=09 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadshacqGH9a qpcaaIWaGaaGyoaaaa@3A8A@
τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgcziSkabes 8a0jabgkziUcaa@3CA9@ τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgcziSkabes 8a0jabgkziUcaa@3CA9@
m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gaaaa@3800@

99%

95%

90%

99%

95%

90%

For Parameter α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHbaa@38AD@

BPBL

10

3.1229

3.0691

2.9329

2.7639

2.6047

2.4827

15(I)

2.8367

2.8225

2.7111

2.4123

2.3998

2.3186

15(II)

2.7158

2.7053

2.5524

2.3025

2.2658

2.1754

20

2.4808

2.4587

2.3058

2.0986

2.0808

1.9485

BCL

10

2.6817

2.6387

2.5275

2.3115

2.1757

2.0772

15(I)

2.4602

2.4509

2.3513

2.0384

2.0276

1.9595

15(II)

2.3054

2.2945

2.1625

1.9004

1.8678

1.7935

20

1.5392

1.4954

1.4683

1.3505

1.3362

1.2669

ACL

10

2.3475

2.3059

2.2083

2.0493

1.9255

1.8405

15(I)

2.1373

2.1291

2.0429

1.7958

1.7861

1.7258

15(II)

2.0269

2.0179

1.9031

1.6947

1.6649

1.5987

20

1.6989

1.6811

1.5776

1.4095

1.3975

1.3084

For Parameter β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek7aIbaa@38AF@

BPBL

10

3.1229

3.0691

2.9329

2.7639

2.6047

2.4827

15(I)

2.8367

2.8225

2.7111

2.4123

2.3998

2.3186

15(II)

2.7158

2.7053

2.5524

2.3025

2.2658

2.1754

20

2.4808

2.4587

2.3058

2.0986

2.0808

1.9485

BCL

10

2.6817

2.6387

2.5275

2.3115

2.1757

2.0772

15(I)

2.4602

2.4509

2.3513

2.0384

2.0276

1.9595

15(II)

2.3054

2.2945

2.1625

1.9004

1.8678

1.7935

20

1.5392

1.4954

1.4683

1.3505

1.3362

1.2669

ACL

10

2.3475

2.3059

2.2083

2.0493

1.9255

1.8405

15(I)

2.1373

2.1291

2.0429

1.7958

1.7861

1.7258

15(II)

2.0269

2.0179

1.9031

1.6947

1.6649

1.5987

20

1.6989

1.6811

1.5776

1.4095

1.3975

1.3084

For Parameter λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSbaa@38C2@

BPBL

10

3.1229

3.0691

2.9329

2.7639

2.6047

2.4827

15(I)

2.8367

2.8225

2.7111

2.4123

2.3998

2.3186

15(II)

2.7158

2.7053

2.5524

2.3025

2.2658

2.1754

20

2.4808

2.4587

2.3058

2.0986

2.0808

1.9485

BCL

10

2.6817

2.6387

2.5275

2.3115

2.1757

2.0772

15(I)

2.4602

2.4509

2.3513

2.0384

2.0276

1.9595

15(II)

2.3054

2.2945

2.1625

1.9004

1.8678

1.7935

20

1.5392

1.4954

1.4683

1.3505

1.3362

1.2669

ACL

10

2.3475

2.3059

2.2083

2.0493

1.9255

1.8405

15(I)

2.1373

2.1291

2.0429

1.7958

1.7861

1.7258

15(II)

2.0269

2.0179

1.9031

1.6947

1.6649

1.5987

20

1.6989

1.6811

1.5776

1.4095

1.3975

1.3084

Table 4 Bound lengths for simulated data under Type-II progressive censoring scheme

Under T-I censoring scheme on SS-PALT, Table 05 presents the BPBL, BCL & ACL for a total of  units and a fixed censored sample size m=15 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gacqGH9a qpcaaIXaGaaGynaaaa@3A80@  with both censoring schemes. The selected time slot for the analysis are t=01, 05, 09, 13 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadshacqGH9a qpcaaIWaGaaGymaiaacYcacaqGGaGaaeimaiaaiwdacaGGSaGaaeii aiaabcdacaqG5aGaaiilaiaabccacaaIXaGaaG4maaaa@42D4@ . The numerical findings are reported here only for the selected values as discussed in previous paragraphs. All the properties and behaviors have seen similar discussed in the case of T-IPH and PT-II censoring pattern. Again, it has been observed that, the magnitude of bound lengths under T-IPH censoring was noted wider as compared with T-I censoring pattern. In terms of bound length, the magnitude of BPBL was observed wider when they compared with ACL or BCL. However, no any clear trends have been observed between BCL and ACL when other parametric values assumed to be fixed.

