Submit manuscript...
eISSN: 2378-315X

Biometrics & Biostatistics International Journal

Research Article Volume 11 Issue 5

An analytical study of the critical values of response rate in single-arm phase II clinical trial designs

Yi Liu,1 Sin-Ho Jung2

1Department of Statistics, North Carolina State University, USA
2Department of Biostatistics and Bioinformatics, Duke University, USA

Correspondence: Sin-Ho Jung, Department of Biostatistics and Bioinformatics, Duke University, USA

Received: November 07, 2022 | Published: December 30, 2022

Citation: Yi L, Sin-Ho J. An analytical study of the critical values of response rate in single-arm phase II clinical trial designs. Biom Biostat Int J. 2022;11(5):178-183. DOI: 10.15406/bbij.2022.11.00374

Download PDF

Abstract

A single-arm phase II clinical trial is usually conducted for finding an appropriate dose-level and testing toxicity for an experimental cancer therapy in comparison to some historical controls, and is usually the most doable trial type due to the feasibility under limited budget, patient pool and medical conditions that can be met. We considered the standard setting of a single-arm two-stage phase II clinical trial, and investigated the patterns of critical values and sample sizes at both two stages of minimax and optimal designs under different design parameters, i.e., under different response rates of control and treatment, significant level of the test, and statistical power. We provided analytic derivations to the patterns we are interested under large sample approximation, and investigated them under finite ans small sample via a numerical study by considering extensively possible design parameters over a fine grid. We finally concluded that the critical values at different stages of the test are related to the sample sizes at different stages in a similar way for both optimal and minimax designs, but they also reveal some differences and reflected the nature of these two types of design.

Keywords: single-arm two-stage trial, optimal design, minimax design, critical value, response rate

Introduction

A phase II clinical trial is often conducted to find an appropriate dose-level and test toxicity for experimental cancer therapies in compare to some historical controls. This kind of trials usually requires small sample sizes due to ethical considerations, before proceeding to the subsequent phase of the trial for assessing the efficacy, outcomes and adverse effect in a larger group of subjects.1,2 At the same time, a single-arm design is often the most doable trial due to the feasibility under limited budget, patient pool and medical conditions that can be met. The number of written requests reported on 2021 of single-arm trials issued by the Food and Drug Administration (FDA) of the United States is an essential volume.3

Statistically, the most simple and traditional single-arm phase II clinical trial design-the single-stage design, is specified as follows. Given the values of design parameters ( α * ,1 β * , p 0 , p 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaaiikaiabeg7aH9aadaahaaWcbeqaa8qacaGGQaaaaOGaaiilaiaa igdacqGHsislcqaHYoGypaWaaWbaaSqabeaapeGaaiOkaaaakiaacY cacaWGWbWdamaaBaaaleaapeGaaGimaaWdaeqaaOWdbiaacYcacaWG WbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaacMcaaaa@45CE@ , that is, statistical significance level, power of the test, null response rate, and treatment response rate, respectively, we want to find a pair of positive integers n,a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBaiaacYcacaWGHbaaaa@39B7@  to specify the sample size and rejection boundary (or critical value, for rejecting H 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamisamaaBaaaleaacaaIWaaabeaaaaa@38E1@ ) of the phase II trial under some constraints, and usually we also have a upper bound of n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBaaaa@3821@  specified subjectively, such as 2550 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGOmaiaaiwdacqWI8iIocaaI1aGaaGimaaaa@3B4B@  to reflect the small-sample characteristic of a phase II trial.4 Then, starting from n n 0 >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBaiabgwMiZkaad6gadaWgaaWcbaGaaGimaaqabaGccqGH+aGp caaIWaaaaa@3D8C@  for a fixed n 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBamaaBaaaleaacaaIWaaabeaaaaa@3907@  (the minimal sample size needed), we can search over a grid the smallest integer a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGHbaaaa@36FD@  such that based on level α * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHnaaCa aaleqabaaeaaaaaaaaa8qacaGGQaaaaaaa@39A8@ , we reject H 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamisamaaBaaaleaacaaIWaaabeaaaaa@38E1@  if X>a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfacqGH+a GpcaWGHbaaaa@39D9@  and otherwise fail to reject H 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIeadaWgba WcbaGaaGimaaqabaaaaa@38C2@ , that is, α=1 B 0 (a;n) α * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySdeMaeyypa0JaaGymaiabgkHiTiaadkeapaWaaSbaaSqaa8qa caaIWaaapaqabaGcpeGaaiikaiaadggacaGG7aGaamOBaiaacMcacq GHKjYOcqaHXoqypaWaaWbaaSqabeaapeGaaiOkaaaaaaa@45AF@  where B 0 (;n) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOqa8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacaGGOaGaeyyX ICTaai4oaiaad6gacaGGPaaaaa@3E78@  is the CDF of Bin(n, p 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOqaiaadMgacaWGUbGaaiikaiaad6gacaGGSaGaamiCamaaBaaa leaacaaIWaaabeaakiaacMcaaaa@3EB7@ . Then if the power 1β=1 B 1 (a,n)1 β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGymaiabgkHiTiabek7aIjabg2da9iaaigdacqGHsislcaGGcbWa aSbaaSqaaiaaigdaaeqaaOGaaiikaiaadggacaGGSaGaamOBaiaacM cacqGHLjYScaaIXaGaeyOeI0IaeqOSdi2aaWbaaSqabeaacqGHxiIk aaaaaa@48E9@  where B 1 (;n) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOqa8aadaWgaaWcbaGaaGymaaqabaGcpeGaaiikaiabgwSixlaa cUdacaWGUbGaaiykaaaa@3E5A@  is the CDF of Bin(n, p 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOqaiaadMgacaWGUbGaaiikaiaad6gacaGGSaGaamiCamaaBaaa leaacaaIXaaabeaakiaacMcaaaa@3EB8@ , the pair n,a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBaiaacYcacaGGHbaaaa@39B6@  is said to be the optimal design. If there is no a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyyaaaa@3814@  meet these conditions simultaneously, we continue to n+1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBaiabgUcaRiaaigdaaaa@39BE@ . Thus, the optimal design minimizes the sample size among all designs satisfies the conditions. It is also easy to know that the optimal single-stage design under a parameter setting is unique.

In some scenario, two-stage designs are more likely to be considered. In a two-stage design, the phase II clinical trial is conducted via two stages sequentially, and whether to proceed to the second stage depends on the results from the first stage. A desired design under the specifications of some parameters is given by finding appropriate sample sizes and critical values of the response rate of both two stages. The two-stage design is more economical and ethical, which makes the trial stop earlier if there is no efficacy tested, and the data collected is more informative than that from a single-stage trial if we proceed to phase III.4 Similar to single-stage design, the two-stage design is a mathematically easy problem since it can be done over a finite grid once the parameters are specified. In this paper, the problem is stated and discussed under the design of a single-arm two-stage phase II clinical trial.

The remainder of the paper is organized as follows. Section 4 reviewed the statistical setup of the single-arm two-stage phase II trials and described the scientific question of interest. We reviewed the classical optimal and minimax designs and discussed an issue we are concerned about involved in these two designs, and briefly stated our hunch. Section 5 introduced a numerical analysis to confirm our hunch. Section 6 concluded the paper.

Single-Arm two-stage Phase II clinical trials

Setup

Consider the test H 0 :p= p 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamisamaaBaaaleaacaaIWaaabeaakiaacQdacaWGWbGaeyypa0Ja amiCamaaBaaaleaacaaIWaaabeaaaaa@3D7F@  vs. H 1 :p= p 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamisamaaBaaaleaacaaIXaaabeaakiaacQdacaWGWbGaeyypa0Ja amiCamaaBaaaleaacaaIXaaabeaaaaa@3D81@ , where p 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3937@  is the response rate of a historical therapy, p 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCamaaBaaaleaacaaIXaaabeaaaaa@390A@  is the response rate of the experimental therapy needs to be tested, and under our context, p 1 = p 0 +δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCamaaBaaaleaacaaIXaaabeaakiabg2da9iaadchadaWgaaWc baGaaGimaaqabaGccqGHRaWkcqaH0oazaaa@3E86@  for some δ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdqMaeyOpa4JaaGimaaaa@3A95@  as a clinical meaningful difference. We conduct the test by two stages. Denote n= n 1 + n 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBaiabg2da9iaad6gadaWgaaWcbaGaaGymaaqabaGccqGHRaWk caWGUbWaaSbaaSqaaiaaikdaaeqaaaaa@3DC8@  with n j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBamaaBaaaleaacaWGQbaabeaaaaa@393C@  as the sample size of the test at stage j(j=1,2) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOAaiaacIcacaWGQbGaeyypa0JaaGymaiaacYcacaaIYaGaaiyk aaaa@3D92@ . Denote X 1 Bin( n 1 , p i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiwamaaBaaaleaacaaIXaaabeaakiablYJi6iaadkeacaWGPbGa amOBaiaacIcacaWGUbWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaadc hadaWgaaWcbaGaamyAaaqabaGccaGGPaaaaa@42D3@  and X 2 Bin( n 2 , p i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiwamaaBaaaleaacaaIYaaabeaakiablYJi6iaadkeacaWGPbGa amOBaiaacIcacaWGUbWaaSbaaSqaaiaaikdaaeqaaOGaaiilaiaadc hadaWgaaWcbaGaamyAaaqabaGccaGGPaaaaa@42D5@  under H i ,i=0,1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamisamaaBaaaleaacaWGPbaabeaakiaacYcacaWGPbGaeyypa0Ja aGimaiaacYcacaaIXaaaaa@3DE8@ . X 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiwamaaBaaaleaacaaIXaaabeaaaaa@38F2@  and X 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiwamaaBaaaleaacaaIYaaabeaaaaa@38F3@  are independent.

We consider two types of stopping criteria when the phase II trial needs to be stopped after stage 1. First, we consider the futility (lower) stop only, which means we stop the trial after stage 1 only if we find the treatment is ineffective based on the result from stage 1, in other words, this happens when we find the positive response of stage 1 x 1 < a 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEamaaBaaaleaacaaIXaaabeaakiabgYda8iaadggadaWgaaWc baGaaGymaaqabaaaaa@3BED@  for a critical value a 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyyamaaBaaaleaacaaIXaaabeaaaaa@38FB@  that requires us to reject the null hypothesis H 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamisamaaBaaaleaacaaIWaaabeaaaaa@38E1@  under specified design parameters. Second, we consider both futility and superiority (upper) stops. The superiority stop means we also stop the trial when x 1 < b 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEamaaBaaaleaacaaIXaaabeaakiabgYda8iaadkgadaWgaaWc baGaaGymaaqabaaaaa@3BEE@  for a critical value b 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOyamaaBaaaleaacaaIXaaabeaaaaa@38FC@  that specifies the enough effectiveness of the treatment, i.e., because of the enough positive responses to the treatment, we can stop and claim the effectiveness of the treatment, and there is no need to conduct stage 2.

Specifically, the framework of finding specific designs of a single-arm two-stage phase II clinical trial is specified as follows. Under futility stop with design parameters ( α * ,1 β * , p 0 , p 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaaiikaiabeg7aH9aadaahaaWcbeqaa8qacaGGQaaaaOGaaiilaiaa igdacqGHsislcqaHYoGypaWaaWbaaSqabeaapeGaaiOkaaaakiaacY cacaWGWbWdamaaBaaaleaapeGaaGimaaWdaeqaaOWdbiaacYcacaWG WbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaacMcaaaa@45CE@ :

  1. Calculate α= P 0 ( X 1 > a 1 , X 1 + X 2 >a) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySdeMaeyypa0JaamiuamaaBaaaleaacaaIWaaabeaakiaacIca caWGybWaaSbaaSqaaiaaigdaaeqaaOGaeyOpa4JaamyyamaaBaaale aacaaIXaaabeaakiaacYcacaWGybWaaSbaaSqaaiaaigdaaeqaaOGa ey4kaSIaamiwamaaBaaaleaacaaIYaaabeaakiabg6da+iaadggaca GGPaaaaa@48BB@ , 1β= P 1 ( X 1 > a 1 , X 1 + X 2 >a) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGymaiabgkHiTiabek7aIjabg2da9iaadcfadaWgaaWcbaGaaGym aaqabaGccaGGOaGaamiwamaaBaaaleaacaaIXaaabeaakiabg6da+i aadggadaWgaaWcbaGaaGymaaqabaGccaGGSaGaamiwamaaBaaaleaa caaIXaaabeaakiabgUcaRiaadIfadaWgaaWcbaGaaGOmaaqabaGccq GH+aGpcaWGHbGaaiykaaaa@4A66@
  2. Define probability of early termination (PET) under H 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamisamaaBaaaleaacaaIWaaabeaaaaa@38E1@ : P 0 ( X 1 a 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiuamaaBaaaleaacaaIWaaabeaakiaacIcacaWGybWaaSbaaSqa aiaaigdaaeqaaOGaeyizImQaamyyamaaBaaaleaacaaIXaaabeaaki aacMcaaaa@3FA6@ and expected sample size (EN) under H 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamisamaaBaaaleaacaaIWaaabeaaaaa@38E1@ : n 1 ×PET+n×(1PET) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBamaaBaaaleaacaaIXaaabeaakiabgEna0kaadcfacaWGfbGa amivaiabgUcaRiaad6gacqGHxdaTcaGGOaGaaGymaiabgkHiTiaadc facaWGfbGaamivaiaacMcaaaa@4706@  
  1. Among designs with α α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySdeMaeyizImQaeqySde2aaWbaaSqabeaacqGHxiIkaaaaaa@3D3D@ and 1β1 β * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGymaiabgkHiTiabek7aIjabgwMiZkaaigdacqGHsislcqaHYoGy paWaaWbaaSqabeaapeGaaiOkaaaaaaa@4080@ :

 - Optimal design ( a 1 , n 1 ,a,n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaam yyamaaBaaaleaacaaIXaaabeaakiaacYcacaWGUbWaaSbaaSqaaiaa igdaaeqaaOGaaiilaiaadggacaGGSaGaamOBaaGaayjkaiaawMcaaa aa@403B@  minimizes EN

