Submit manuscript...
eISSN: 2378-315X

Biometrics & Biostatistics International Journal

Short Communication Volume 5 Issue 4

A two-stage design with two correlated co-primary endpoints

James X Song

Suite 0, Linwood Avenue, Fort Lee, NJ 00, USA

Correspondence: James Song, Suite 405, 2115 Linwood Avenue, Fort Lee, NJ 07450, USA

Received: January 15, 2017 | Published: March 15, 2017

Citation: Song J. A two-stage design with two correlated co-primary endpoints. Biom Biostat Int J. 2017;5(4):108-110. DOI: 10.15406/bbij.2017.05.00136

Download PDF

Abstract

In phase II oncology trials, multiple binary outcomes are often of interest to evaluate the efficacy of a new treatment. Song1 proposed an exact method of simultaneous evaluation of two independent co-primary endpoints in a two-stage design. The approach searches stage 1 and final stopping boundaries of both hypotheses based on binomial distribution under type I and II error constrains. Herein, I extend the design to a more common setting where the two co-primary endpoints are correlated.

Keywords:  phase II oncology trials, co-primary, two-stage design

Introducton

Simon two-stage design is often applied to phase II single-arm oncology trials where a binary outcome is of interest.2 The trial design allows us to explore potential efficacy and safety signals quickly while limiting the number of patients exposed to an inefficacious new treatment. In the well-known Simon two stage design, hypotheses are typically set up as H MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGib aaaa@3752@ : P=P MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiuai abg2da9iaadcfaaaa@3934@  vs. HA:P=PA MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGib qcLbmacaWGbbGaaiOoaKqzGeGaamiuaiabg2da9iaadcfajugWaiaa dgeaaaa@3F37@ , where P MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGqb aaaa@375A@ , Po MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGqb qcLbmacaWGVbaaaa@397C@ and pA MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadchaca WGbbaaaa@3834@ are the objective response rates (ORR). An interim futility analysis after stage 1 is implemented to stop the trial early in case of lack of efficacy. A numerical search is performed in identifying potential designs with sample sizes ( n 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGUb qcfa4aaSbaaeaajugWaiaaigdaaKqbagqaaaaa@3A9E@ and n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGUb aaaa@3778@ ) and boundaries ( r 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGYb WcdaWgaaqaaKqzadGaaGymaaWcbeaaaaa@399C@ and r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGYb aaaa@377C@ ) at each stage via binomial distribution when Po MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGqb qcLbmacaWGVbaaaa@397C@ , pA MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiCai aadgeaaaa@383F@ , type I and II errors ( α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHXo qyaaa@3824@ and β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHYo Gyaaa@3826@ ) are specified. The final design can be chosen among them based on different criteria.3

In oncology trials, besides ORR, other binary outcomes such as disease control rate (DCR, percentage of patients achieving stable disease or better); progression-free survival (PFS) or overall survival (OS) rate at a specific time point (e.g. 3-month PFS and 6-month OS) are often considered in selecting the primary endpoint. In some cases, it is important to include more than one measure of anticancer activities for better evaluation.  To address the issue, Song1 proposed an extension of Simon two-stage design by including a 2nd hypothesis, H o : P ` = P o ` MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamisam aaBaaabaqcLbmacaWGVbaajuaGbeaacaGG6aGaamiuamaaCaaabeqa aabaaaaaaaaapeGaaiiyaaaapaGaeyypa0JaamiuamaaDaaabaqcLb macaWGVbaajuaGbaWcdaahaaqcfayabeaajugWa8qacaGGGbaaaaaa aaa@4474@  vs. H A : P ` = P A ` MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGib WcdaWgaaqcfayaaKqzadGaamyqaaqcfayabaqcLbsaqaaaaaaaaaWd biaacQdapaGaamiuaKqbaoaaCaaabeqaaKqzGeWdbiaaccgaaaWdai abg2da9iaadcfalmaaDaaajuaGbiqaaiwajugWaiaadgeaaKqbagaa lmaaCaaajuaGbeqaaKqzadWdbiaaccgaaaaaaaaa@477C@ such that two binary outcomes can be tested simultaneously under independence assumption. The empirical type I and II errors for stopping boundaries ( r 1 , r,  r 1 `, r`) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaacIcacaWGYbWcpaWaaSbaaeaajugWa8qacaaIXaaal8aa beaajugib8qacaGGSaGaaeiiaiaadkhacaGGSaGaaeiiaiaadkhal8 aadaWgaaqaaKqzadWdbiaaigdaaSWdaeqaaKqzGeWdbiaaccgacaGG SaGaaeiiaiaadkhacaGGGbGaaiykaaaa@4775@ can be calculated via binomial distribution when sample sizes ( n 1 , n,  n 1 `, n` ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaae aajugibabaaaaaaaaapeGaamOBaSWdamaaBaaabaqcLbmapeGaaGym aaWcpaqabaqcLbsapeGaaiilaiaabccacaWGUbGaaiilaiaabccaca WGUbWcpaWaaSbaaeaajugWa8qacaaIXaaal8aabeaajugWa8qacaGG GbqcLbsacaGGSaGaaeiiaiaad6gajugWaiaaccgaaKqba+aacaGLOa Gaayzkaaaaaa@4B1C@ are fixed. Subsequent selection of the stopping boundary is made based on an objective function that minimizes the type II errors (i.e. interim analysis and final type II errors within each endpoint and overall). Quite often, in practice, it is reasonable to assume a correlation between two binary efficacy outcomes. Therefore, it is desirable to extend this method to a setting with two correlated co-primary endpoints. 