T-I Censoring

n=30 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6gacqGH9a qpcaaIZaGaaGimaaaa@3A7E@ m=15(I) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gacqGH9a qpcaaIXaGaaGynaiaacIcacaWGjbGaaiykaaaa@3CA7@ m=15(II) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gacqGH9a qpcaaIXaGaaGynaiaacIcacaWGjbGaamysaiaacMcaaaa@3D75@
τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgcziSkabes 8a0jabgkziUcaa@3CA9@ τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgcziSkabes 8a0jabgkziUcaa@3CA9@
t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadshacqGHtg YRaaa@39F6@

99%

95%

90%

99%

95%

90%

For Parameter α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHbaa@38AD@

BPBL

01

2.5235

2.3571

2.2668

2.2233

2.1845

2.0868

05

2.6512

2.6384

2.5504

2.5303

2.5005

2.3995

09

3.1281

3.1146

2.9889

2.9877

2.9768

2.8141

13

1.9178

1.9007

1.7792

2.2546

2.2241

2.0909

BCL

01

2.1123

1.9672

1.8982

1.9105

1.8794

1.7994

05

2.2394

2.2285

2.1549

2.0874

2.0621

1.9789

09

2.7132

2.7025

2.5926

2.5356

2.5243

2.3874

13

1.2378

1.2239

1.1596

1.3988

1.3485

1.3296

ACL

01

1.9674

1.9516

1.8855

1.6517

1.6272

1.5575

05

1.9721

1.9623

1.8975

1.8608

1.8386

1.7643

09

2.3578

2.3481

2.2529

2.2289

2.2196

2.0989

13

1.4465

1.4334

1.3413

1.7308

1.7023

1.6025

For Parameter β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek7aIbaa@38AF@

BPBL

01

2.5235

2.3571

2.2668

2.2233

2.1845

2.0868

05

2.6512

2.6384

2.5504

2.5303

2.5005

2.3995

09

3.1281

3.1146

2.9889

2.9877

2.9768

2.8141

13

1.9178

1.9007

1.7792

2.2546

2.2241

2.0909

BCL

01

2.1123

1.9672

1.8982

1.9105

1.8794

1.7994

05

2.2394

2.2285

2.1549

2.0874

2.0621

1.9789

09

2.7132

2.7025

2.5926

2.5356

2.5243

2.3874

13

1.2378

1.2239

1.1596

1.3988

1.3485

1.3296

ACL

01

1.9674

1.9516

1.8855

1.6517

1.6272

1.5575

05

1.9721

1.9623

1.8975

1.8608

1.8386

1.7643

09

2.3578

2.3481

2.2529

2.2289

2.2196

2.0989

13

1.4465

1.4334

1.3413

1.7308

1.7023

1.6025

For Parameter λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSbaa@38C2@

BPBL

01

2.5235

2.3571

2.2668

2.2233

2.1845

2.0868

05

2.6512

2.6384

2.5504

2.5303

2.5005

2.3995

09

3.1281

3.1146

2.9889

2.9877

2.9768

2.8141

13

1.9178

1.9007

1.7792

2.2546

2.2241

2.0909

BCL

01

2.1123

1.9672

1.8982

1.9105

1.8794

1.7994

05

2.2394

2.2285

2.1549

2.0874

2.0621

1.9789

09

2.7132

2.7025

2.5926

2.5356

2.5243

2.3874

13

1.2378

1.2239

1.1596

1.3988

1.3485

1.3296

ACL

01

1.9674

1.9516

1.8855

1.6517

1.6272

1.5575

05

1.9721

1.9623

1.8975

1.8608

1.8386

1.7643

09

2.3578

2.3481

2.2529

2.2289

2.2196

2.0989

13

1.4465

1.4334

1.3413

1.7308

1.7023

1.6025

Table 5 Bound lengths for simulated data under Type-I censoring scheme

Numerical illustration

In this section, the numerical illustration was based on the dataset provided by Box & Cox30 for survival time of animals observed due to different dosage of poison administered. The observations are listed as

0.18 0.21 0.22 0.22 0.23 0.23 0.23 0.24 0.25 0.29 0.29 0.30 0.30 0.31 0.31 0.31 0.33 0.35 0.36 0.36 0.37 0.38 0.38 0.40 0.40 0.43 0.43 0.44 0.45 0.45 0.45 0.46 0.49 0.56 0.61 0.62 0.63 0.66 0.71 0.71 0.72 0.76 0.82 0.88 0.92 1.02 1.10 1.24.