 - Minimax design ( a 1 , n 1 ,a,n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaam yyamaaBaaaleaacaaIXaaabeaakiaacYcacaWGUbWaaSbaaSqaaiaa igdaaeqaaOGaaiilaiaadggacaGGSaGaamOBaaGaayjkaiaawMcaaa aa@403B@  minmizes n= n 1 + n 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6gacqGH9a qpcaWGUbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaamOBamaaBaaa leaacaaIYaaabeaaaaa@3DA8@  

where P i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfadaWgaa WcbaGaamyAaaqabaaaaa@38FD@  is the probability measure under H i ( i=0,1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIeadaWgaa WcbaGaamyAaaqabaGcdaqadaqaaiaadMgacqGH9aqpcaaIWaGaaiil aiaaigdaaiaawIcacaGLPaaaaaa@3EA1@ . The significant level and power can be calculate by P i ( X 1 > a 1 , X 1 + X 2 >a)= x 1 = a 1 +1 n 1 b i ( x 1 ; n 1 ){ 1 B i (a x 1 ; n 2 ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiua8aadaWgaaWcbaWdbiaadMgaa8aabeaak8qacaGGOaGaamiw a8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGH+aGpcaWGHbWdam aaBaaaleaapeGaaGymaaWdaeqaaOWdbiaacYcacaWGybWdamaaBaaa leaapeGaaGymaaWdaeqaaOWdbiabgUcaRiaadIfapaWaaSbaaSqaa8 qacaaIYaaapaqabaGcpeGaeyOpa4JaamyyaiaacMcacqGH9aqpdaae WaqaaiaadkgapaWaaSbaaSqaa8qacaWGPbaapaqabaGcpeGaaiikai aadIhapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaai4oaiaad6ga paWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaaiykamaacmaabaGaaG ymaiabgkHiTiaadkeapaWaaSbaaSqaa8qacaWGPbaapaqabaGcpeGa aiikaiaadggacqGHsislcaWG4bWdamaaBaaaleaapeGaaGymaaWdae qaaOWdbiaacUdacaWGUbWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWd biaacMcaaiaawUhacaGL9baaaSqaa8aacaWG4bWaaSbaaWqaamaaBa aabaGaaGymaaqabaGaeyypa0JaamyyamaaBaaabaGaaGymaaqabaGa ey4kaSIaaGymaaqabaaal8qabaWdaiaad6gadaWgaaadbaWaaSbaae aacaaIXaaabeaaaeqaaaqdpeGaeyyeIuoaaaa@6A23@  where i=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMgacqGH9a qpcaaIWaaaaa@39BC@  for α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHbaa@38AD@  and i=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMgacqGH9a qpcaaIXaaaaa@39BD@  for 1β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaigdacqGHsi slcqaHYoGyaaa@3A57@ , b i ( ;n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkgadaWgaa WcbaGaamyAaaqabaGcdaqadaqaaiabgwSixlaacUdacaWGUbaacaGL OaGaayzkaaaaaa@3E9E@  is the probability mass of Bin( n, p i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkeacaWGPb GaamOBamaabmaabaGaamOBaiaacYcacaWGWbWaaSbaaSqaaiaadMga aeqaaaGccaGLOaGaayzkaaaaaa@3EFB@  and B i ( ;n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkeadaWgaa WcbaGaamyAaaqabaGcdaqadaqaaiabgwSixlaacUdacaWGUbaacaGL OaGaayzkaaaaaa@3E7E@  is the corresponding CDF, i=0,1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMgacqGH9a qpcaaIWaGaaiilaiaaigdaaaa@3B27@ . The algorithm of finding an optimal or minimax design is easy to implement via greedy searching over possible choices of (n, n 1 , a 1 ,a) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacIcacaWGUb Gaaiilaiaad6gadaWgaaWcbaGaaGymaaqabaGccaGGSaGaamyyamaa BaaaleaacaaIXaaabeaakiaacYcacaWGHbGaaiykaaaa@400B@ . Starting from a n n 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6gacqGHLj YScaWGUbWaaSbaaSqaaiaaicdaaeqaaaaa@3BA0@ , for n 1 [ 1,n1 ], a 1 [ 0, n 1 ],a[ a 1 +1,n ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6gadaWgaa WcbaGaaGymaaqabaGccqGHiiIZdaWadaqaaiaaigdacaGGSaGaamOB aiabgkHiTiaaigdaaiaawUfacaGLDbaacaGGSaGaamyyamaaBaaale aacaaIXaaabeaakiabgIGiopaadmaabaGaaGimaiaacYcacaWGUbWa aSbaaSqaaiaaigdaaeqaaaGccaGLBbGaayzxaaGaaiilaiaadggacq GHiiIZdaWadaqaaiaadggadaWgaaWcbaGaaGymaaqabaGccqGHRaWk caaIXaGaaiilaiaad6gaaiaawUfacaGLDbaaaaa@53DC@ , the probabilities and EN aforementioned can be calculated, and so the corresponding designs can be found.

Under both futility and superiority stops with design parameters ( α * ,1 β * , p 0 , p 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaaiikaiabeg7aH9aadaahaaWcbeqaa8qacaGGQaaaaOGaaiilaiaa igdacqGHsislcqaHYoGypaWaaWbaaSqabeaapeGaaiOkaaaakiaacY cacaWGWbWdamaaBaaaleaapeGaaGimaaWdaeqaaOWdbiaacYcacaWG WbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaacMcaaaa@45CE@ :

  1. Calculate  1α= P 0 ( X 1 a 1 )+ P 0 ( a 1 < X 1 < b 1 , X 1 + X 2 a),β= P 1 ( X 1 a 1 )+ P 1 ( a 1 < X 1 < b 1 , X 1 + X 2 a) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGymaiabgkHiTiabeg7aHjabg2da9iaadcfapaWaaSbaaSqaa8qa caaIWaaapaqabaGcpeGaaiikaiaadIfapaWaaSbaaSqaa8qacaaIXa aapaqabaGcpeGaeyizImQaamyya8aadaWgaaWcbaWdbiaaigdaa8aa beaak8qacaGGPaGaey4kaSIaamiua8aadaWgaaWcbaWdbiaaicdaa8 aabeaak8qacaGGOaGaamyya8aadaWgaaWcbaWdbiaaigdaa8aabeaa k8qacqGH8aapcaWGybWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbi abgYda8iaadkgapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaaiil aiaadIfapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaey4kaSIaam iwa8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacqGHKjYOcaWGHbGa aiykaiaacYcacqaHYoGycqGH9aqpcaWGqbWdamaaBaaaleaapeGaaG ymaaWdaeqaaOWdbiaacIcacaWGybWdamaaBaaaleaapeGaaGymaaWd aeqaaOWdbiabgsMiJkaadggapaWaaSbaaSqaa8qacaaIXaaapaqaba GcpeGaaiykaiabgUcaRiaadcfapaWaaSbaaSqaa8qacaaIXaaapaqa baGcpeGaaiikaiaadggapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpe GaeyipaWJaamiwa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGH 8aapcaWGIbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaacYcaca WGybWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabgUcaRiaadIfa paWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaeyizImQaamyyaiaacM caaaa@7ABE@
  2. Define probability of early termination under   H i :PET( p i )= P i ( X 1 a 1 )+ P i ( X 1 b 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamisa8aadaWgaaWcbaWdbiaadMgaa8aabeaak8qacaGG6aGaamiu aiaadweacaWGubGaaiikaiaadchapaWaaSbaaSqaa8qacaWGPbaapa qabaGcpeGaaiykaiabg2da9iaadcfapaWaaSbaaSqaa8qacaWGPbaa paqabaGcpeGaaiikaiaadIfapaWaaSbaaSqaa8qacaaIXaaapaqaba GcpeGaeyizImQaamyya8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qa caGGPaGaey4kaSIaamiua8aadaWgaaWcbaWdbiaadMgaa8aabeaak8 qacaGGOaGaamiwa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGH LjYScaWGIbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaacMcaaa a@5509@ , and expected sample size (EN) under H i :EN( p i )= n 1 ×PET( p i )+n×(1PET( p i )) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamisa8aadaWgaaWcbaWdbiaadMgaa8aabeaak8qacaGG6aGaaeyr aiaab6eacaGGOaGaamiCa8aadaWgaaWcbaWdbiaadMgaa8aabeaak8 qacaGGPaGaeyypa0JaamOBa8aadaWgaaWcbaWdbiaaigdaa8aabeaa k8qacqGHxdaTcaqGqbGaaeyraiaabsfacaGGOaGaamiCa8aadaWgaa WcbaWdbiaadMgaa8aabeaak8qacaGGPaGaey4kaSIaamOBaiabgEna 0kaacIcacaaIXaGaeyOeI0IaaeiuaiaabweacaqGubGaaiikaiaadc hapaWaaSbaaSqaa8qacaWGPbaapaqabaGcpeGaaiykaiaacMcaaaa@57D4@ , i=0,1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyAaiabg2da9iaaicdacaGGSaGaaGymaaaa@3B47@ , and then EN= 1 2 [EN( p 0 )+EN( p 1 )] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaaeyraiaab6eacqGH9aqpdaWcaaWdaeaapeGaaGymaaWdaeaapeGa aGOmaaaacaGGBbGaaeyraiaab6eacaGGOaGaamiCa8aadaWgaaWcba Wdbiaaicdaa8aabeaak8qacaGGPaGaey4kaSIaaeyraiaab6eacaGG OaGaamiCa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGGPaGaai yxaaaa@485F@  
  3. Among designs with α α * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySdeMaeyizImQaeqySde2damaaCaaaleqabaWdbiaacQcaaaaa aa@3D1B@ and 1β1 β * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGymaiabgkHiTiabek7aIjabgwMiZkaaigdacqGHsislcqaHYoGy paWaaWbaaSqabeaapeGaaiOkaaaaaaa@4080@ :

 - Optimal design ( a 1 , n 1 ,a,n) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaiikaiaadggapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaaiil aiaad6gapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaaiilaiaadg gacaGGSaGaamOBaiaacMcaaaa@40A7@  minimizes EN

 - Minimax design ( a 1 , n 1 ,a,n) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaiikaiaadggapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaaiil aiaad6gapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaaiilaiaadg gacaGGSaGaamOBaiaacMcaaaa@40A7@  minmizes n= n 1 + n 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBaiabg2da9iaad6gapaWaaSbaaSqaa8qacaaIXaaapaqabaGc peGaey4kaSIaamOBa8aadaWgaaWcbaWdbiaaikdaa8aabeaaaaa@3E34@  

A user-friendly software for finding optimal and minimax designs of two-stage phase II clinical trials can be found at http://www2.cscc.unc.edu/impact7/CTDSystems.

What are we looking for?

Following the notations in Section 4.1, we are interested if there is any pattern(s) among the a 1 , b 1 a, n 1 ,n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyya8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGGSaGaamOy a8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaWGHbGaaiilaiaad6 gapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaaiilaiaad6gaaaa@4164@  values we found from the desired designs given the constrains on level, power, etc. In fact, Jung4 found a phenomenon that a n 2 ( p 0 + p 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyyaiabgIKi7oaalaaapaqaa8qacaWGUbaapaqaa8qacaaIYaaa aiaacIcacaWGWbWdamaaBaaaleaapeGaaGimaaWdaeqaaOWdbiabgU caRiaadchapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaaiykaaaa @4244@ , a 1 n 1 p 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyya8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGHijYUcaWG UbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaadchapaWaaSbaaS qaa8qacaaIWaaapaqabaaaaa@3F1F@  and b 1 n 1 p 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOya8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGHijYUcaWG UbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaadchapaWaaSbaaS qaa8qacaaIXaaapaqabaaaaa@3F21@  by a few examples from the output of optimal and minimax trial designs, but has not investigated this in more details. We wanted to provide a formal analysis in the relationship of these numbers that an optimal or minimax design returns, given any specific setting of the design parameters, which we believe can provide some prior knowledge about what we can expect from a specific design, help us to understand more on the difference and similarity of minimax and optimal designs, and look at them from a new perspective.

First, we proved that under some regularity conditions and constraints by phase II clinical trials, and using large sample approximation, a 1 n 1 = p 0 +O( n 1 1/2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiaadggapaWaaSbaaSqaa8qacaaIXaaapaqabaaa keaapeGaamOBa8aadaWgaaWcbaWdbiaaigdaa8aabeaaaaGcpeGaey ypa0JaamiCa8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacqGHRaWk caWGpbGaaiikaiaad6gapaWaa0baaSqaa8qacaaIXaaapaqaa8qacq GHsislcaaIXaGaai4laiaaikdaaaGccaGGPaaaaa@4706@ , b 1 n 1 = p 1 +O( n 1 1/2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiaadkgapaWaaSbaaSqaa8qacaaIXaaapaqabaaa keaapeGaamOBa8aadaWgaaWcbaWdbiaaigdaa8aabeaaaaGcpeGaey ypa0JaamiCa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGHRaWk caWGpbGaaiikaiaad6gapaWaa0baaSqaa8qacaaIXaaapaqaa8qacq GHsislcaaIXaGaai4laiaaikdaaaGccaGGPaaaaa@4708@ , and a n =λ p 1 +(1λ) p 0 +O( n 1/2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiaadggaa8aabaWdbiaad6gaaaGaeyypa0Jaeq4U dWMaamiCa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGHRaWkca GGOaGaaGymaiabgkHiTiabeU7aSjaacMcacaWGWbWdamaaBaaaleaa peGaaGimaaWdaeqaaOWdbiabgUcaRiaad+eacaGGOaGaamOBa8aada ahaaWcbeqaa8qacqGHsislcaaIXaGaai4laiaaikdaaaGccaGGPaaa aa@4D5C@  for some λ[0,1] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdWMaeyicI4Saai4waiaaicdacaGGSaGaaGymaiaac2faaaa@3E4B@ , and λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdWgaaa@38E2@  is a parameter that can be related at least to the response rates of control and treatment, i.e., p 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCamaaBaaaleaacaaIWaaabeaaaaa@3909@  and p 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCamaaBaaaleaacaaIXaaabeaaaaa@390A@ . In other words, we may expect that the rejection criteria, i.e., the critical values a 1 , b 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyya8aadaWgaaWcbaWdbiaaigdaa8aabeaakiaacYcapeGaamOy a8aadaWgaaWcbaWdbiaaigdaa8aabeaaaaa@3BEF@  and a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyyaaaa@3814@  of the test are mainly determined by the response rates of control and treatment when the sample size is large. Details can be found in Appendix 7.1 for single-stage design and 7.2 for two-stage designs. Second, we used an extensive numerical study in Section 5 to confirm our hunch when the sample size is finite and small, and based on results from optimal and minimax designs.

Numerical analysis

Setup

We investigated the patterns of a 1 , b 1 ,a, n 1 ,n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyya8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGGSaGaamOy a8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGGSaGaamyyaiaacY cacaWGUbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaacYcacaWG Ubaaaa@4214@  over a fine grid of parameters ( p 0 , p 1 ,α,1β) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaiikaiaadchapaWaaSbaaSqaa8qacaaIWaaapaqabaGcpeGaaiil aiaadchapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaaiilaiabeg 7aHjaacYcacaaIXaGaeyOeI0IaeqOSdiMaaiykaaaa@43C6@ . We set p 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3937@  ranged from [0.05,0.7] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaai4waiaaicdacaGGUaGaaGimaiaaiwdacaGGSaGaaGimaiaac6ca caaI3aGaaiyxaaaa@3EB0@  with a small increment 5× 10 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGynaiabgEna0kaaigdacaaIWaWdamaaCaaaleqabaWdbiabgkHi Tiaaiodaaaaaaa@3D6F@ , and p 1 = p 0 +δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGH9aqpcaWG WbWdamaaBaaaleaapeGaaGimaaWdaeqaaOWdbiabgUcaRiabes7aKb aa@3F02@ , where δ=0.2,0.25 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdqMaeyypa0JaaGimaiaac6cacaaIYaGaaiilaiaaicdacaGG UaGaaGOmaiaaiwdaaaa@3F98@ . We consider α{0.05,0.1} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySdeMaeyicI4Saai4EaiaaicdacaGGUaGaaGimaiaaiwdacaGG SaGaaGimaiaac6cacaaIXaGaaiyFaaaa@420D@  and 1β{0.8,0.85,0.9} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGymaiabgkHiTiabek7aIjabgIGiolaacUhacaaIWaGaaiOlaiaa iIdacaGGSaGaaGimaiaac6cacaaI4aGaaGynaiaacYcacaaIWaGaai OlaiaaiMdacaGG9baaaa@46A5@  for all of these p 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3937@  and p 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCa8aadaWgaaWcbaWdbiaaigdaa8aabeaaaaa@3938@  values. We restricted the maximum of the total sample size n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBaaaa@3821@  by 55 to reflect the small-sample-size characteristic of phase II trials. Finally, we considered both optimal and minimax designs under two stop criteria, i.e., (1) with futility stop only; (2) with both futility and superiority stops.