Method

The bivariate binomial distribution of X and Y proposed by Biswas and Hwang4 is used. Let two binomial variables ( X, Y)    BVB (n,p,p,τ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaiikaa baaaaaaaaapeGaaiiOaiaadIfacaGGSaGaaiiOaiaadMfacaGGPaGa aiiOaiaacckacaGGGcGaeSipIOJaaiiOaiaadkeacaWGwbGaamOqai aacckacaGGOaGaamOBaiaacYcacaWGWbGaaiilaiaadchacaGGSaGa eqiXdqNaaiykaaaa@4E01@ , where numbers of trials in both X and Y are equal to n, the model defines dependence of X and Y via τ whose range is limited by the binomial parameters p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadchaaaa@379A@ and p` MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadchajugWaiaaccgaaaa@39AC@ . The correlation between X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadIfaaaa@3782@ and Y (ρ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGzbGaaeiiaiaabIcacqaHbpGCcaqGPaaaaa@3B3C@ can be expressed as τ/(1+τ) {p(1p)}/{p`(1p`)} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHep aDcaGGVaGaaiikaiaaigdacqGHRaWkcqaHepaDcaGGPaqcfa4aaOaa aOqaaKqzGeGaai4EaiaadchacaGGOaGaaGymaiabgkHiTiaadchaca GGPaGaaiyFaiaac+cacaGG7bGaamiCaiaaccgacaGGOaGaaGymaiab gkHiTiaadchacaGGGbGaaiykaiaac2haaSqabaaaaa@4F4B@ . Its density function is expressed as

Pr(x,y)=( n x ) p x (1p) nx f(y|x) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaciGGqb GaaiOCaiaacIcacaWG4bGaaiilaiaadMhacaGGPaGaeyypa0tcfa4a aeWaaOqaaKqzGeqbaeqabiqaaaGcbaqcLbsacaWGUbaakeaajugibi aadIhaaaaakiaawIcacaGLPaaajugibiaadchajuaGdaahaaWcbeqa aKqzadGaamiEaaaajugibiaacIcacaaIXaGaeyOeI0IaamiCaiaacM calmaaCaaabeqaaKqzadGaamOBaiabgkHiTiaadIhaaaqcLbsacaWG MbGaaiikaiaadMhacaGG8bGaamiEaiaacMcaaaa@5639@         (1)

Where, f(y|x)=(1+τ)-ni+j=yxinxj{p`+τ(p`p)+τ}i{1p`τ(p`p)}xi{p`+τ(p`p)}j{1-p`τ(p`p)+τ}nxj

with i=0,,x; j=0,,nx. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadMgacqGH9aqpcaaIWaGaaiilaiabgAci8kaacYcacaWG 4bGaai4oaiaabccacaWGQbGaeyypa0JaaGimaiaacYcacqGHMacVca GGSaGaamOBaiabgkHiTiaadIhacaGGUaaaaa@47CC@  