The Kolmogorov-Smirnov (KS) test (test statistic value = 0.1440 with p-value 0.2724) was afforded a satisfactory fit the underlying distribution of this data set. For the numerical illustration, a set of 30 (=n) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaabIcacqGH9a qpcaqGUbGaaeykaaaa@3A5C@  randomly selected data from given dataset was assumed. For simplicity in comparison, similar censoring patterns have used for considering censored sample size with all above pre-assumed parametric values. The bound lengths ACL, BCL and BPBL have been presented in Tables 6-10 respectively for the parameters under study. All the properties and trends have seen similar as discussed above in the case of simulated data. The remarkable point is that, the narrower bound lengths have noticed for simulated data set when they compared with the corresponding real dataset under all considered censoring criterion and censoring patterns for all parameters under study.

n=30 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6gacqGH9a qpcaaIZaGaaGimaaaa@3A7E@ t=05 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadshacqGH9a qpcaaIWaGaaGynaaaa@3A86@ t=09 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadshacqGH9a qpcaaIWaGaaGyoaaaa@3A8A@
τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiKHWQaeq iXdqNaeyOKH4kaaa@3B91@ τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiKHWQaeq iXdqNaeyOKH4kaaa@3B91@
α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHbaa@38AD@ β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek7aIbaa@38AF@ λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSbaa@38C2@ m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gaaaa@3800@

99%

95%

90%

99%

95%

90%

α Acl MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHnaaBa aaleaacaWGbbGaam4yaiaadYgaaeqaaaaa@3B78@

0.50

0.50

0.50

10

1.8186

1.7816

1.7103

1.5617

1.4637

1.4033

15(I)

1.6347

1.6289

1.5631

1.3702

1.3631

1.3157

15(II)

1.5481

1.5405

1.4512

1.2895

1.2708

1.2142

20

1.2599

1.2469

1.2294

1.0431

1.0355

0.9678

1.40

0.90

1.60

10

2.6015

2.5589

2.4507

2.2737

2.1387

2.0421

15(I)

2.3731

2.3639

2.2682

1.9913

1.9822

1.9156

15(II)

2.2498

2.2398

2.1113

1.8808

1.8487

1.7751

20

1.8861

1.8674

1.7512

1.5636

1.5504

1.4516

2.50

2.50

2.50

10

1.6814

1.6537

1.5836

1.4511

1.3541

1.3001

15(I)

1.5124

1.4987

1.4433

1.2685

1.2616

1.2236

15(II)

1.4331

1.4216

1.3923

1.1938

1.1759

1.1236

20

1.1666

1.1527

1.1366

0.9655

0.9595

0.8982

β Acl MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek7aInaaBa aaleaacaWGbbGaam4yaiaadYgaaeqaaaaa@3B7A@

0.50

0.50

0.50

10

1.7859

1.7519

1.6786

1.4788

1.3848

1.3295

15(I)

1.6067

1.6019

1.5362

1.3095

1.2998

1.2586

15(II)

1.4905

1.4812

1.3968

1.2014

1.1852

1.1326

20

1.0062

0.9948

0.9812

0.7917

0.7916

0.7397

1.40

0.90

1.60

10

2.9119

2.8653

2.7451

2.4772

2.3314

2.2243

15(I)

2.6837

2.6745

2.5653

2.1941

2.1836

2.1096

15(II)

2.4884

2.4754

2.3367

2.0221

1.9877

1.9032

20

1.7601

1.7413

1.6347

1.3973

1.3859

1.2975

2.50

2.50

2.50

10

1.6543

1.6226

1.5546

1.3747

1.2811

1.2313

15(I)

1.4858

1.4733

1.4183

1.2117

1.2059

1.1695

15(II)

1.3803

1.3714

1.3396

1.1249

1.0969

1.0483

20

0.9313

0.9191

0.9067

0.7377

0.7333

0.6847

λ Acl MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSnaaBa aaleaacaWGbbGaam4yaiaadYgaaeqaaaaa@3B8D@

0.50

0.50

0.50

10

1.5315

1.5018

1.4389

1.2294

1.1431

1.1021

15(I)

1.3843

1.3806

1.3236

1.0975

1.0922

1.0538

15(II)

1.2512

1.2436

1.1694

0.9822

0.9627

0.9224

20

0.7043

0.6936

0.6857

0.5352

0.5316

0.4963

1.40

0.90

1.60

10

2.8555

2.8034

2.6859

2.3592

2.2192

2.1185

15(I)