Under a parameter setting, we searched the (minimax or optimal) design ( a 1 ,a, n 1 ,n) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaiikaiaadggapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaaiil aiaadggacaGGSaGaamOBa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8 qacaGGSaGaamOBaiaacMcaaaa@40A7@  if the trial stops at futility stop of stage 1, ( a 1 , b 1 ,a, n 1 ,n) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaiikaiaadggapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaaiil aiaadkgapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaaiilaiaadg gacaGGSaGaamOBa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGG SaGaamOBaiaacMcaaaa@436D@  if the trial is allowed to stop at both futility and superiority stops of stage 1.

Based on the theoretical results in Appendix 7, we investigated: (1) under futility stop only, the trends of a 1 / n 1 p 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyya8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGGVaGaamOB a8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGHsislcaWGWbWdam aaBaaaleaapeGaaGimaaWdaeqaaaaa@3F0E@  (and a 1 n 1 p 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyya8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGHsislcaWG UbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaadchapaWaaSbaaS qaa8qacaaIWaaapaqabaaaaa@3E5B@ ) for stage 1, and a/n( p 0 + p 1 )/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyyaiaac+cacaWGUbGaeyOeI0IaaiikaiaadchapaWaaSbaaSqa a8qacaaIWaaapaqabaGcpeGaey4kaSIaamiCa8aadaWgaaWcbaWdbi aaigdaa8aabeaak8qacaGGPaGaai4laiaaikdaaaa@4298@  (and an( p 0 + p 1 )/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyyaiabgkHiTiaad6gacaGGOaGaamiCa8aadaWgaaWcbaWdbiaa icdaa8aabeaak8qacqGHRaWkcaWGWbWdamaaBaaaleaapeGaaGymaa WdaeqaaOWdbiaacMcacaGGVaGaaGOmaaaa@41E5@ ) for stage 2, i.e. we choose λ=1/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdWMaeyypa0JaaGymaiaac+cacaaIYaaaaa@3C12@  only in our numerical experiment (based on some previous experience and we would like to confirm how if 1/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGymaiaac+cacaaIYaaaaa@3958@  is a good candidate for λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdWgaaa@38E2@ ); (2) under both futility and superiority stops, the trends of a 1 / n 1 p 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyya8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGGVaGaamOB a8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGHsislcaWGWbWdam aaBaaaleaapeGaaGimaaWdaeqaaaaa@3F0E@  (and a 1 n 1 p 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyya8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGHsislcaWG UbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaadchapaWaaSbaaS qaa8qacaaIWaaapaqabaaaaa@3E5B@ ) and b 1 / n 1 p 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOya8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGGVaGaamOB a8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGHsislcaWGWbWdam aaBaaaleaapeGaaGymaaWdaeqaaaaa@3F10@  (and b 1 n 1 p 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOya8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGHsislcaWG UbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaadchapaWaaSbaaS qaa8qacaaIXaaapaqabaaaaa@3E5D@ ) for stage 1, and a/n( p 0 + p 1 )/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyyaiaac+cacaWGUbGaeyOeI0IaaiikaiaadchapaWaaSbaaSqa a8qacaaIWaaapaqabaGcpeGaey4kaSIaamiCa8aadaWgaaWcbaWdbi aaigdaa8aabeaak8qacaGGPaGaai4laiaaikdaaaa@4298@  (and an( p 0 + p 1 )/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyyaiabgkHiTiaad6gacaGGOaGaamiCa8aadaWgaaWcbaWdbiaa icdaa8aabeaak8qacqGHRaWkcaWGWbWdamaaBaaaleaapeGaaGymaa WdaeqaaOWdbiaacMcacaGGVaGaaGOmaaaa@41E5@ ) for stage 2.

Results

For simplicity and because of the similarity of our findings in multiple cases, we only present the results under (α,1β,δ)=(0.05,0.8,0.2) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaaiikaiabeg7aHjaacYcacaaIXaGaeyOeI0IaeqOSdiMaaiilaiab es7aKjaacMcacqGH9aqpcaGGOaGaaGimaiaac6cacaaIWaGaaGynai aacYcacaaIWaGaaiOlaiaaiIdacaGGSaGaaGimaiaac6cacaaIYaGa aiykaaaa@4B6E@ , where δ= p 1 p 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdqMaeyypa0JaamiCa8aadaWgaaWcbaWdbiaaigdaa8aabeaa k8qacqGHsislcaWGWbWdamaaBaaaleaapeGaaGimaaWdaeqaaaaa@3EF3@ , as a representative, under both stop criteria and both designs. The complete results under all parameters we considered can be found in Appendix 8.

Figures 1& 2 show that for different p 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3937@ , the trends of ratio differences we are interested, i.e., a 1 / n 1 p 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyya8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGGVaGaamOB a8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGHsislcaWGWbWdam aaBaaaleaapeGaaGimaaWdaeqaaaaa@3F0E@ , b 1 / n 1 p 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkgadaWgaa Wcbaaeaaaaaaaaa8qacaaIXaaapaqabaGcpeGaai4laiaad6gapaWa aSbaaSqaa8qacaaIXaaapaqabaGcpeGaeyOeI0IaamiCa8aadaWgaa WcbaGaaGymaaqabaaaaa@3ED2@  and a/n( p 0 + p 1 )/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyyaiaac+cacaWGUbGaeyOeI0YaaeWaaeaacaWGWbWdamaaBaaa leaapeGaaGimaaWdaeqaaOGaey4kaSYdbiaadchapaWaaSbaaSqaai aaigdaaeqaaaGcpeGaayjkaiaawMcaaiaac+cacaaIYaaaaa@42A9@ . They indicate that overall, these differences are close to 0, and the difference is smaller on stage 2, i.e., a/n( p 0 + p 1 )/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyyaiaac+cacaWGUbGaeyOeI0YaaeWaaeaacaWGWbWdamaaBaaa leaapeGaaGimaaWdaeqaaOGaey4kaSYdbiaadchapaWaaSbaaSqaai aaigdaaeqaaaGcpeGaayjkaiaawMcaaiaac+cacaaIYaaaaa@42A9@ , under both stopping criteria, which means ( p 0 + p 1 )/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaaeaacaWGWbWdamaaBaaaleaapeGaaGimaaWdaeqaaOGaey4k aSYdbiaadchapaWaaSbaaSqaaiaaigdaaeqaaaGcpeGaayjkaiaawM caaiaac+cacaaIYaaaaa@3F30@  is a good approximation to a/n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyyaiaac+cacaWGUbaaaa@39BA@  over the p 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3937@  we considered under this parameter setting. At the same time, we can observe that, the other two differences are also close to 0, but the differences under optimal design are overall closer to 0 than those of minimax design. The results for all other cases in Figure 3 to Figure 12 in Appendix 8.1 and 8.2 are similar to this case. We plotted all trends including differences in ratio and frequency. They also result in the same conclusion.

Figure 1 Trends of a 1 / n 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadggadaWgaa WcbaGaaGymaaqabaGccaGGVaGaamOBamaaBaaaleaacaaIXaaabeaa aaa@3B72@  and a/n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadggacaGGVa GaamOBaaaa@399A@  under both optimal and minimax designs, when ( α * ,1 β * ,δ)=(0.05,0.8,0.2) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaaiikaiabeg7aH9aadaahaaWcbeqaa8qacaGGQaaaaOGaaiilaiaa igdacqGHsislcqaHYoGypaWaaWbaaSqabeaapeGaaiOkaaaakiaacY cacqaH0oazcaGGPaGaeyypa0JaaiikaiaaicdacaGGUaGaaGimaiaa iwdacaGGSaGaaGimaiaac6cacaaI4aGaaiilaiaaicdacaGGUaGaaG OmaiaacMcaaaa@4D76@  and there is futility stop only.

Figure 2 Trends of a 1 / n 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadggadaWgaa WcbaGaaGymaaqabaGccaGGVaGaamOBamaaBaaaleaacaaIXaaabeaa aaa@3B72@ , b 1 / n 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkgadaWgaa WcbaGaaGymaaqabaGccaGGVaGaamOBamaaBaaaleaacaaIXaaabeaa aaa@3B73@ and a/n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadggacaGGVa GaamOBaaaa@399A@ under both optimal and minimax designs, when ( α * ,1 β * ,δ)=(0.05,0.8,0.2) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaaiikaiabeg7aH9aadaahaaWcbeqaa8qacaGGQaaaaOGaaiilaiaa igdacqGHsislcqaHYoGypaWaaWbaaSqabeaapeGaaiOkaaaakiaacY cacqaH0oazcaGGPaGaeyypa0JaaiikaiaaicdacaGGUaGaaGimaiaa iwdacaGGSaGaaGimaiaac6cacaaI4aGaaiilaiaaicdacaGGUaGaaG OmaiaacMcaaaa@4D76@ and there are both futility and superiority stops.

Figure 3 The trends of a 1 n 1 p 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadggadaWgaa WcbaGaaGymaaqabaGccqGHsislcaWGUbWaaSbaaSqaaiaaigdaaeqa aOGaamiCamaaBaaaleaacaaIWaaabeaaaaa@3D91@ over different choices of α * ,1 β * ,δ= p 1 p 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySde2damaaCaaaleqabaWdbiaacQcaaaGccaGGSaGaaGymaiab gkHiTiabek7aI9aadaahaaWcbeqaa8qacaGGQaaaaOGaaiilaiabes 7aKjabg2da9iaadchapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGa eyOeI0IaamiCa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@4743@ , under both optimal and minimax designs, when there is futility stop only.

Table 1 calculates the summary statistics of the trends in Figures 1 &2 over different p 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3937@  (in total, there are 131 p 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3937@ ’s in each figure). We found from the mean that, these differences are very close to 0 on average, and thus the approximation we use is good. We found from the interquartile range (IQR) and standard deviation (SD) that they are larger for minimax design than optimal design for a same difference, thus the variation of the approximation on optimal design is smaller. Table 2 further provides all numerical results under this setting, i.e. ( α * ,1 β * ,δ)=(0.05,0.8,0.2) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaaiikaiabeg7aH9aadaahaaWcbeqaa8qacaGGQaaaaOGaaiilaiaa igdacqGHsislcqaHYoGypaWaaWbaaSqabeaapeGaaiOkaaaakiaacY cacqaH0oazcaGGPaGaeyypa0JaaiikaiaaicdacaGGUaGaaGimaiaa iwdacaGGSaGaaGimaiaac6cacaaI4aGaaiilaiaaicdacaGGUaGaaG OmaiaacMcaaaa@4D76@ , including all design outputs, ratios and differences of interest. We present results over p 0 [0.05,0.7] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCa8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacqGHiiIZcaGG BbGaaGimaiaac6cacaaIWaGaaGynaiaacYcacaaIWaGaaiOlaiaaiE dacaGGDbaaaa@4257@  but with increment 5× 10 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGynaiabgEna0kaaigdacaaIWaWdamaaCaaaleqabaWdbiabgkHi Tiaaikdaaaaaaa@3D6E@  compared to 5× 10 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGynaiabgEna0kaaigdacaaIWaWdamaaCaaaleqabaWdbiabgkHi Tiaaiodaaaaaaa@3D6F@  for the figures in order to maintain the concision and information provided by the table.

Concluding remarks

In this paper, we focused on single-arm two-stage phase II clinical trials, which is widely needed in reality. We specifically take the trends of critical values for rejecting null hypothesis at both two stages in a phase II clinical trial into consideration. Using both theoretical derivations under large-sample and numerical studies under finite and small sample, we confirmed that the critical values can be approximated and dominated by the total sample sizes and response rates of different stages. We also found that, this approximation is more obvious in optimal design than that in minimax design under the same design parameter setting. Our finding indicates that although minimax design provides less total sample size needed for a phase II trial, the property of an optimal design is closer to what we expect under large sample, and overall the optimal designs have more stable patterns on their relationships among critical values, sample sizes of both stages and response rates under null and alternative hypotheses.

Appendix: technical proofs

The numerical study in Section 5 confirms our hunch in Section 4.2 under finite (and actually small) sample. In this section, we provide some analytic proofs about the relationship between n 1 , a 1 , b 1 ,n,a, p 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGGSaGaamyy a8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGGSaGaamOya8aada WgaaWcbaWdbiaaigdaa8aabeaak8qacaGGSaGaamOBaiaacYcacaWG HbGaaiilaiaadchapaWaaSbaaSqaa8qacaaIWaaapaqabaaaaa@44CD@  and p 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCa8aadaWgaaWcbaGaaGymaaqabaaaaa@3919@  when the total sample size n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBaaaa@3821@  is large, using normal approximation, based on some regular assumptions (specified later).