In the proposed two-stage design, the trial will move into stage 2 if number of successes in either endpoint ( x 1  or  y 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqadaqaa8aacaWG4bWaaSbaaeaajugWaiaaigdaaKqbagqa aKqzGeWdbiaacckacaWGVbGaamOCaiaacckacaGG5bqcfa4aaSbaae aajugWaiaaigdaaKqbagqaaaGaayjkaiaawMcaaaaa@44C6@ passes its stage 1 stopping boundary ( r 1  or  r 1 ` ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqadaqaaKqzGeWdaiaadkhajuaGdaWgaaqaaKqzadGaaGym aaqcfayabaqcLbsapeGaaiiOaiaad+gacaWGYbGaaiiOaiaadkhalm aaBaaajuaGbaqcLbmacaaIXaWcdaahaaadbeqaaKqzadGaaiiyaaaa aKqbagqaaaGaayjkaiaawMcaaaaa@482D@ ; the treatment will be deemed promising if at least one hypothesis is rejected when final number of success ( y or y ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqadaqaaKqzGeGaaiyEaiaacckacaWGVbGaamOCaiaaccka caWG5baajuaGcaGLOaGaayzkaaaaaa@3F78@ crosses final boundary ( r or r` ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqadaqaaKqzGeWdaiaadkhapeGaaiiOaiaad+gacaWGYbGa aiiOaiaadkhajugWaiaaccgaaKqbakaawIcacaGLPaaaaaa@419C@ . Following these decision rules, the probability of accepting H 0 s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadIeajuaGpaWaaSbaaSqaaKqzadWdbiaaicdaaSWdaeqa aKqzGeWdbiaadohaaaa@3BE4@ is

Pr ( x 1    r 1   y 1    r 1 ` ) + Pr ( x  r  y  r`|  x 1  >  r 1  U  y 1 >  r 1 ` ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGqbGaamOCaiaacckapaWaaeWaaeaapeGaamiEa8aadaWg aaqaaKqzadWdbiaaigdajuaGcaGGGcaapaqabaWdbiabgsMiJkaacc kacaWGYbWcpaWaaSbaaKqbagaalmaaBaaajuaGbaqcLbmapeGaaGym aaqcfa4daeqaaaqabaWdbiabgMIihlaacckacaWG5bWdamaaBaaaba qcLbmapeGaaGymaaqcfa4daeqaa8qacaGGGcGaeyizImQaaiiOaiaa dkhapaWaaSbaaeaajugWa8qacaaIXaaajuaGpaqabaWdbiaaccgaa8 aacaGLOaGaayzkaaWdbiaabccacqGHRaWkcaqGGaGaamiuaiaadkha caGGGcWdamaabmaabaWdbiaadIhacaGGGcGaeyizImQaaiiOaiaadk hacaGGGcGaeyykICSaaiiOaiaadMhacaGGGcGaeyizImQaaiiOaiaa dkhacaGGGbWdaiaacYhapeGaaeiiaiaadIhal8aadaWgaaqcfayaaK qzadWdbiaaigdajuaGcaGGGcaapaqabaWdbiabg6da+iaacckacaWG YbWdamaaBaaabaqcLbmapeGaaGymaaqcfa4daeqaa8qacaGGGcqcLb macaGGvbqcfaOaaeiiaiaadMhal8aadaWgaaqcfayaaSWaaSbaaKqb agaajugWa8qacaaIXaaajuaGpaqabaaabeaapeGaeyOpa4JaaiiOai aadkhapaWaaSbaaeaajugWa8qacaaIXaaajuaGpaqabaWdbiaaccga a8aacaGLOaGaayzkaaaaaa@8CB6@

 which is expressed as
x 1 r 1 y 1 r 1 ` Pr( x 1 , y 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaabuaO qaaKqzGeGaciiuaiaackhacaGGOaGaamiEaSWaaSbaaeaajugWaiaa igdaaSqabaqcLbsacaGGSaGaamyEaKqbaoaaBaaaleaajugWaiaaig daaSqabaqcLbsacaGGPaaaleaajugWaiaadIhalmaaBaaameaalmaa BaaameaajugWaiaaigdaaWqabaaabeaajugWaiabgsMiJkaadkhalm aaBaaameaalmaaBaaameaajugWaiaaigdaaWqabaaabeaajugWaiab gMIihlaadMhalmaaBaaameaalmaaBaaameaajugWaiaaigdaaWqaba aabeaajugWaiabgsMiJkaadkhalmaaBaaameaalmaaBaaameaalmaa BaaameaajugWaiaaigdaaWqabaaabeaaaeqaaKqzadGaaiiyaaWcbe qcLbsacqGHris5aaaa@5F10@ + xryr` x 1 > r 1 y 1 > r 1 ` Pr(x,y)f( x 1 , y 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaabuaO qaaKqbaoaaqafakeaajugibiGaccfacaGGYbGaaiikaiaadIhacaGG SaGaamyEaiaacMcacaWGMbGaaiikaiaadIhalmaaBaaabaqcLbmaca aIXaaaleqaaKqzGeGaaiilaiaadMhalmaaBaaabaqcLbmacaaIXaaa leqaaKqzGeGaaiykaaWcbaqcLbmacaqG4bWcdaWgaaadbaqcLbmaca qGXaaameqaaKqzadGaeyOpa4JaaeOCaSWaaSbaaWqaaKqzadGaaeym aaadbeaajugWaiablQIivjaabMhalmaaBaaameaajugWaiaabgdaaW qabaqcLbmacqGH+aGpcaWGYbWcdaWgaaadbaqcLbmacaaIXaaameqa aKqzadGaaiiyaaWcbeqcLbsacqGHris5aaWcbaqcLbmacaqG4bGaey izImQaaeOCaiablMIijjaabMhacqGHKjYOcaqGYbGaaiiyaaWcbeqc LbsacqGHris5aaaa@6E42@   (2)