2.6595

2.6505

2.5421

2.1166

2.1067

2.0352

15(II)

2.4026

2.3897

2.2554

1.8997

1.8664

1.8021

20

1.4396

1.4242

1.3361

1.0953

1.0863

1.0167

2.50

2.50

2.50

10

1.4189

1.3911

1.3328

1.1319

1.0579

1.0199

15(I)

1.2801

1.2702

1.2219

1.0155

1.0106

0.9809

15(II)

1.1598

1.1472

1.1241

0.9097

0.8931

0.8536

20

0.6517

0.6405

0.6332

0.4954

0.4925

0.4597

Table 6 Approximate confidence lengths (ACL) for real data

n=30 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6gacqGH9a qpcaaIZaGaaGimaaaa@3A7E@ t=05

t=09 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadshacqGH9a qpcaaIWaGaaGyoaaaa@3A8A@

τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgcziSkabes 8a0jabgkziUcaa@3CA9@ τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgcziSkabes 8a0jabgkziUcaa@3CA9@
α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHbaa@38AD@ β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek7aIbaa@38AF@ λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSbaa@38C2@ m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gaaaa@3800@

99%

95%

90%

99%

95%

90%

For Parameter α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHbaa@38AD@

0.50

0.50

0.50

10

1.9867

1.9441

1.8682

1.6811

1.5716

1.5053

15(I)

1.7867

1.7833

1.7056

1.4781

1.4707

1.4196

15(II)

1.6749

1.6595

1.5709

1.3737

1.3542

1.2939

20

1.2436

1.2246

1.2136

1.0057

0.9986

0.9787

1.40

0.90

1.60

10

3.0409

2.9863

2.8605

2.6155

2.4647

2.3504

15(I)

2.7856

2.7752

2.6624

2.3072

2.2951

2.2181

15(II)

2.6096

2.5974

2.4515

2.1509

2.1152

2.0311

20

1.7427

1.6945

1.6631

1.5277

1.5116

1.4333

2.50

2.50

2.50

10

1.8399

1.8016

1.7298

1.5567

1.4514

1.3903

15(I)

1.6552

1.6406

1.5797

1.3682

1.3611

1.3201

15(II)

1.5506

1.5422

1.5066

1.2712

1.2532

1.1976

20

1.1513

1.1378

1.1218

0.9308

0.9264

0.8616

For Parameter β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek7aIbaa@38AF@

0.50

0.50

0.50

10

2.1378

2.0904

2.0027

1.7701

1.6558

1.5848

15(I)

1.9223

1.9162

1.8381

1.5651

1.5574

1.5035

15(II)

1.7782

1.7678

1.6677

1.4375

1.4162

1.3531

20

1.0121

0.9866

0.9697

0.7563

0.7497

0.7289

1.40

0.90

1.60

10

3.4836

3.4204

3.2769

2.9564

2.7806

2.6563

15(I)

3.2093

3.1976

3.0673

2.6217

2.6084

2.5211

15(II)

2.9706

2.9559

2.7909

2.4141

2.3749

2.2802

20

1.7687

1.7412

1.6317

1.4018

1.3801

1.3011

2.50

2.50

2.50

10

1.9729

1.9317

1.8544

1.6394

1.5312

1.4684

15(I)

1.7718

1.7613

1.6917

1.4485

1.4411

1.3979

15(II)

1.6465

1.6367

1.5995

1.3302

1.3107

1.2523

20

0.9371

0.9188

0.9113

0.7393

0.7308

0.6817

For Parameter λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSbaa@38C2@

0.50

0.50

0.50

10

2.1378

2.0904

2.0027

1.7701

1.6558

1.5848

15(I)

1.9223

1.9162

1.8381

1.5651

1.5574

1.5035

15(II)

1.7782

1.7678

1.6677

1.4375

1.4162

1.3531

20

1.0121

0.9866

0.9697

0.7563

0.7497

0.7289

1.40

0.90

1.60

10

3.4836

3.4204

3.2769

2.9564

2.7806

2.6563

15(I)

3.2093

3.1976

3.0673

2.6217

2.6084

2.5211

15(II)

2.9706

2.9559

2.7909

2.4141

2.3749

2.2802

20

1.7687

1.7412

1.6317

1.4018

1.3801

1.3011

2.50

2.50

2.50

10

1.9729

1.9317

1.8544

1.6394

1.5312

1.4684

15(I)

1.7718

1.7613

1.6917

1.4485

1.4411

1.3979

15(II)