Large sample approximation of single-stage phase II trials

In a single-arm single-stage trial, given a large n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBaaaa@3821@ , we can find the approximate value of a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyyaaaa@3814@  using large sample approximation. We assume that there exist ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTdugaaa@38D5@  and δ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdqMaeyOpa4JaaGimaaaa@3A95@  such that 0<ε p 0 < p 1 = p 0 +δ1ε<1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGimaiabgYda8iabew7aLjabgsMiJkaadchapaWaaSbaaSqaa8qa caaIWaaapaqabaGcpeGaeyipaWJaamiCa8aadaWgaaWcbaWdbiaaig daa8aabeaak8qacqGH9aqpcaWGWbWdamaaBaaaleaapeGaaGimaaWd aeqaaOWdbiabgUcaRiabes7aKjabgsMiJkaaigdacqGHsislcqaH1o qzcqGH8aapcaaIXaaaaa@4E06@ , which means the response rates satisfy the “positivity”, i.e., bounded away from 0 and 1. In reality, this means we assume that a treatment cannot be effective or ineffective to all subjects in the target population. Next, denote X ¯ =X/n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmiwayaaraGaeyypa0Jaamiwaiaac+cacaWGUbaaaa@3BAC@ , then under H i  (i=0,1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamisa8aadaWgaaWcbaWdbiaadMgaa8aabeaak8qacaGGGcGaaiik aiaadMgacqGH9aqpcaaIWaGaaiilaiaaigdacaGGPaaaaa@3FF3@ :

n ( X ¯ p i ) d N(0, p i q i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaOaaa8aabaWdbiaad6gaaSqabaGccaGGOaGabmiwayaaraGaeyOe I0IaamiCa8aadaWgaaWcbaWdbiaadMgaa8aabeaak8qacaGGPaWdam aaxacabaWdbiabgkziUcWcpaqabeaapeGaamizaaaakiaad6eacaGG OaGaaGimaiaacYcacaWGWbWdamaaBaaaleaapeGaamyAaaWdaeqaaO WdbiaadghapaWaaSbaaSqaa8qacaWGPbaapaqabaGcpeGaaiykaaaa @49A3@   (7.1.1)

as n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBaiabgkziUkabg6HiLcaa@3B7F@ , where q i =1 p i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyCa8aadaWgaaWcbaWdbiaadMgaa8aabeaak8qacqGH9aqpcaaI XaGaeyOeI0IaamiCa8aadaWgaaWcbaWdbiaadMgaa8aabeaaaaa@3E71@ , i=0,1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyAaiabg2da9iaaicdacaGGSaGaaGymaaaa@3B47@ . Denote P(|p= p i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiuaiaacIcacqGHflY1caGG8bGaamiCaiabg2da9iaadchapaWa aSbaaSqaa8qacaWGPbaapaqabaGcpeGaaiykaaaa@40F8@  by P i (), i=0,1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiua8aadaWgaaWcbaWdbiaadMgaa8aabeaak8qacaGGOaGaeyyX ICTaaiykaiaacYcacaGGGcGaamyAaiabg2da9iaaicdacaGGSaGaaG ymaaaa@42F5@ . Given ( α * ,1 β * ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaaiikaiabeg7aH9aadaahaaWcbeqaa8qacaGGQaaaaOGaaiilaiaa igdacqGHsislcqaHYoGypaWaaWbaaSqabeaapeGaaiOkaaaakiaacM caaaa@4027@ , n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBaaaa@3821@  and a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyyaaaa@3814@  satisfy α * = P 0 (X>a) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySde2damaaCaaaleqabaWdbiaacQcaaaGccqGH9aqpcaWGqbWd amaaBaaaleaapeGaaGimaaWdaeqaaOWdbiaacIcacaWGybGaeyOpa4 JaamyyaiaacMcaaaa@40FE@  and 1 β * = P 1 (X>a) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGymaiabgkHiTiabek7aI9aadaahaaWcbeqaa8qacaGGQaaaaOGa eyypa0Jaamiua8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGGOa Gaamiwaiabg6da+iaadggacaGGPaaaaa@42A9@ . So, under a large sample,

a/n= p 0 + z 1 α * p 0 q 0 /n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyyaiaac+cacaWGUbGaeyypa0JaamiCa8aadaWgaaWcbaWdbiaa icdaa8aabeaak8qacqGHRaWkcaWG6bWdamaaBaaaleaapeGaaGymai abgkHiTiabeg7aH9aadaahaaadbeqaa8qacaGGQaaaaaWcpaqabaGc peWaaOaaa8aabaWdbiaadchapaWaaSbaaSqaa8qacaaIWaaapaqaba GcpeGaamyCa8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacaGGVaGa amOBaaWcbeaaaaa@49AC@    (7.1.2)

 and

a/n= p 1 z 1 β * p 1 q 1 /n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyyaiaac+cacaWGUbGaeyypa0JaamiCa8aadaWgaaWcbaWdbiaa igdaa8aabeaak8qacqGHsislcaWG6bWdamaaBaaaleaapeGaaGymai abgkHiTiabek7aI9aadaahaaadbeqaa8qacaGGQaaaaaWcpaqabaGc peWaaOaaa8aabaWdbiaadchapaWaaSbaaSqaa8qacaaIXaaapaqaba GcpeGaamyCa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGGVaGa amOBaaWcbeaaaaa@49BC@   (7.1.3)

where z γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOEa8aadaWgaaWcbaWdbiabeo7aNbWdaeqaaaaa@3A2E@  is the γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4SdCgaaa@38D5@ -quantile of the standard normal distribution. From (7.1.2) and (7.1.3), we know

p 1 = p 0 +δ p 0 + z 1 α * p 0 q 0 /n = p 1 z 1 β * p 1 q 1 /n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGH9aqpcaWG WbWdamaaBaaaleaapeGaaGimaaWdaeqaaOWdbiabgUcaRiabes7aKj aadchapaWaaSbaaSqaa8qacaaIWaaapaqabaGcpeGaey4kaSIaamOE a8aadaWgaaWcbaWdbiaaigdacqGHsislcqaHXoqypaWaaWbaaWqabe aapeGaaiOkaaaaaSWdaeqaaOWdbmaakaaapaqaa8qacaWGWbWdamaa BaaaleaapeGaaGimaaWdaeqaaOWdbiaadghapaWaaSbaaSqaa8qaca aIWaaapaqabaGcpeGaai4laiaad6gaaSqabaGccqGH9aqpcaWGWbWd amaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabgkHiTiaadQhapaWaaS baaSqaa8qacaaIXaGaeyOeI0IaeqOSdi2damaaCaaameqabaWdbiaa cQcaaaaal8aabeaak8qadaGcaaWdaeaapeGaamiCa8aadaWgaaWcba Wdbiaaigdaa8aabeaak8qacaWGXbWdamaaBaaaleaapeGaaGymaaWd aeqaaOWdbiaac+cacaWGUbaaleqaaaaa@5DFA@

or

n = z 1 α * p 0 q 0 + z 1 β * p 1 q 1 p 1 p 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaOaaa8aabaWdbiaad6gaaSqabaGccqGH9aqpdaWcaaWdaeaapeGa amOEa8aadaWgaaWcbaWdbiaaigdacqGHsislcqaHXoqypaWaaWbaaW qabeaapeGaaiOkaaaaaSWdaeqaaOWdbmaakaaapaqaa8qacaWGWbWd amaaBaaaleaapeGaaGimaaWdaeqaaOWdbiaadghapaWaaSbaaSqaa8 qacaaIWaaapaqabaaapeqabaGccqGHRaWkcaWG6bWdamaaBaaaleaa peGaaGymaiabgkHiTiabek7aI9aadaahaaadbeqaa8qacaGGQaaaaa WcpaqabaGcpeWaaOaaa8aabaWdbiaadchapaWaaSbaaSqaa8qacaaI XaaapaqabaGcpeGaamyCa8aadaWgaaWcbaWdbiaaigdaa8aabeaaa8 qabeaaaOWdaeaapeGaamiCa8aadaWgaaWcbaWdbiaaigdaa8aabeaa k8qacqGHsislcaWGWbWdamaaBaaaleaapeGaaGimaaWdaeqaaaaaaa a@5425@

By plugging this in (7.1.2) or (7.1.3), we have

a n =λ p 0 +(1λ) p 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiaadggaa8aabaWdbiaad6gaaaGaeyypa0Jaeq4U dWMaamiCa8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacqGHRaWkca GGOaGaaGymaiabgkHiTiabeU7aSjaacMcacaWGWbWdamaaBaaaleaa peGaaGymaaWdaeqaaaaa@45D3@   (7.1.4)

with   λ= z 1 β * p 1 q 1 z 1 α * p 0 q 0 + z 1 β * p 1 q 1 $ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdWMaeyypa0ZaaSaaa8aabaWdbiaadQhapaWaaSbaaSqaa8qa caaIXaGaeyOeI0IaeqOSdi2damaaCaaameqabaWdbiaacQcaaaaal8 aabeaak8qadaGcaaWdaeaapeGaamiCa8aadaWgaaWcbaWdbiaaigda a8aabeaak8qacaWGXbWdamaaBaaaleaapeGaaGymaaWdaeqaaaWdbe qaaaGcpaqaa8qacaWG6bWdamaaBaaaleaapeGaaGymaiabgkHiTiab eg7aH9aadaahaaadbeqaa8qacaGGQaaaaaWcpaqabaGcpeWaaOaaa8 aabaWdbiaadchapaWaaSbaaSqaa8qacaaIWaaapaqabaGcpeGaamyC a8aadaWgaaWcbaWdbiaaicdaa8aabeaaa8qabeaakiabgUcaRiaadQ hapaWaaSbaaSqaa8qacaaIXaGaeyOeI0IaeqOSdi2damaaCaaameqa baWdbiaacQcaaaaal8aabeaak8qadaGcaaWdaeaapeGaamiCa8aada WgaaWcbaWdbiaaigdaa8aabeaak8qacaWGXbWdamaaBaaaleaapeGa aGymaaWdaeqaaaWdbeqaaaaakiaacscaaaa@5A6A@ .

Note that both z 1 α * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOEa8aadaWgaaWcbaWdbiaaigdacqGHsislcqaHXoqypaWaaWba aWqabeaapeGaaiOkaaaaaSWdaeqaaaaa@3CD4@  and z 1 β * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOEa8aadaWgaaWcbaWdbiaaigdacqGHsislcqaHYoGypaWaaWba aWqabeaapeGaaiOkaaaaaSWdaeqaaaaa@3CD6@  are finite, and usually, in phase II clinical trials, we choose α * < β * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySde2damaaCaaaleqabaWdbiaacQcaaaGccqGH8aapcqaHYoGy paWaaWbaaSqabeaapeGaaiOkaaaaaaa@3D70@  so that z 1 α * > z 1 β * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOEa8aadaWgaaWcbaWdbiaaigdacqGHsislcqaHXoqypaWaaWba aWqabeaapeGaaiOkaaaaaSWdaeqaaOWdbiabg6da+iaadQhapaWaaS baaSqaa8qacaaIXaGaeyOeI0IaeqOSdi2damaaCaaameqabaWdbiaa cQcaaaaal8aabeaaaaa@439E@ . Hence, if p 0 q 0 < p 1 q 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCa8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacaWGXbWdamaa BaaaleaapeGaaGimaaWdaeqaaOWdbiabgYda8iaadchapaWaaSbaaS qaa8qacaaIXaaapaqabaGcpeGaamyCa8aadaWgaaWcbaWdbiaaigda a8aabeaaaaa@40A8@ , the weights in (7.1.4) are closer to 1/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGymaiaac+cacaaIYaaaaa@3958@ .

Large sample approximation of two-stage phase II trials

In the case of two-stage trials, we investigated in Section 5 by numerical studies under finite and small sample. Now, we provide an analytic proof assuming some regularity conditions about  under large sample. Following notations in Section 4.1, note that under H i  (i=0,1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamisa8aadaWgaaWcbaWdbiaadMgaa8aabeaak8qacaGGGcGaaiik aiaadMgacqGH9aqpcaaIWaGaaiilaiaaigdacaGGPaaaaa@3FF3@ :

n j ( X ¯ j p i ) d N(0, p i q i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaOaaa8aabaWdbiaad6gapaWaaSbaaSqaa8qacaWGQbaapaqabaaa peqabaGccaGGOaGabmiwayaaraWdamaaBaaaleaapeGaamOAaaWdae qaaOWdbiabgkHiTiaadchapaWaaSbaaSqaa8qacaWGPbaapaqabaGc peGaaiyka8aadaWfGaqaa8qacqGHsgIRaSWdaeqabaWdbiaadsgaaa GccaWGobGaaiikaiaaicdacaGGSaGaamiCa8aadaWgaaWcbaWdbiaa dMgaa8aabeaak8qacaWGXbWdamaaBaaaleaapeGaamyAaaWdaeqaaO WdbiaacMcaaaa@4C54@   (7.2.1)

as n j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBa8aadaWgaaWcbaWdbiaadQgaa8aabeaak8qacqGHsgIRcqGH EisPaaa@3CE2@ , where q i =1 p i ,  X ¯ j = X j / n j , j=1,2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyCa8aadaWgaaWcbaWdbiaadMgaa8aabeaak8qacqGH9aqpcaaI XaGaeyOeI0IaamiCa8aadaWgaaWcbaWdbiaadMgaa8aabeaak8qaca GGSaGaaiiOaiqadIfagaqea8aadaWgaaWcbaWdbiaadQgaa8aabeaa k8qacqGH9aqpcaWGybWdamaaBaaaleaapeGaamOAaaWdaeqaaOWdbi aac+cacaWGUbWdamaaBaaaleaapeGaamOAaaWdaeqaaOWdbiaacYca caGGGcGaamOAaiabg2da9iaaigdacaGGSaGaaGOmaaaa@4EF6@ .

Under futility stop only

Under a large n= n 1 + n 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBaiabg2da9iaad6gapaWaaSbaaSqaa8qacaaIXaaapaqabaGc peGaey4kaSIaamOBa8aadaWgaaWcbaWdbiaaikdaa8aabeaaaaa@3E34@  and assume n 1 /nr(0,1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGGVaGaamOB aiabgkziUkaadkhacqGHiiIZcaGGOaGaaGimaiaacYcacaaIXaGaai ykaaaa@42DC@ , a constant, as n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBaiabgkziUkabg6HiLcaa@3B7F@ , the condition P 0 ( X 1 > a 1 , X 1 + X 2 >a)= α * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiua8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacaGGOaGaamiw a8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGH+aGpcaWGHbWdam aaBaaaleaapeGaaGymaaWdaeqaaOWdbiaacYcacaWGybWdamaaBaaa leaapeGaaGymaaWdaeqaaOWdbiabgUcaRiaadIfapaWaaSbaaSqaa8 qacaaIYaaapaqabaGcpeGaeyOpa4JaamyyaiaacMcacqGH9aqpcqaH XoqypaWaaWbaaSqabeaapeGaaiOkaaaaaaa@4AEB@  is equivalent to

α * = a 1 / n 1 S 0; X ¯ 2 ( n 1 n 2 [ a n 1 x ¯ 1 ] ) f 0; X ¯ 1 ( x ¯ 1 )d x ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySde2damaaCaaaleqabaWdbiaacQcaaaGccqGH9aqpdaWdXaWd aeaapeGaam4ua8aadaWgaaWcbaWdbiaaicdacaGG7aGabmiwayaara WdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaeaapeGaamyya8aa daWgaaadbaWdbiaaigdaa8aabeaal8qacaGGVaGaamOBa8aadaWgaa adbaWdbiaaigdaa8aabeaaaSqaa8qacqGHEisPa0Gaey4kIipakmaa bmaapaqaa8qadaWcaaWdaeaapeGaamOBa8aadaWgaaWcbaWdbiaaig daa8aabeaaaOqaa8qacaWGUbWdamaaBaaaleaapeGaaGOmaaWdaeqa aaaak8qadaWadaWdaeaapeWaaSaaa8aabaWdbiaadggaa8aabaWdbi aad6gapaWaaSbaaSqaa8qacaaIXaaapaqabaaaaOWdbiabgkHiTiqa dIhagaqea8aadaWgaaWcbaWdbiaaigdaa8aabeaaaOWdbiaawUfaca GLDbaaaiaawIcacaGLPaaacaWGMbWdamaaBaaaleaapeGaaGimaiaa cUdaceWGybGbaebapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaO WdbiaacIcaceWG4bGbaebapaWaaSbaaSqaa8qacaaIXaaapaqabaGc peGaaiykaiaadsgaceWG4bGbaebaaaa@616E@ ,

where f 0; X ¯ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaWgaaWcbaWdbiaaicdacaGG7aGabmiwayaaraWdamaa BaaameaapeGaaGymaaWdaeqaaaWcbeaaaaa@3BF3@  is the density of X ¯ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmiwayaaraWdamaaBaaaleaapeGaaGymaaWdaeqaaaaa@3938@ , and S 0; X ¯ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ua8aadaWgaaWcbaWdbiaaicdacaGG7aGabmiwayaaraWdamaa BaaameaapeGaaGOmaaWdaeqaaaWcbeaaaaa@3BE1@  is the survival function of X ¯ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmiwayaaraWdamaaBaaaleaapeGaaGOmaaWdaeqaaaaa@3939@  under H 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamisa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@390F@ . Note that