1.6465

1.6367

1.5995

1.3302

1.3107

1.2523

20

0.9371

0.9188

0.9113

0.7393

0.7308

0.6817

Table 7 Bootstrap confidence lengths (BCL) for real data

n=30 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6gacqGH9a qpcaaIZaGaaGimaaaa@3A7E@ t=05 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadshacqGH9a qpcaaIWaGaaGynaaaa@3A86@ t=09 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadshacqGH9a qpcaaIWaGaaGyoaaaa@3A8A@
τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgcziSkabes 8a0jabgkziUcaa@3CA9@ τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgcziSkabes 8a0jabgkziUcaa@3CA9@
α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHbaa@38AD@ β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek7aIbaa@38AF@ λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSbaa@38C2@ m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gaaaa@3800@

99%

95%

90%

99%

95%

90%

For Parameter α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHbaa@38AD@

0.50

0.50

0.50

10

2.9156

2.8656

2.7438

2.5565

2.4021

2.2911

15(I)

2.6282

2.6175

2.5119

2.2289

2.2175

2.1422

15(II)

2.5093

2.4995

2.3582

2.1214

2.0975

2.0034

20

2.2445

2.2283

2.1935

1.8939

1.8804

1.7581

1.40

0.90

1.60

10

3.9117

3.8444

3.6816

3.4613

3.2672

3.1019

15(I)

3.5561

3.5414

3.3986

3.0221

3.0066

2.9052

15(II)

3.4031

3.3921

3.1997

2.8845

2.8409

2.7273

20

3.1093

3.0843

2.8912

2.6277

2.6055

2.4401

2.50

2.50

2.50

10

2.6992

2.6526

2.5434

2.3669

2.2223

2.1208

15(I)

2.4322

2.4088

2.3205

2.0632

2.0525

1.9911

15(II)

2.3226

2.3134

2.2613

1.9635

1.9412

1.8538

20

2.0792

2.0613

2.0286

1.7526

1.7421

1.6277

For Parameter β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek7aIbaa@38AF@

0.50

0.50

0.50

10

5.0621

4.9729

4.7631

4.2808

4.0356

3.8356

15(I)

4.5933

4.5619

4.3899

3.7801

3.7622

3.6353

15(II)

4.2733

4.2541

4.0183

3.5039

3.4588

3.3134

20

3.1911

3.1738

3.1211

2.5631

2.5459

2.3805

1.40

0.90

1.60

10

7.7595

7.6236

7.3028

6.6761

6.3207

5.9962

15(I)

7.1431

7.1145

6.8262

5.9027

5.8741

5.6772

15(II)

6.6642

6.6376

6.2712

5.4924

5.4171

5.1998

20

5.1566

5.1231

4.7968

4.1625

4.1285

3.8665

2.50

2.50

2.50

10

4.6863

4.6032

4.4094

3.9629

3.7342

3.5505

15(I)

4.2497

4.2104

4.0548

3.4983

3.4817

3.3783

15(II)

3.9558

3.9377

3.8532

3.2413

3.2115

3.0664

20

2.9551

2.9358

2.8859

2.3714

2.3579

2.2033

For Parameter λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSbaa@38C2@

0.50

0.50

0.50

10

3.4994

3.4367

3.2919

2.9082

2.7347

2.6056

15(I)

3.1797

3.1681

3.0392

2.5822

2.5709

2.4828

15(II)

2.9224

2.9089

2.7398

2.3619

2.3456

2.2307

20

1.9931

1.9789

1.9478

1.5672

1.5565

1.4551

1.40

0.90

1.60

10

5.7308

5.6294

5.3927

4.8642

4.5993

4.3686

15(I)

5.3026

5.2819

5.0675

4.3255

4.3046

4.1601

15(II)

4.8888

4.8673

4.5976

3.9736

3.9162

3.7593

20

3.4791

3.4535

3.2355

2.7503

2.7277

2.5544

2.50

2.50

2.50

10

3.2401

3.1815

3.0478

2.6926

2.5314

2.4122

15(I)

2.9416

2.9162

2.8069

2.3897

2.3782

2.3074

15(II)

2.7063

2.6928

2.6337

2.1864

2.1616

2.0643

20

1.8454

1.8299

1.8007

1.4501

1.4417

1.3468

Table 8 Bayes prediction bound lengths for real data

PT-II Censoring

n=30 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6gacqGH9a qpcaaIZaGaaGimaaaa@3A7E@ t=05 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadshacqGH9a qpcaaIWaGaaGynaaaa@3A86@ t=09 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadshacqGH9a qpcaaIWaGaaGyoaaaa@3A8A@
τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgcziSkabes 8a0jabgkziUcaa@3CA9@ τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgcziSkabes 8a0jabgkziUcaa@3CA9@
m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaaaa@36E8@

99%

95%

90%

99%

95%

90%

For Parameter α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHbaa@38AD@

BPBL

10

3.5607

3.4939

3.3501

3.1538

2.9559

2.8263

15(I)

3.2253

3.2125

3.0831

2.7419

2.7341

2.6407

15(II)

3.0933

3.0824

2.9025

2.6241

2.5748

2.4723

20

2.8226

2.7895

2.6199

2.3926

2.3749

2.2235

BCL

10

2.7701

2.7199

2.6045

2.3859

2.2273

2.1424

15(I)

2.5257

2.5169

2.4147

2.1022

2.0881

2.0169

15(II)

2.3725

2.3609

2.2232

1.9581

1.9136

1.8409

20

1.5819

1.5277

1.5049

1.3973

1.3818

1.3094

ACL

10

2.3712

2.3319

2.2325

2.0756

1.9313

1.8641

15(I)

2.1512

2.1435

2.0568

1.8132

1.8034

1.7423

15(II)

2.0459

2.0362

1.9143

1.7129

1.6724

1.6085

20

1.7121

1.6847

1.5849

1.4299

1.4117

1.3226

For Parameter β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek7aIbaa@38AF@

BPBL

10

3.5607

3.4939

3.3501

3.1538

2.9559

2.8263

15(I)

3.2253

3.2125

3.0831

2.7419

2.7341

2.6407

15(II)

3.0933

3.0824

2.9025

2.6241

2.5748

2.4723

20

2.8226

2.7895

2.6199

2.3926

2.3749

2.2235

BCL

10

2.7701

2.7199

2.6045

2.3859

2.2273

2.1424

15(I)

2.5257

2.5169

2.4147

2.1022

2.0881

2.0169

15(II)

2.3725

2.3609

2.2232

1.9581

1.9136

1.8409

20

1.5819

1.5277

1.5049

1.3973

1.3818

1.3094

ACL

10

2.3712

2.3319

2.2325

2.0756

1.9313

1.8641

15(I)

2.1512

2.1435

2.0568

1.8132

1.8034

1.7423

15(II)

2.0459

2.0362

1.9143

1.7129

1.6724

1.6085

20

1.7121

1.6847

1.5849

1.4299

1.4117

1.3226

For Parameter λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSbaa@38C2@

BPBL

10

3.5607

3.4939

3.3501

3.1538

2.9559

2.8263

15(I)

3.2253

3.2125

3.0831

2.7419

2.7341

2.6407

15(II)

3.0933

3.0824

2.9025

2.6241

2.5748

2.4723

20

2.8226

2.7895

2.6199

2.3926

2.3749

2.2235

BCL

10

2.7701

2.7199

2.6045

2.3859

2.2273

2.1424

15(I)

2.5257

2.5169

2.4147

2.1022

2.0881

2.0169

15(II)

2.3725

2.3609

2.2232

1.9581

1.9136

1.8409

20

1.5819

1.5277

1.5049

1.3973

1.3818

1.3094

ACL

10

2.3712

2.3319

2.2325

2.0756

1.9313

1.8641

15(I)

2.1512

2.1435

2.0568

1.8132

1.8034

1.7423

15(II)

2.0459

2.0362

1.9143

1.7129

1.6724

1.6085

20

1.7121

1.6847

1.5849

1.4299

1.4117

1.3226

Table 9 Bound lengths for real data under Type-II progressive censoring scheme

T-I Censoring

n=30 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6gacqGH9a qpcaaIZaGaaGimaaaa@3A7E@ t=05 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadshacqGH9a qpcaaIWaGaaGynaaaa@3A86@ t=09 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadshacqGH9a qpcaaIWaGaaGyoaaaa@3A8A@
τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgcziSkabes 8a0jabgkziUcaa@3CA9@ τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgcziSkabes 8a0jabgkziUcaa@3CA9@
m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gaaaa@3800@

99%

95%

90%

99%

95%

90%

For Parameter α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHbaa@38AD@

BPBL

10

2.8666

2.6868

2.5639

2.5244

2.4747

2.3751

15(I)

3.0221

3.0066

2.9052

2.8845

2.8409

2.7273

15(II)

3.5561

3.5414

3.3986

3.4031

3.3921

3.1997

20

2.1748

2.1587

2.0211

2.5656

2.5355

2.3814

BCL

10

2.1687

2.0245

1.9473

1.9639

1.9283

1.8465

15(I)