S 0; X ¯ 2 ( n 1 n 2 [ a n 1 x ¯ 1 ] )=1Φ( n 1 n 2 1 (a/ n 1 x ¯ 1 ) p 0 p 0 q 0 / n 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ua8aadaWgaaWcbaWdbiaaicdacaGG7aGabmiwayaaraWdamaa BaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qadaqadaWdaeaapeWaaS aaa8aabaWdbiaad6gapaWaaSbaaSqaa8qacaaIXaaapaqabaaakeaa peGaamOBa8aadaWgaaWcbaWdbiaaikdaa8aabeaaaaGcpeWaamWaa8 aabaWdbmaalaaapaqaa8qacaWGHbaapaqaa8qacaWGUbWdamaaBaaa leaapeGaaGymaaWdaeqaaaaak8qacqGHsislceWG4bGbaebapaWaaS baaSqaa8qacaaIXaaapaqabaaak8qacaGLBbGaayzxaaaacaGLOaGa ayzkaaGaeyypa0JaaGymaiabgkHiTiabfA6agnaabmaapaqaa8qada WcaaWdaeaapeGaamOBa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qa caWGUbWdamaaDaaaleaapeGaaGOmaaWdaeaapeGaeyOeI0IaaGymaa aakiaacIcacaWGHbGaai4laiaad6gapaWaaSbaaSqaa8qacaaIXaaa paqabaGcpeGaeyOeI0IabmiEayaaraWdamaaBaaaleaapeGaaGymaa WdaeqaaOWdbiaacMcacqGHsislcaWGWbWdamaaBaaaleaapeGaaGim aaWdaeqaaaGcbaWdbmaakaaapaqaa8qacaWGWbWdamaaBaaaleaape GaaGimaaWdaeqaaOWdbiaadghapaWaaSbaaSqaa8qacaaIWaaapaqa baGcpeGaai4laiaad6gapaWaaSbaaSqaa8qacaaIYaaapaqabaaape qabaaaaaGccaGLOaGaayzkaaaaaa@693D@

where Φ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuOPdyeaaa@38A8@  is the CDF of a standard normal distribution. Let

τ= a 1 / n 1 Φ ( n 1 n 2 1 (a/ n 1 x ¯ 1 ) p 0 p 0 q 0 / n 2 ) f 0; X ¯ 1 ( x ¯ 1 )d x ¯ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiXdqNaeyypa0Zaa8qma8aabaWdbiabfA6agbWcpaqaa8qacaWG HbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaac+cacaWGUbWdam aaBaaameaapeGaaGymaaWdaeqaaaWcbaWdbiabg6HiLcqdcqGHRiI8 aOWaaeWaa8aabaWdbmaalaaapaqaa8qacaWGUbWdamaaBaaaleaape GaaGymaaWdaeqaaOWdbiaad6gapaWaa0baaSqaa8qacaaIYaaapaqa a8qacqGHsislcaaIXaaaaOGaaiikaiaadggacaGGVaGaamOBa8aada WgaaWcbaWdbiaaigdaa8aabeaak8qacqGHsislceWG4bGbaebapaWa aSbaaSqaa8qacaaIXaaapaqabaGcpeGaaiykaiabgkHiTiaadchapa WaaSbaaSqaa8qacaaIWaaapaqabaaakeaapeWaaOaaa8aabaWdbiaa dchapaWaaSbaaSqaa8qacaaIWaaapaqabaGcpeGaamyCa8aadaWgaa WcbaWdbiaaicdaa8aabeaak8qacaGGVaGaamOBa8aadaWgaaWcbaWd biaaikdaa8aabeaaa8qabeaaaaaakiaawIcacaGLPaaacaWGMbWdam aaBaaaleaapeGaaGimaiaacUdaceWGybGbaebapaWaaSbaaWqaa8qa caaIXaaapaqabaaaleqaaOWdbiaacIcaceWG4bGbaebapaWaaSbaaS qaa8qacaaIXaaapaqabaGcpeGaaiykaiaadsgaceWG4bGbaebapaWa aSbaaSqaa8qacaaIXaaapaqabaaaaa@6A38@ ,

Note that there exists an ε>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTduMaeyOpa4JaaGimaaaa@3A97@  such that 0<ετ1ε<1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGimaiabgYda8iabew7aLjabgsMiJkabes8a0jabgsMiJkaaigda cqGHsislcqaH1oqzcqGH8aapcaaIXaaaaa@44D0@  since the lower limit of the above integral a 1 / n 1 >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyya8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGGVaGaamOB a8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGH+aGpcaaIWaaaaa@3DDA@ .

Then,

P 0 ( X 1 > a 1 )= a 1 / n 1 f 0; X ¯ 1 ( x ¯ 1 )d x ¯ 1 =τ+ α * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiua8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacaGGOaGaamiw a8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGH+aGpcaWGHbWdam aaBaaaleaapeGaaGymaaWdaeqaaOWdbiaacMcacqGH9aqpdaWdXaWd aeaapeGaamOza8aadaWgaaWcbaWdbiaaicdacaGG7aGabmiwayaara WdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaaaeaapeGaamyya8aa daWgaaadbaWdbiaaigdaa8aabeaal8qacaGGVaGaamOBa8aadaWgaa adbaWdbiaaigdaa8aabeaaaSqaa8qacqGHEisPa0Gaey4kIipakiaa cIcaceWG4bGbaebapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaai ykaiaadsgaceWG4bGbaebapaWaaSbaaSqaa8qacaaIXaaapaqabaGc peGaeyypa0JaeqiXdqNaey4kaSIaeqySde2damaaCaaaleqabaWdbi aacQcaaaaaaa@5B44@   (7.2.2)

Therefore, by (7.2.1) and (7.2.2), we know

a 1 n 1 = p 0 + z 1τ α * p 0 q 0 / n 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiaadggapaWaaSbaaSqaa8qacaaIXaaapaqabaaa keaapeGaamOBa8aadaWgaaWcbaWdbiaaigdaa8aabeaaaaGcpeGaey ypa0JaamiCa8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacqGHRaWk caWG6bWdamaaBaaaleaapeGaaGymaiabgkHiTiabes8a0jabgkHiTi abeg7aH9aadaahaaadbeqaa8qacaGGQaaaaaWcpaqabaGcpeWaaOaa a8aabaWdbiaadchapaWaaSbaaSqaa8qacaaIWaaapaqabaGcpeGaam yCa8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacaGGVaGaamOBa8aa daWgaaWcbaWdbiaaigdaa8aabeaaa8qabeaaaaa@4F52@    (7.2.3)

where z γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOEa8aadaWgaaWcbaWdbiabeo7aNbWdaeqaaaaa@3A2E@  is the γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4SdCgaaa@38D5@ -quantile of the standard normal distribution. Thus, if we choose α * 1τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySde2damaaCaaaleqabaWdbiaacQcaaaGccqGHKjYOcaaIXaGa eyOeI0IaeqiXdqhaaa@3EF3@  (achievable usually since α * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySde2damaaCaaaleqabaWdbiaacQcaaaaaaa@39C7@  should be small in practice), then z 1τ α * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOEa8aadaWgaaWcbaWdbiaaigdacqGHsislcqaHepaDcqGHsisl cqaHXoqypaWaaWbaaWqabeaapeGaaiOkaaaaaSWdaeqaaaaa@3F86@  is finite, and thus a 1 n 1 p 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiaadggapaWaaSbaaSqaa8qacaaIXaaapaqabaaa keaapeGaamOBa8aadaWgaaWcbaWdbiaaigdaa8aabeaaaaGcpeGaey isISRaamiCa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3F4E@  as n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBaiabgkziUkabg6HiLcaa@3B7F@ .

Next, we show the relationship among a, n,  p 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyyaiaacYcacaqGGaGaamOBaiaacYcacaqGGaGaamiCamaaBaaa leaacaaIWaaabeaaaaa@3D88@  and p 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCamaaBaaaleaacaaIXaaabeaaaaa@390A@ . Let X= X 1 + X 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiwaiabg2da9iaadIfadaWgaaWcbaGaaGymaaqabaGccqGHRaWk caWGybWaaSbaaSqaaiaaikdaaeqaaaaa@3D86@  and by independence, X~Bin(n, p i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiwaiaac6hacaWGcbGaamyAaiaad6gacaGGOaGaamOBaiaacYca caWGWbWdamaaBaaaleaapeGaamyAaaWdaeqaaOWdbiaacMcaaaa@4108@  under H i  (i=0,1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamisa8aadaWgaaWcbaWdbiaadMgaa8aabeaak8qacaGGGcGaaiik aiaadMgacqGH9aqpcaaIWaGaaiilaiaaigdacaGGPaaaaa@3FF3@ . Thus, (7.1.1) holds for X ¯ =X/n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmiwayaaraGaeyypa0Jaamiwaiaac+cacaWGUbaaaa@3BAC@ . We know P 0 ( X 1 > a 1 ,X>a)= α * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiua8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacaGGOaGaamiw a8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGH+aGpcaWGHbWdam aaBaaaleaapeGaaGymaaWdaeqaaOWdbiaacYcacaWGybGaeyOpa4Ja amyyaiaacMcacqGH9aqpcqaHXoqypaWaaWbaaSqabeaapeGaaiOkaa aaaaa@46CD@  and P 1 ( X 1 > a 1 ,X>a)=1 β * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiua8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGGOaGaamiw a8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGH+aGpcaWGHbWdam aaBaaaleaapeGaaGymaaWdaeqaaOWdbiaacYcacaWGybGaeyOpa4Ja amyyaiaacMcacqGH9aqpcaaIXaGaeyOeI0IaeqOSdi2damaaCaaale qabaWdbiaacQcaaaaaaa@4878@ .

One the one hand, P 1 (X>a)=1 β * + P 1 (X>a, X 1 a 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiua8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGGOaGaamiw aiabg6da+iaadggacaGGPaGaeyypa0JaaGymaiabgkHiTiabek7aI9 aadaahaaWcbeqaa8qacaGGQaaaaOGaey4kaSIaamiua8aadaWgaaWc baWdbiaaigdaa8aabeaak8qacaGGOaGaamiwaiabg6da+iaadggaca GGSaGaamiwa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGHKjYO caWGHbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaacMcaaaa@5039@ , and let

τ 1 = P 1 (X>a, X 1 a 1 ) = 0 a 1 / n 1 S 1; X ¯ 2 ( n 1 n 2 [ a n 1 x ¯ 1 ] ) f 1; X ¯ 1 ( x ¯ 1 )d x ¯ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiXdq3damaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabg2da9iaa dcfapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaaiikaiaadIfacq GH+aGpcaWGHbGaaiilaiaadIfapaWaaSbaaSqaa8qacaaIXaaapaqa baGcpeGaeyizImQaamyya8aadaWgaaWcbaWdbiaaigdaa8aabeaak8 qacaGGPaWdaiaqbccapeGaeyypa0Zaa8qma8aabaWdbiaadofapaWa aSbaaSqaa8qacaaIXaGaai4oaiqadIfagaqea8aadaWgaaadbaWdbi aaikdaa8aabeaaaSqabaaabaWdbiaaicdaa8aabaWdbiaadggapaWa aSbaaWqaa8qacaaIXaaapaqabaWcpeGaai4laiaad6gapaWaaSbaaW qaa8qacaaIXaaapaqabaaan8qacqGHRiI8aOWaaeWaa8aabaWdbmaa laaapaqaa8qacaWGUbWdamaaBaaaleaapeGaaGymaaWdaeqaaaGcba Wdbiaad6gapaWaaSbaaSqaa8qacaaIYaaapaqabaaaaOWdbmaadmaa paqaa8qadaWcaaWdaeaapeGaamyyaaWdaeaapeGaamOBa8aadaWgaa WcbaWdbiaaigdaa8aabeaaaaGcpeGaeyOeI0IabmiEayaaraWdamaa BaaaleaapeGaaGymaaWdaeqaaaGcpeGaay5waiaaw2faaaGaayjkai aawMcaaiaadAgapaWaaSbaaSqaa8qacaaIXaGaai4oaiqadIfagaqe a8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaaiikaiqadI hagaqea8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGGPaGaamiz aiqadIhagaqea8aadaWgaaWcbaWdbiaaigdaa8aabeaaaaa@70E9@

τ 1 = P 1 (X>a, X 1 a 1 ) = 0 a 1 / n 1 S 1; X ¯ 2 ( n 1 n 2 [ a n 1 x ¯ 1 ] ) f 1; X ¯ 1 ( x ¯ 1 )d x ¯ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiXdq3damaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabg2da9iaa dcfapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaaiikaiaadIfacq GH+aGpcaWGHbGaaiilaiaadIfapaWaaSbaaSqaa8qacaaIXaaapaqa baGcpeGaeyizImQaamyya8aadaWgaaWcbaWdbiaaigdaa8aabeaak8 qacaGGPaWdaiaqbccapeGaeyypa0Zaa8qma8aabaWdbiaadofapaWa aSbaaSqaa8qacaaIXaGaai4oaiqadIfagaqea8aadaWgaaadbaWdbi aaikdaa8aabeaaaSqabaaabaWdbiaaicdaa8aabaWdbiaadggapaWa aSbaaWqaa8qacaaIXaaapaqabaWcpeGaai4laiaad6gapaWaaSbaaW qaa8qacaaIXaaapaqabaaan8qacqGHRiI8aOWaaeWaa8aabaWdbmaa laaapaqaa8qacaWGUbWdamaaBaaaleaapeGaaGymaaWdaeqaaaGcba Wdbiaad6gapaWaaSbaaSqaa8qacaaIYaaapaqabaaaaOWdbmaadmaa paqaa8qadaWcaaWdaeaapeGaamyyaaWdaeaapeGaamOBa8aadaWgaa WcbaWdbiaaigdaa8aabeaaaaGcpeGaeyOeI0IabmiEayaaraWdamaa BaaaleaapeGaaGymaaWdaeqaaaGcpeGaay5waiaaw2faaaGaayjkai aawMcaaiaadAgapaWaaSbaaSqaa8qacaaIXaGaai4oaiqadIfagaqe a8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaaiikaiqadI hagaqea8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGGPaGaamiz aiqadIhagaqea8aadaWgaaWcbaWdbiaaigdaa8aabeaaaaa@70E9@