2.3072

2.2951

2.2181

2.1509

2.1152

2.0311

15(II)

2.7856

2.7752

2.6624

2.6096

2.5974

2.4515

20

1.2701

1.2546

1.1902

1.4379

1.3886

1.3679

ACL

10

1.9866

1.9679

1.8994

1.6643

1.6367

1.5667

15(I)

1.9913

1.9822

1.9156

1.8808

1.8487

1.7751

15(II)

2.3731

2.3639

2.2682

2.2498

2.2398

2.1113

20

1.4527

1.4385

1.3477

1.7445

1.7166

1.6149

For Parameter β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek7aIbaa@38AF@

BPBL

10

2.8666

2.6868

2.5639

2.5244

2.4747

2.3751

15(I)

3.0221

3.0066

2.9052

2.8845

2.8409

2.7273

15(II)

3.5561

3.5414

3.3986

3.4031

3.3921

3.1997

20

2.1748

2.1587

2.0211

2.5656

2.5355

2.3814

BCL

10

2.1687

2.0245

1.9473

1.9639

1.9283

1.8465

15(I)

2.3072

2.2951

2.2181

2.1509

2.1152

2.0311

15(II)

2.7856

2.7752

2.6624

2.6096

2.5974

2.4515

20

1.2701

1.2546

1.1902

1.4379

1.3886

1.3679

ACL

10

1.9866

1.9679

1.8994

1.6643

1.6367

1.5667

15(I)

1.9913

1.9822

1.9156

1.8808

1.8487

1.7751

15(II)

2.3731

2.3639

2.2682

2.2498

2.2398

2.1113

20

1.4527

1.4385

1.3477

1.7445

1.7166

1.6149

For Parameter λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSbaa@38C2@

BPBL

10

2.8666

2.6868

2.5639

2.5244

2.4747

2.3751

15(I)

3.0221

3.0066

2.9052

2.8845

2.8409

2.7273

15(II)

3.5561

3.5414

3.3986

3.4031

3.3921

3.1997

20

2.1748

2.1587

2.0211

2.5656

2.5355

2.3814

BCL

10

2.1687

2.0245

1.9473

1.9639

1.9283

1.8465

15(I)

2.3072

2.2951

2.2181

2.1509

2.1152

2.0311

15(II)

2.7856

2.7752

2.6624

2.6096

2.5974

2.4515

20

1.2701

1.2546

1.1902

1.4379

1.3886

1.3679

ACL

10

1.9866

1.9679

1.8994

1.6643

1.6367

1.5667

15(I)

1.9913

1.9822

1.9156

1.8808

1.8487

1.7751

15(II)

2.3731

2.3639

2.2682

2.2498

2.2398

2.1113

20

1.4527

1.4385

1.3477

1.7445

1.7166

1.6149

Table 10 Bound lengths for real data under Type-I censoring scheme

Summary

No any literature has noticed in studying the properties of the bound length by using SS-PALT and T-IPH censoring. The present article motivated for that. In the present article, we focused not only for combining the SS-PALT with T-IPH censoring. We are also trying to develop the scenario for combining SS-PALT with Type-I censoring and progressive Type-II censoring pattern, respectively and studying the fruitfulness in terms of different bound lengths. The Bayes predictive bound length (BPBL), bootstrap bound length (BCL) and approximate confidence lengths (ACL) has been observed on several combinations of the parametric values. Wider BPBL has been observed in T-IPH censoring over others on both real and simulated datasets. On real and simulated data set, the magnitude of BPBL was seen wider for real data set. The present discussion showed that, the T-IPH censoring maximizes the bound lengths over T-I or PT-II censoring.

Conflicts of interest

There are no conflicts of interest.

Acknowledgments

None.