On the other hand, P 0 (X>a)= α * + P 0 (X>a, X 1 a 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiua8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacaGGOaGaamiw aiabg6da+iaadggacaGGPaGaeyypa0JaeqySde2damaaCaaaleqaba WdbiaacQcaaaGccqGHRaWkcaWGqbWdamaaBaaaleaapeGaaGimaaWd aeqaaOWdbiaacIcacaWGybGaeyOpa4JaamyyaiaacYcacaWGybWdam aaBaaaleaapeGaaGymaaWdaeqaaOWdbiabgsMiJkaadggapaWaaSba aSqaa8qacaaIXaaapaqabaGcpeGaaiykaaaa@4E8D@  and let

τ 0 = P 0 (X>a, X 1 a 1 ) = 0 a 1 / n 1 S 0; X ¯ 2 ( n 1 n 2 [ a n 1 x ¯ 1 ] ) f 0; X ¯ 1 ( x ¯ 1 )d x ¯ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiXdq3damaaBaaaleaapeGaaGimaaWdaeqaaOWdbiabg2da9iaa dcfapaWaaSbaaSqaa8qacaaIWaaapaqabaGcpeGaaiikaiaadIfacq GH+aGpcaWGHbGaaiilaiaadIfapaWaaSbaaSqaa8qacaaIXaaapaqa baGcpeGaeyizImQaamyya8aadaWgaaWcbaWdbiaaigdaa8aabeaak8 qacaGGPaWdaiaqbccapeGaeyypa0Zaa8qma8aabaWdbiaadofapaWa aSbaaSqaa8qacaaIWaGaai4oaiqadIfagaqea8aadaWgaaadbaWdbi aaikdaa8aabeaaaSqabaaabaWdbiaaicdaa8aabaWdbiaadggapaWa aSbaaWqaa8qacaaIXaaapaqabaWcpeGaai4laiaad6gapaWaaSbaaW qaa8qacaaIXaaapaqabaaan8qacqGHRiI8aOWaaeWaa8aabaWdbmaa laaapaqaa8qacaWGUbWdamaaBaaaleaapeGaaGymaaWdaeqaaaGcba Wdbiaad6gapaWaaSbaaSqaa8qacaaIYaaapaqabaaaaOWdbmaadmaa paqaa8qadaWcaaWdaeaapeGaamyyaaWdaeaapeGaamOBa8aadaWgaa WcbaWdbiaaigdaa8aabeaaaaGcpeGaeyOeI0IabmiEayaaraWdamaa BaaaleaapeGaaGymaaWdaeqaaaGcpeGaay5waiaaw2faaaGaayjkai aawMcaaiaadAgapaWaaSbaaSqaa8qacaaIWaGaai4oaiqadIfagaqe a8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaaiikaiqadI hagaqea8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGGPaGaamiz aiqadIhagaqea8aadaWgaaWcbaWdbiaaigdaa8aabeaaaaa@70E5@

S 0; X ¯ 2 ( a n 2 ) 0 a 1 / n 1 f 0; X ¯ 1 ( x ¯ 1 )d x ¯ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyizImQaam4ua8aadaWgaaWcbaWdbiaaicdacaGG7aGabmiwayaa raWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qadaqadaWdae aapeWaaSaaa8aabaWdbiaadggaa8aabaWdbiaad6gapaWaaSbaaSqa a8qacaaIYaaapaqabaaaaaGcpeGaayjkaiaawMcaamaapedapaqaa8 qacaWGMbWdamaaBaaaleaapeGaaGimaiaacUdaceWGybGbaebapaWa aSbaaWqaa8qacaaIXaaapaqabaaaleqaaaqaa8qacaaIWaaapaqaa8 qacaWGHbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaac+cacaWG UbWdamaaBaaameaapeGaaGymaaWdaeqaaaqdpeGaey4kIipakiaacI caceWG4bGbaebapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaaiyk aiaadsgaceWG4bGbaebapaWaaSbaaSqaa8qacaaIXaaapaqabaaaaa@5637@

We note that there exist an ε>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTduMaeyOpa4JaaGimaaaa@3A97@  such that S i; X ¯ 2 ( a n 2 )1ε<1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ua8aadaWgaaWcbaWdbiaadMgacaGG7aGabmiwayaaraWdamaa BaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qadaqadaWdaeaapeWaaS aaa8aabaWdbiaadggaa8aabaWdbiaad6gapaWaaSbaaSqaa8qacaaI YaaapaqabaaaaaGcpeGaayjkaiaawMcaaiabgsMiJkaaigdacqGHsi slcqaH1oqzcqGH8aapcaaIXaaaaa@47F1@  for both i=0,1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyAaiabg2da9iaaicdacaGGSaGaaGymaaaa@3B47@ , thus the right hand side of the above two probabilities are conservatively equal to 1ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGymaiabgkHiTiabew7aLbaa@3A7D@  under large sample. Now,

a/n= p 0 + z 1 α * τ 0 p 0 q 0 /n = p 1 z 1 β * + τ 1 p 1 q 1 /n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyyaiaac+cacaWGUbGaeyypa0JaamiCa8aadaWgaaWcbaWdbiaa icdaa8aabeaak8qacqGHRaWkcaWG6bWdamaaBaaaleaapeGaaGymai abgkHiTiabeg7aH9aadaahaaadbeqaa8qacaGGQaaaaSGaeyOeI0Ia eqiXdq3damaaBaaameaapeGaaGimaaWdaeqaaaWcbeaak8qadaGcaa WdaeaapeGaamiCa8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacaWG XbWdamaaBaaaleaapeGaaGimaaWdaeqaaOWdbiaac+cacaWGUbaale qaaOGaeyypa0JaamiCa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qa cqGHsislcaWG6bWdamaaBaaaleaapeGaaGymaiabgkHiTiabek7aI9 aadaahaaadbeqaa8qacaGGQaaaaSGaey4kaSIaeqiXdq3damaaBaaa meaapeGaaGymaaWdaeqaaaWcbeaak8qadaGcaaWdaeaapeGaamiCa8 aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaWGXbWdamaaBaaaleaa peGaaGymaaWdaeqaaOWdbiaac+cacaWGUbaaleqaaaaa@6134@

Thus,

a n =λ p 1 +(1λ) p 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiaadggaa8aabaWdbiaad6gaaaGaeyypa0Jaeq4U dWMaamiCa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGHRaWkca GGOaGaaGymaiabgkHiTiabeU7aSjaacMcacaWGWbWdamaaBaaaleaa peGaaGimaaWdaeqaaaaa@45D3@   (7.2.4)

with λ= z 1 α * τ 0 p 0 q 0 z 1 α * τ 0 p 0 q 0 + z 1 β * + τ 1 p 1 q 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdWMaeyypa0ZaaSaaa8aabaWdbiaadQhapaWaaSbaaSqaa8qa caaIXaGaeyOeI0IaeqySde2damaaCaaameqabaWdbiaacQcaaaWccq GHsislcqaHepaDpaWaaSbaaWqaa8qacaaIWaaapaqabaaaleqaaOWd bmaakaaapaqaa8qacaWGWbWdamaaBaaaleaapeGaaGimaaWdaeqaaO WdbiaadghapaWaaSbaaSqaa8qacaaIWaaapaqabaaapeqabaaak8aa baWdbiaadQhapaWaaSbaaSqaa8qacaaIXaGaeyOeI0IaeqySde2dam aaCaaameqabaWdbiaacQcaaaWccqGHsislcqaHepaDpaWaaSbaaWqa a8qacaaIWaaapaqabaaaleqaaOWdbmaakaaapaqaa8qacaWGWbWdam aaBaaaleaapeGaaGimaaWdaeqaaOWdbiaadghapaWaaSbaaSqaa8qa caaIWaaapaqabaaapeqabaGccqGHRaWkcaWG6bWdamaaBaaaleaape GaaGymaiabgkHiTiabek7aI9aadaahaaadbeqaa8qacaGGQaaaaSGa ey4kaSIaeqiXdq3damaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8 qadaGcaaWdaeaapeGaamiCa8aadaWgaaWcbaWdbiaaigdaa8aabeaa k8qacaWGXbWdamaaBaaaleaapeGaaGymaaWdaeqaaaWdbeqaaaaaaa a@64F3@ . By choosing α * ,1 β * <ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySde2damaaCaaaleqabaWdbiaacQcaaaGccaGGSaGaaGymaiab gkHiTiabek7aI9aadaahaaWcbeqaa8qacaGGQaaaaOGaeyipaWJaeq yTdugaaa@4179@ , we have τ 0 <1 α * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiXdq3damaaBaaaleaapeGaaGimaaWdaeqaaOWdbiabgYda8iaa igdacqGHsislcqaHXoqypaWaaWbaaSqabeaapeGaaiOkaaaaaaa@3F66@  and τ 1 < β * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiXdq3damaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabgYda8iab ek7aI9aadaahaaWcbeqaa8qacaGGQaaaaaaa@3DC1@ , so both z 1 α * τ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOEa8aadaWgaaWcbaWdbiaaigdacqGHsislcqaHXoqypaWaaWba aWqabeaapeGaaiOkaaaaliabgkHiTiabes8a09aadaWgaaadbaWdbi aaicdaa8aabeaaaSqabaaaaa@4097@  and z 1 β * + τ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOEa8aadaWgaaWcbaWdbiaaigdacqGHsislcqaHYoGypaWaaWba aWqabeaapeGaaiOkaaaaliabgUcaRiabes8a09aadaWgaaadbaWdbi aaigdaa8aabeaaaSqabaaaaa@408F@  are finite. Whether the weights in (7.2.4) are closer to 1/2 is a more complicated problem here than that in Section 7.1.

Under both futility and superiority stops

Following the same notations and assumptions made in Section 7.2.1, note that similar to the thoughts in Section 7.2.1, condition 1 α * = P 0 ( X 1 a 1 )+ P 0 ( a 1 < X 1 < b 1 , X 1 + X 2 a) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGymaiabgkHiTiabeg7aH9aadaahaaWcbeqaa8qacaGGQaaaaOGa eyypa0Jaamiua8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacaGGOa Gaamiwa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGHKjYOcaWG HbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaacMcacqGHRaWkca WGqbWdamaaBaaaleaapeGaaGimaaWdaeqaaOWdbiaacIcacaWGHbWd amaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabgYda8iaadIfapaWaaS baaSqaa8qacaaIXaaapaqabaGcpeGaeyipaWJaamOya8aadaWgaaWc baWdbiaaigdaa8aabeaak8qacaGGSaGaamiwa8aadaWgaaWcbaWdbi aaigdaa8aabeaak8qacqGHRaWkcaWGybWdamaaBaaaleaapeGaaGOm aaWdaeqaaOWdbiabgsMiJkaadggacaGGPaaaaa@5A74@  is equivalent to

P 0 ( X 1 > a 1 )= a 1 / n 1 f 0; X ¯ 1 ( x ¯ 1 )d x ¯ 1 =τ+ α * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiua8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacaGGOaGaamiw a8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGH+aGpcaWGHbWdam aaBaaaleaapeGaaGymaaWdaeqaaOWdbiaacMcacqGH9aqpdaWdXaWd aeaapeGaamOza8aadaWgaaWcbaWdbiaaicdacaGG7aGabmiwayaara WdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaaaeaapeGaamyya8aa daWgaaadbaWdbiaaigdaa8aabeaal8qacaGGVaGaamOBa8aadaWgaa adbaWdbiaaigdaa8aabeaaaSqaa8qacqGHEisPa0Gaey4kIipakiaa cIcaceWG4bGbaebapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaai ykaiaadsgaceWG4bGbaebapaWaaSbaaSqaa8qacaaIXaaapaqabaGc peGaeyypa0JaeqiXdqNaey4kaSIaeqySde2damaaCaaaleqabaWdbi aacQcaaaaaaa@5B44@

where

τ= a 1 / n 1 b 1 / n 1 S 0; X ¯ 2 ( n 1 n 2 [ a n 1 x ¯ 1 ] ) f 0; X ¯ 1 ( x ¯ 1 )d x ¯ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiXdqNaeyypa0Zaa8qma8aabaWdbiaadofapaWaaSbaaSqaa8qa caaIWaGaai4oaiqadIfagaqea8aadaWgaaadbaWdbiaaikdaa8aabe aaaSqabaaabaWdbiaadggapaWaaSbaaWqaa8qacaaIXaaapaqabaWc peGaai4laiaad6gapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleaape GaamOya8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGVaGaamOB a8aadaWgaaadbaWdbiaaigdaa8aabeaaa0WdbiabgUIiYdGcdaqada WdaeaapeWaaSaaa8aabaWdbiaad6gapaWaaSbaaSqaa8qacaaIXaaa paqabaaakeaapeGaamOBa8aadaWgaaWcbaWdbiaaikdaa8aabeaaaa GcpeWaamWaa8aabaWdbmaalaaapaqaa8qacaWGHbaapaqaa8qacaWG UbWdamaaBaaaleaapeGaaGymaaWdaeqaaaaak8qacqGHsislceWG4b GbaebapaWaaSbaaSqaa8qacaaIXaaapaqabaaak8qacaGLBbGaayzx aaaacaGLOaGaayzkaaGaamOza8aadaWgaaWcbaWdbiaaicdacaGG7a GabmiwayaaraWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qa caGGOaGabmiEayaaraWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbi aacMcacaWGKbGabmiEayaaraWdamaaBaaaleaapeGaaGymaaWdaeqa aaaa@6518@

Thus, by choosing α * <1τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySde2damaaCaaaleqabaWdbiaacQcaaaGccqGH8aapcaaIXaGa eyOeI0IaeqiXdqhaaa@3E42@ , we can similarly show that

a 1 n 1 = p 0 + z 1 α * τ p 0 q 0 / n 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiaadggapaWaaSbaaSqaa8qacaaIXaaapaqabaaa keaapeGaamOBa8aadaWgaaWcbaWdbiaaigdaa8aabeaaaaGcpeGaey ypa0JaamiCa8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacqGHRaWk caWG6bWdamaaBaaaleaapeGaaGymaiabgkHiTiabeg7aH9aadaahaa adbeqaa8qacaGGQaaaaSGaeyOeI0IaeqiXdqhapaqabaGcpeWaaOaa a8aabaWdbiaadchapaWaaSbaaSqaa8qacaaIWaaapaqabaGcpeGaam yCa8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacaGGVaGaamOBa8aa daWgaaWcbaWdbiaaigdaa8aabeaaa8qabeaaaaa@4F52@   (7.2.5)

 Thus, a 1 n 1 p 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiaadggapaWaaSbaaSqaa8qacaaIXaaapaqabaaa keaapeGaamOBa8aadaWgaaWcbaWdbiaaigdaa8aabeaaaaGcpeGaey isISRaamiCa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3F4E@ .

Second, we note that P 1 ( X 1 a 1 )+ P 1 ( a 1 < X 1 < b 1 ,Xa)= P 1 ( X 1 a 1 ,Xa)+ P 1 ( X 1 a 1 ,X>a)+ P 1 ( a 1 < X 1 < b 1 ,Xa)= P 1 ( X 1 < b 1 ,Xa)+ P 1 ( X 1 a 1 ,X>a)= P 1 ( X 1 < b 1 ) P 1 ( X 1 < b 1 ,X>a)+ P 1 ( X 1 a 1 ,X>a) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiua8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGGOaGaamiw a8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGHKjYOcaWGHbWdam aaBaaaleaapeGaaGymaaWdaeqaaOWdbiaacMcacqGHRaWkcaWGqbWd amaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaacIcacaWGHbWdamaaBa aaleaapeGaaGymaaWdaeqaaOWdbiabgYda8iaadIfapaWaaSbaaSqa a8qacaaIXaaapaqabaGcpeGaeyipaWJaamOya8aadaWgaaWcbaWdbi aaigdaa8aabeaak8qacaGGSaGaamiwaiabgsMiJkaadggacaGGPaGa eyypa0Jaamiua8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGGOa Gaamiwa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGHKjYOcaWG HbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaacYcacaWGybGaey izImQaamyyaiaacMcacqGHRaWkcaWGqbWdamaaBaaaleaapeGaaGym aaWdaeqaaOWdbiaacIcacaWGybWdamaaBaaaleaapeGaaGymaaWdae qaaOWdbiabgsMiJkaadggapaWaaSbaaSqaa8qacaaIXaaapaqabaGc peGaaiilaiaadIfacqGH+aGpcaWGHbGaaiykaiabgUcaRiaadcfapa WaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaaiikaiaadggapaWaaSba aSqaa8qacaaIXaaapaqabaGcpeGaeyipaWJaamiwa8aadaWgaaWcba Wdbiaaigdaa8aabeaak8qacqGH8aapcaWGIbWdamaaBaaaleaapeGa aGymaaWdaeqaaOWdbiaacYcacaWGybGaeyizImQaamyyaiaacMcacq GH9aqpcaWGqbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaacIca caWGybWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabgYda8iaadk gapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaaiilaiaadIfacqGH KjYOcaWGHbGaaiykaiabgUcaRiaadcfapaWaaSbaaSqaa8qacaaIXa aapaqabaGcpeGaaiikaiaadIfapaWaaSbaaSqaa8qacaaIXaaapaqa baGcpeGaeyizImQaamyya8aadaWgaaWcbaWdbiaaigdaa8aabeaak8 qacaGGSaGaamiwaiabg6da+iaadggacaGGPaGaeyypa0Jaamiua8aa daWgaaWcbaWdbiaaigdaa8aabeaak8qacaGGOaGaamiwa8aadaWgaa WcbaWdbiaaigdaa8aabeaak8qacqGH8aapcaWGIbWdamaaBaaaleaa peGaaGymaaWdaeqaaOWdbiaacMcacqGHsislcaWGqbWdamaaBaaale aapeGaaGymaaWdaeqaaOWdbiaacIcacaWGybWdamaaBaaaleaapeGa aGymaaWdaeqaaOWdbiabgYda8iaadkgapaWaaSbaaSqaa8qacaaIXa aapaqabaGcpeGaaiilaiaadIfacqGH+aGpcaWGHbGaaiykaiabgUca RiaadcfapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaaiikaiaadI fapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaeyizImQaamyya8aa daWgaaWcbaWdbiaaigdaa8aabeaak8qacaGGSaGaamiwaiabg6da+i aadggacaGGPaaaaa@BCE3@ . Hence, the condition β * = P 1 ( X 1 a 1 )+ P 1 ( a 1 < X 1 < b 1 , X 1 + X 2 a) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdi2damaaCaaaleqabaWdbiaacQcaaaGccqGH9aqpcaWGqbWd amaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaacIcacaWGybWdamaaBa aaleaapeGaaGymaaWdaeqaaOWdbiabgsMiJkaadggapaWaaSbaaSqa a8qacaaIXaaapaqabaGcpeGaaiykaiabgUcaRiaadcfapaWaaSbaaS qaa8qacaaIXaaapaqabaGcpeGaaiikaiaadggapaWaaSbaaSqaa8qa caaIXaaapaqabaGcpeGaeyipaWJaamiwa8aadaWgaaWcbaWdbiaaig daa8aabeaak8qacqGH8aapcaWGIbWdamaaBaaaleaapeGaaGymaaWd aeqaaOWdbiaacYcacaWGybWdamaaBaaaleaapeGaaGymaaWdaeqaaO WdbiabgUcaRiaadIfapaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGa eyizImQaamyyaiaacMcaaaa@58D0@  is equivalent to P 1 ( X 1 < b 1 ) P 1 ( a 1 < X 1 < b 1 ,X>a)= β * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiua8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGGOaGaamiw a8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGH8aapcaWGIbWdam aaBaaaleaapeGaaGymaaWdaeqaaOWdbiaacMcacqGHsislcaWGqbWd amaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaacIcacaWGHbWdamaaBa aaleaapeGaaGymaaWdaeqaaOWdbiabgYda8iaadIfapaWaaSbaaSqa a8qacaaIXaaapaqabaGcpeGaeyipaWJaamOya8aadaWgaaWcbaWdbi aaigdaa8aabeaak8qacaGGSaGaamiwaiabg6da+iaadggacaGGPaGa eyypa0JaeqOSdi2damaaCaaaleqabaWdbiaacQcaaaaaaa@5356@ , thus

P 1 ( X 1 > b 1 )= b 1 / n 1 f 1; X ¯ 1 ( x ¯ 1 )d x ¯ 1 =1 β * +τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiua8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGGOaGaamiw a8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGH+aGpcaWGIbWdam aaBaaaleaapeGaaGymaaWdaeqaaOWdbiaacMcacqGH9aqpdaWdXaWd aeaapeGaamOza8aadaWgaaWcbaWdbiaaigdacaGG7aGabmiwayaara WdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaaaeaapeGaamOya8aa daWgaaadbaWdbiaaigdaa8aabeaal8qacaGGVaGaamOBa8aadaWgaa adbaWdbiaaigdaa8aabeaaaSqaa8qacqGHEisPa0Gaey4kIipakiaa cIcaceWG4bGbaebapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaai ykaiaadsgaceWG4bGbaebapaWaaSbaaSqaa8qacaaIXaaapaqabaGc peGaeyypa0JaaGymaiabgkHiTiabek7aI9aadaahaaWcbeqaa8qaca GGQaaaaOGaey4kaSIaeqiXdqhaaa@5CFC@

where

τ= a 1 / n 1 b 1 / n 1 S 1; X ¯ 2 ( n 1 n 2 [ a n 1 x ¯ 1 ] ) f 1; X ¯ 1 ( x ¯ 1 )d x ¯ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiXdqNaeyypa0Zaa8qma8aabaWdbiaadofapaWaaSbaaSqaa8qa caaIXaGaai4oaiqadIfagaqea8aadaWgaaadbaWdbiaaikdaa8aabe aaaSqabaaabaWdbiaadggapaWaaSbaaWqaa8qacaaIXaaapaqabaWc peGaai4laiaad6gapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleaape GaamOya8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGVaGaamOB a8aadaWgaaadbaWdbiaaigdaa8aabeaaa0WdbiabgUIiYdGcdaqada WdaeaapeWaaSaaa8aabaWdbiaad6gapaWaaSbaaSqaa8qacaaIXaaa paqabaaakeaapeGaamOBa8aadaWgaaWcbaWdbiaaikdaa8aabeaaaa GcpeWaamWaa8aabaWdbmaalaaapaqaa8qacaWGHbaapaqaa8qacaWG UbWdamaaBaaaleaapeGaaGymaaWdaeqaaaaak8qacqGHsislceWG4b GbaebapaWaaSbaaSqaa8qacaaIXaaapaqabaaak8qacaGLBbGaayzx aaaacaGLOaGaayzkaaGaamOza8aadaWgaaWcbaWdbiaaigdacaGG7a GabmiwayaaraWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qa caGGOaGabmiEayaaraWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbi aacMcacaWGKbGabmiEayaaraWdamaaBaaaleaapeGaaGymaaWdaeqa aaaa@651A@

Then, by choosing β * >τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdi2damaaCaaaleqabaWdbiaacQcaaaGccqGH+aGpcqaHepaD aaa@3CA0@ , we know that

b 1 n 1 = p 1 z (1 β * +τ) p 1 q 1 / n 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaaeaacaWGIbWaaSbaaSqaaiaaigdaaeqaaaGcbaWdaiaad6ga daWgaaWcbaGaaGymaaqabaaaaOWdbiabg2da9iaadchapaWaaSbaaS qaa8qacaaIXaaapaqabaGcpeGaeyOeI0IaamOEa8aadaWgaaWcbaWd biaacIcacaaIXaGaeyOeI0IaeqOSdi2damaaCaaameqabaWdbiaacQ caaaWccqGHRaWkcqaHepaDcaGGPaaapaqabaGcpeWaaOaaaeaacaWG WbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaadghapaWaaSbaaS qaa8qacaaIXaaapaqabaGcpeGaai4laiaad6gapaWaaSbaaSqaa8qa caaIXaaapaqabaaapeqabaaaaa@5016@   (7.2.6)

 Thus, b 1 n 1 p 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaaeaacaWGIbWaaSbaaSqaaiaaigdaaeqaaaGcbaWdaiaad6ga daWgaaWcbaGaaGymaaqabaaaaOWdbiabgIKi7kaadchapaWaaSbaaS qaa8qacaaIXaaapaqabaaaaa@3ED4@ .

Finally, denote X= X 1 + X 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiwaiabg2da9iaadIfapaWaaSbaaSqaa8qacaaIXaaapaqabaGc peGaey4kaSIaamiwa8aadaWgaaWcbaWdbiaaikdaa8aabeaaaaa@3DF2@ , and we have that β * = P 1 ( X 1 a 1 )+ P 1 ( a 1 < X 1 < b 1 ,Xa) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdi2damaaCaaaleqabaWdbiaacQcaaaGccqGH9aqpcaWGqbWd amaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaacIcacaWGybWdamaaBa aaleaapeGaaGymaaWdaeqaaOWdbiabgsMiJkaadggapaWaaSbaaSqa a8qacaaIXaaapaqabaGcpeGaaiykaiabgUcaRiaadcfapaWaaSbaaS qaa8qacaaIXaaapaqabaGcpeGaaiikaiaadggapaWaaSbaaSqaa8qa caaIXaaapaqabaGcpeGaeyipaWJaamiwa8aadaWgaaWcbaWdbiaaig daa8aabeaak8qacqGH8aapcaWGIbWdamaaBaaaleaapeGaaGymaaWd aeqaaOWdbiaacYcacaWGybGaeyizImQaamyyaiaacMcaaaa@54B2@ ,

and 1 α * = P 0 ( X 1 a 1 )+ P 0 ( a 1 < X 1 < b 1 ,Xa) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGymaiabgkHiTiabeg7aH9aadaahaaWcbeqaa8qacaGGQaaaaOGa eyypa0Jaamiua8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacaGGOa Gaamiwa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGHKjYOcaWG HbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaacMcacqGHRaWkca WGqbWdamaaBaaaleaapeGaaGimaaWdaeqaaOWdbiaacIcacaWGHbWd amaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabgYda8iaadIfapaWaaS baaSqaa8qacaaIXaaapaqabaGcpeGaeyipaWJaamOya8aadaWgaaWc baWdbiaaigdaa8aabeaak8qacaGGSaGaamiwaiabgsMiJkaadggaca GGPaaaaa@5656@ . Let

τ 0 = P 0 ( a 1 < X 1 < b 1 ,Xa)= a 1 / n 1 b 1 / n 1 Φ ( n 1 n 2 1 (a/ n 1 x ¯ 1 ) p 0 p 0 q 0 / n 2 ) f 0; X ¯ 1 ( x ¯ 1 )d x ¯ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiXdq3damaaBaaaleaapeGaaGimaaWdaeqaaOWdbiabg2da9iaa dcfapaWaaSbaaSqaa8qacaaIWaaapaqabaGcpeGaaiikaiaadggapa WaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaeyipaWJaamiwa8aadaWg aaWcbaWdbiaaigdaa8aabeaak8qacqGH8aapcaWGIbWdamaaBaaale aapeGaaGymaaWdaeqaaOWdbiaacYcacaWGybGaeyizImQaamyyaiaa cMcacqGH9aqpdaWdXaWdaeaapeGaeuOPdyeal8aabaWdbiaadggapa WaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaai4laiaad6gapaWaaSba aWqaa8qacaaIXaaapaqabaaaleaapeGaamOya8aadaWgaaadbaWdbi aaigdaa8aabeaal8qacaGGVaGaamOBa8aadaWgaaadbaWdbiaaigda a8aabeaaa0WdbiabgUIiYdGcdaqadaWdaeaapeWaaSaaa8aabaWdbi aad6gapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaamOBa8aadaqh aaWcbaWdbiaaikdaa8aabaWdbiabgkHiTiaaigdaaaGccaGGOaGaam yyaiaac+cacaWGUbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiab gkHiTiqadIhagaqea8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qaca GGPaGaeyOeI0IaamiCa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaOqa a8qadaGcaaWdaeaapeGaamiCa8aadaWgaaWcbaWdbiaaicdaa8aabe aak8qacaWGXbWdamaaBaaaleaapeGaaGimaaWdaeqaaOWdbiaac+ca caWGUbWdamaaBaaaleaapeGaaGOmaaWdaeqaaaWdbeqaaaaaaOGaay jkaiaawMcaaiaadAgapaWaaSbaaSqaa8qacaaIWaGaai4oaiqadIfa gaqea8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaaiikai qadIhagaqea8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGGPaGa amizaiqadIhagaqea8aadaWgaaWcbaWdbiaaigdaa8aabeaaaaa@7FA2@