References

  1. Burr WI. Cumulative frequency distribution. Annals of Mathematical Statistics. 1942;13:215–232.
  2. Abd–Elfattah AM, Hassan AS, Nassr SG. Estimation in step–stress partially accelerated life tests for the Burr Type–XII distribution using Type–I censoring. Statistical Methodology. 2008;5(6):502–514.
  3. Khalaf EA, Zeinhum J, Heba SM. Finite mixture of Burr Type–XII distribution and its reciprocal: Properties and applications. Statistical Papers. 2011;52:835–845.
  4. Soliman AA, Abd–Ellah AH, Abou–Elheggag NA. et al. Bayesian inference and prediction of Burr Type–XII distribution for progressive first failure censored sampling. Intelligent Information Management. 2011;3:175–185.
  5. Jang DH, Jung M, Park JH, et al. Bayesian estimation of Burr Type–XII distribution based on general progressive Type–II censoring. Applied Mathematical Sciences. 2014;8:3435–3448.
  6. Rao GS, Aslam M, Kundu D. Burr–XII distribution parametric estimation and estimation of reliability of multicomponent stress–strength. Communications in Statistics–Theory & Methods. 2015;4:4953–4961.
  7. Panahi H, Sayyareh A. Estimation and prediction for a unified hybrid–censored Burr Type–XII distribution. Journal of Statistical Computation & Simulation. 2015;86(1):55–73.
  8. Prakash G. Confidence limits for progressive censored Burr Type–XII data under CP–ALT. Journal of Statistics Applications & Probability. 2017;6(2):295–303.
  9. Asl MN, Belaghi RA, Bevrani H. On Burr XII distribution analysis under progressive Type–II hybrid censored data. Methodology & Computing in Applied Probability. 2017;9(2):665–683.
  10. Prakash G. Bayes estimation for C–PALT progressively censored Burr–XII data. International Journal of Intelligent Technologies & Applied Statistics. 2018a;11(1): 01–14.
  11. Prakash G. Progressively censored Rayleigh data under Bayesian estimation. The International Journal of Intelligent Technologies & Applied Statistics. 2015;8(3):257–273.
  12. Lin CT, Ng HKT, Chan PS. Statistical inference of Type–II progressively hybrid censored data with Weibull lifetimes. Communications in Statistics–Theory & Methods. 2009;38:1710–1729.
  13. Lin CT, Huang YL. On progressive hybrid censored Exponential distribution. Journal of Statistical Computation & Simulation. 2012;82(5):689–709.
  14. Singh B, Gupta PK, Sharma VK. On Type–II hybrid censored Lindley distribution. Statistics Research Letters. 2014;3:58–62.
  15. Balakrishnan N, Cramer E. The art of progressive censoring: Applications to reliability and quality. Birkhäuser, Boston; 2014.
  16. Elshahhat A, Ashour S. Bayesian and non–Bayesian estimation for Weibull parameters based on generalized Type–II progressive hybrid censoring scheme. Pakistan Journal of Statistics & Operation Research. 2016;12(2):213–226.
  17. Kayal T, Tripathi YM, Rastogi MK, et al. Inference for Burr XII distribution under Type–I progressive hybrid censoring. Communication in Statistics–Simulation & Computation. 2017;46(9):7447–7465.
  18. Nelson W. Accelerated Life Testing: Statistical Models, Test Plans and Data Analysis. John Wiley & Sons, New York; 1990.
  19. Prakash G. Generalized inverted Exponential distribution on Optimum SS–PALT: Some Bayes estimation. Journal of Statistics Applications & Probability. 2018b;7(3):457–467.
  20. DeGroot MH, Goel PK. Bayesian and optimal design in partially accelerated life testing. Naval Research Logistics. 1979;16 (2):223–235.
  21. Ismail AA, Aly H M. Optimal planning of failure step–stress partially accelerated life tests under Type–II censoring. International Journal of Mathematical Analysis. 2009;3(31):1509–1523.
  22. Statistical package. 2001.
  23. Efron B, Tibshirani R. Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Statistical Science. 1986;1(1):54–77.
  24. Kreiss JP, Paparoditis E. Bootstrap methods for dependent data: a review. Journal of Korean Statistical Society. 2011;40:357–378.
  25. Kundu D, Kannan N, Balakrishnan N. Analysis of Progressively censored competing risks data. In: Balakrishnan N, Rao CR, editors. Handbook of statistics. 2004;23:331–348.
  26. Al–Hussaini EK. Predicting observables from a general class of distributions. Journal of Statistical Planning & Inference. 1999;79:79–91.
  27. Metropolis N, Rosenbluth AW, Rosenbluth MN, et al. Equations of state calculations by fast computing machines. Journal of Chemical Physics. 1953;21:1087–1092.
  28. Hastings WK. Monte Carlo sampling methods using Markov Chains and their applications. Biometrika. 1970;57:97–109.
  29. Mahmoud MAW, EL–Sagheer RM, Nagaty H. Inference for constant–stress partially accelerated life test model with progressive Type–II censoring scheme. Journal of Statistics Applications Proc. 2017;6(2):373–383.
  30. Box GEP, Cox DR. An analysis of transformations (with discussion). Journal of the Royal Statistical Society–B. 1964;26:211–252.
Creative Commons Attribution License

©2021 Prakash. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.