and

τ 1 = P 1 ( a 1 < X 1 < b 1 ,Xa)= a 1 / n 1 b 1 / n 1 Φ ( n 1 n 2 1 (a/ n 1 x ¯ 1 ) p 1 p 1 q 1 / n 2 ) f 1; X ¯ 1 ( x ¯ 1 )d x ¯ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiXdq3damaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabg2da9iaa dcfapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaaiikaiaadggapa WaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaeyipaWJaamiwa8aadaWg aaWcbaWdbiaaigdaa8aabeaak8qacqGH8aapcaWGIbWdamaaBaaale aapeGaaGymaaWdaeqaaOWdbiaacYcacaWGybGaeyizImQaamyyaiaa cMcacqGH9aqpdaWdXaWdaeaapeGaeuOPdyeal8aabaWdbiaadggapa WaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaai4laiaad6gapaWaaSba aWqaa8qacaaIXaaapaqabaaaleaapeGaamOya8aadaWgaaadbaWdbi aaigdaa8aabeaal8qacaGGVaGaamOBa8aadaWgaaadbaWdbiaaigda a8aabeaaa0WdbiabgUIiYdGcdaqadaWdaeaapeWaaSaaa8aabaWdbi aad6gapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaamOBa8aadaqh aaWcbaWdbiaaikdaa8aabaWdbiabgkHiTiaaigdaaaGccaGGOaGaam yyaiaac+cacaWGUbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiab gkHiTiqadIhagaqea8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qaca GGPaGaeyOeI0IaamiCa8aadaWgaaWcbaWdbiaaigdaa8aabeaaaOqa a8qadaGcaaWdaeaapeGaamiCa8aadaWgaaWcbaWdbiaaigdaa8aabe aak8qacaWGXbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaac+ca caWGUbWdamaaBaaaleaapeGaaGOmaaWdaeqaaaWdbeqaaaaaaOGaay jkaiaawMcaaiaadAgapaWaaSbaaSqaa8qacaaIXaGaai4oaiqadIfa gaqea8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaaiikai qadIhagaqea8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGGPaGa amizaiqadIhagaqea8aadaWgaaWcbaWdbiaaigdaa8aabeaaaaa@7FA8@

where Φ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuOPdyeaaa@38A8@  is the CDF of the standard normal distribution, and thus choosing α * <1 τ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySde2damaaCaaaleqabaWdbiaacQcaaaGccqGH8aapcaaIXaGa eyOeI0IaeqiXdq3damaaBaaaleaapeGaaGimaaWdaeqaaaaa@3F56@  and β * > τ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdi2damaaCaaaleqabaWdbiaacQcaaaGccqGH+aGpcqaHepaD paWaaSbaaSqaa8qacaaIXaaapaqabaaaaa@3DB5@ , similar to the proof in Section 7.2.1, we have

a n =λ p 0 +(1λ) p 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaaeaacaWGHbaabaGaamOBaaaacqGH9aqpcqaH7oaBcaWGWbWd amaaBaaaleaapeGaaGimaaWdaeqaaOWdbiabgUcaRiaacIcacaaIXa GaeyOeI0Iaeq4UdWMaaiykaiaadchapaWaaSbaaSqaa8qacaaIXaaa paqabaaaaa@4595@   (7.2.7)

where λ= z 1 α * τ 0 p 0 q 0 z 1 α * τ 0 p 0 q 0 + z 1 β * + τ 1 p 1 q 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdWMaeyypa0ZaaSaaa8aabaWdbiaadQhapaWaaSbaaSqaa8qa caaIXaGaeyOeI0IaeqySde2damaaCaaameqabaWdbiaacQcaaaWccq GHsislcqaHepaDpaWaaSbaaWqaa8qacaaIWaaapaqabaaaleqaaOWd bmaakaaapaqaa8qacaWGWbWdamaaBaaaleaapeGaaGimaaWdaeqaaO WdbiaadghapaWaaSbaaSqaa8qacaaIWaaapaqabaaapeqabaaak8aa baWdbiaadQhapaWaaSbaaSqaa8qacaaIXaGaeyOeI0IaeqySde2dam aaCaaameqabaWdbiaacQcaaaWccqGHsislcqaHepaDpaWaaSbaaWqa a8qacaaIWaaapaqabaaaleqaaOWdbmaakaaapaqaa8qacaWGWbWdam aaBaaaleaapeGaaGimaaWdaeqaaOWdbiaadghapaWaaSbaaSqaa8qa caaIWaaapaqabaaapeqabaGccqGHRaWkcaWG6bWdamaaBaaaleaape GaaGymaiabgkHiTiabek7aI9aadaahaaadbeqaa8qacaGGQaaaaSGa ey4kaSIaeqiXdq3damaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8 qadaGcaaWdaeaapeGaamiCa8aadaWgaaWcbaWdbiaaigdaa8aabeaa k8qacaWGXbWdamaaBaaaleaapeGaaGymaaWdaeqaaaWdbeqaaaaaaa a@64F3@ .

Appendix: complete results of the numerical study

We provide figures of two types of trends. That is, trends in frequency (Figures 3 & 4) for investigating the trends of  and , and trends in difference of ratio (Figures 5 & 6) for investigating the trends of a 1 / n 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyyamaaBaaaleaacaaIXaaabeaakiaac+cacaWGUbWaaSbaaSqa aiaaigdaaeqaaaaa@3B92@  and a/n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyyaiaac+cacaWGUbaaaa@39BA@ .

Figure 4 The trends of an( p 0 + p 1 )/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadggacqGHsi slcaWGUbWaaeWaaeaaqaaaaaaaaaWdbiaadchapaWaaSbaaSqaa8qa caaIWaaapaqabaGccqGHRaWkpeGaamiCa8aadaWgaaWcbaWdbiaaig daa8aabeaaaOGaayjkaiaawMcaaiaac+cacaaIYaaaaa@4205@ over different choices of α * ,1 β * ,δ= p 1 p 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySde2damaaCaaaleqabaWdbiaacQcaaaGccaGGSaGaaGymaiab gkHiTiabek7aI9aadaahaaWcbeqaa8qacaGGQaaaaOGaaiilaiabes 7aKjabg2da9iaadchapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGa eyOeI0IaamiCa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@4743@ , under both optimal and minimax designs, when there is futility stop only.

Figure 5 The trends of a 1 / n 1 p 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadggadaWgaa WcbaGaaGymaaqabaGccaGGVaGaamOBamaaBaaaleaacaaIXaaabeaa kiabgkHiTabaaaaaaaaapeGaamiCa8aadaWgaaWcbaWdbiaaicdaa8 aabeaaaaa@3E92@ (ratio) over different choices of α * ,1 β * ,δ= p 1 p 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySde2damaaCaaaleqabaWdbiaacQcaaaGccaGGSaGaaGymaiab gkHiTiabek7aI9aadaahaaWcbeqaa8qacaGGQaaaaOGaaiilaiabes 7aKjabg2da9iaadchapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGa eyOeI0IaamiCa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@4743@ , under both optimal and minimax designs, when there is futility stop only.

Figure 6 The trends of an( p 0 + p 1 )/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadggacqGHsi slcaWGUbWaaeWaaeaaqaaaaaaaaaWdbiaadchapaWaaSbaaSqaa8qa caaIWaaapaqabaGccqGHRaWkpeGaamiCa8aadaWgaaWcbaWdbiaaig daa8aabeaaaOGaayjkaiaawMcaaiaac+cacaaIYaaaaa@4205@ (ratio) over different choices of α * ,1 β * ,δ= p 1 p 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySde2damaaCaaaleqabaWdbiaacQcaaaGccaGGSaGaaGymaiab gkHiTiabek7aI9aadaahaaWcbeqaa8qacaGGQaaaaOGaaiilaiabes 7aKjabg2da9iaadchapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGa eyOeI0IaamiCa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@4743@ , under both optimal and minimax designs, when there is futility stop only.

Table 3– Table 8 present all numerical results, including the returns of designs, ratios, and differences of interest under all parameter settings in this numerical study. Specifically, we only present under p 0 [ 0.05,0.7 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadchadaWgaa WcbaGaaGimaaqabaGccqGHiiIZdaWadaqaaiaaicdacaGGUaGaaGim aiaaiwdacaGGSaGaaGimaiaac6cacaaI3aaacaGLBbGaayzxaaaaaa@422B@  with an increment 5× 10 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaiwdacqGHxd aTcaaIXaGaaGimamaaCaaaleqabaGaeyOeI0IaaGOmaaaaaaa@3D2F@  compared to 5× 10 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaiwdacqGHxd aTcaaIXaGaaGimamaaCaaaleqabaGaeyOeI0IaaG4maaaaaaa@3D30@  in the figures, for maintaining the information and concision provided by the tables simultaneously. Each table represents a case of ( α ,1 β ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq ySde2aaWbaaSqabeaacqGHxiIkaaGccaGGSaGaaGymaiabgkHiTiab ek7aInaaCaaaleqabaGaey4fIOcaaaGccaGLOaGaayzkaaaaaa@407B@ .

Results under both futility and superiority stops

Same as Section 8.1, we provide figures of trends in frequency (Figure 7-Figure 9) for investigating the trends of a 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyyamaaBaaaleaacaaIXaaabeaaaaa@38FB@ , b 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOyamaaBaaaleaacaaIXaaabeaaaaa@38FC@  and a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyyaaaa@3814@ , and trends in difference of ratio (Figure 10-Figure 12) for investigating the trends of a 1 / n 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyyamaaBaaaleaacaaIXaaabeaakiaac+cacaWGUbWaaSbaaSqa aiaaigdaaeqaaaaa@3B92@ , b 1 / n 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOyamaaBaaaleaacaaIXaaabeaakiaac+cacaWGUbWaaSbaaSqa aiaaigdaaeqaaaaa@3B93@  and a/n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyyaiaac+cacaWGUbaaaa@39BA@ .

Figure 7 The trends of a 1 n 1 p 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadggadaWgaa WcbaGaaGymaaqabaGccqGHsislcaWGUbWaaSbaaSqaaiaaigdaaeqa aOGaamiCamaaBaaaleaacaaIWaaabeaaaaa@3D91@ over different choices of α * ,1 β * ,δ= p 1 p 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySde2damaaCaaaleqabaWdbiaacQcaaaGccaGGSaGaaGymaiab gkHiTiabek7aI9aadaahaaWcbeqaa8qacaGGQaaaaOGaaiilaiabes 7aKjabg2da9iaadchapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGa eyOeI0IaamiCa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@4743@ , under both optimal and minimax designs, when there are both futility and superiority stops.

Figure 8 The trends of b 1 / n 1 p 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkgadaWgaa WcbaGaaGymaaqabaGccaGGVaGaamOBamaaBaaaleaacaaIXaaabeaa kabaaaaaaaaapeGaamiCa8aadaWgaaWcbaWdbiaaigdaa8aabeaaaa a@3DA7@ over different choices of α * ,1 β * ,δ= p 1 p 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySde2damaaCaaaleqabaWdbiaacQcaaaGccaGGSaGaaGymaiab gkHiTiabek7aI9aadaahaaWcbeqaa8qacaGGQaaaaOGaaiilaiabes 7aKjabg2da9iaadchapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGa eyOeI0IaamiCa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@4743@ , under both optimal and minimax designs, when there are both futility and superiority stops.

Figure 9 The trends of an( p 0 + p 1 )/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadggacqGHsi slcaWGUbWaaeWaaeaaqaaaaaaaaaWdbiaadchapaWaaSbaaSqaa8qa caaIWaaapaqabaGccqGHRaWkpeGaamiCa8aadaWgaaWcbaWdbiaaig daa8aabeaaaOGaayjkaiaawMcaaiaac+cacaaIYaaaaa@4205@ over different choices of α * ,1 β * ,δ= p 1 p 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySde2damaaCaaaleqabaWdbiaacQcaaaGccaGGSaGaaGymaiab gkHiTiabek7aI9aadaahaaWcbeqaa8qacaGGQaaaaOGaaiilaiabes 7aKjabg2da9iaadchapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGa eyOeI0IaamiCa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@4743@ , under both optimal and minimax designs, when there are both futility and superiority stops.

Figure 10 The trends of a 1 / n 1 p 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadggadaWgaa WcbaGaaGymaaqabaGccaGGVaGaamOBamaaBaaaleaacaaIXaaabeaa kiabgkHiTabaaaaaaaaapeGaamiCa8aadaWgaaWcbaWdbiaaicdaa8 aabeaaaaa@3E92@ (ratio) over different choices of α * ,1 β * ,δ= p 1 p 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySde2damaaCaaaleqabaWdbiaacQcaaaGccaGGSaGaaGymaiab gkHiTiabek7aI9aadaahaaWcbeqaa8qacaGGQaaaaOGaaiilaiabes 7aKjabg2da9iaadchapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGa eyOeI0IaamiCa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@4743@ , under both optimal and minimax designs, when there are both futility and superiority stops.

Figure 11 The trends of b 1 / n 1 p 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkgadaWgaa WcbaGaaGymaaqabaGccaGGVaGaamOBamaaBaaaleaacaaIXaaabeaa kiabgkHiTabaaaaaaaaapeGaamiCa8aadaWgaaWcbaWdbiaaigdaa8 aabeaaaaa@3E94@ over different choices of α * ,1 β * ,δ= p 1 p 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySde2damaaCaaaleqabaWdbiaacQcaaaGccaGGSaGaaGymaiab gkHiTiabek7aI9aadaahaaWcbeqaa8qacaGGQaaaaOGaaiilaiabes 7aKjabg2da9iaadchapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGa eyOeI0IaamiCa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@4743@ , under both optimal and minimax designs, when there are both futility and superiority stops.

Figure 12 The trends of an( p 0 + p 1 )/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadggacqGHsi slcaWGUbWaaeWaaeaaqaaaaaaaaaWdbiaadchapaWaaSbaaSqaa8qa caaIWaaapaqabaGccqGHRaWkpeGaamiCa8aadaWgaaWcbaWdbiaaig daa8aabeaaaOGaayjkaiaawMcaaiaac+cacaaIYaaaaa@4205@ (ratio) over different choices of α * ,1 β * ,δ= p 1 p 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySde2damaaCaaaleqabaWdbiaacQcaaaGccaGGSaGaaGymaiab gkHiTiabek7aI9aadaahaaWcbeqaa8qacaGGQaaaaOGaaiilaiabes 7aKjabg2da9iaadchapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGa eyOeI0IaamiCa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@4743@ , under both optimal and minimax designs, when there are both futility and superiority stops.

Table 9-Table 14 present all numerical results, including the returns of designs, ratios, and differences of interest under all parameter settings in this numerical study. Specifically, we only present under p 0 [ 0.05,0.7 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadchadaWgaa WcbaGaaGimaaqabaGccqGHiiIZdaWadaqaaiaaicdacaGGUaGaaGim aiaaiwdacaGGSaGaaGimaiaac6cacaaI3aaacaGLBbGaayzxaaaaaa@422B@  with an increment 5× 10 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaiwdacqGHxd aTcaaIXaGaaGimamaaCaaaleqabaGaeyOeI0IaaGOmaaaaaaa@3D2F@  compared to 5× 10 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaiwdacqGHxd aTcaaIXaGaaGimamaaCaaaleqabaGaeyOeI0IaaG4maaaaaaa@3D30@  in the figures, for maintaining the information and concision provided by the tables simultaneously. Each table represents a case of α ,1 β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHnaaCa aaleqabaGaey4fIOcaaOGaaiilaiaaigdacqGHsislcqaHYoGydaah aaWcbeqaaiabgEHiQaaaaaa@3EE8@ .

Acknowledgments

None.

Conflicts of interest

The authors declared that there are no conflicts of interest.

References

Creative Commons Attribution License

©2022 Yi, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.