for (x, y)  {x>r 1  or y>r 1 `} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaqGMb Gaae4BaiaabkhacaqGGaGaaeikaiaabIhacaqGSaGaaeiiaiaabMha caqGPaGaaeiiaiabgIGiolaabUhacaqG4bGaaeOpaiaabkhalmaaBa aabaqcLbmacaqGXaaaleqaaKqzGeGaaeiiaiaab+gacaqGYbGaaeii aiaabMhacaqG+aGaaeOCaKqbaoaaBaaabaqcLbmacaaIXaaajuaGbe aajugWaiaabcgajugibiaab2haaaa@53BB@ .It can be calculated using equation (1) for a given τ. The overall type I error is calculated when p=p0 and p`=p0`; and the overall type II error is calculated when p=pA MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGWb Gaeyypa0JaamiCaKqzadGaamyqaaaa@3B69@ and p`=pA` MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadchajugWaiaaccgajugibiabg2da9iaadchacaWGbbqc LbmacaGGGbaaaa@3F0E@ .

For a selected design, the probability of accepting H0 of an individual endpoint can be calculated similarly. For example,
Pr ( accept  H 0 : p= p 0 )= Pr( x 1 r 1   y 1 r 1 ` ) + Pr( xr |  x 1 > r 1 U  y 1 > r 1 ` ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadcfacaWGYbGaaeiiaKqba+aadaqadaGcbaqcLbsapeGa amyyaiaadogacaWGJbGaamyzaiaadchacaWG0bGaaeiiaiaadIeaju aGpaWaaSbaaSqaaKqzadWdbiaaicdaaSWdaeqaaKqzGeWdbiaacQda caqGGaGaamiCaiabg2da9iaadchal8aadaWgaaqaaKqzadWdbiaaic daaSWdaeqaaaGccaGLOaGaayzkaaqcLbsapeGaeyypa0Jaaeiiaiaa dcfacaWGYbqcfa4damaabmaakeaajugib8qacaWG4bWcpaWaaSbaae aajugWa8qacaaIXaaal8aabeaajugib8qacqGHKjYOcaWGYbWcpaWa aSbaaeaajugWa8qacaaIXaaal8aabeaajugib8qacqGHPiYXcaqGGa GaamyEaSWdamaaBaaabaqcLbmapeGaaGymaaWcpaqabaqcLbsapeGa eyizImQaamOCaSWdamaaBaaabaqcLbmapeGaaGymaaWcpaqabaqcLb sapeGaaiiyaaGcpaGaayjkaiaawMcaaKqzGeWdbiaabccacqGHRaWk caqGGaGaamiuaiaadkhajuaGpaWaaeWaaOqaaKqzGeWdbiaadIhacq GHKjYOcaWGYbGaaiiOa8aacaGG8bWdbiaabccacaWG4bWcpaWaaSba aeaajugWa8qacaaIXaaal8aabeaajugib8qacqGH+aGpcaWGYbqcfa 4damaaBaaaleaadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaqcfa4d biaadwfajugibiaabccacaWG5bqcfa4damaaBaaaleaadaWgaaadba Wdbiaaigdaa8aabeaaaSqabaqcLbsapeGaeyOpa4JaamOCaSWdamaa BaaabaqcLbmapeGaaGymaaWcpaqabaqcLbmapeGaaiiyaaGcpaGaay jkaiaawMcaaaaa@8C8A@

= x 1 r 1 y 1 r 1 ` Pr( x 1 , y 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaabuaO qaaKqzGeGaciiuaiaackhacaGGOaGaamiEaSWaaSbaaeaajugWaiaa igdaaSqabaqcLbsacaGGSaGaamyEaSWaaSbaaeaajugWaiaaigdaaS qabaqcLbsacaGGPaaaleaajugWaiaabIhalmaaBaaameaajugWaiaa bgdaaWqabaqcLbmacqGHKjYOcaqGYbWcdaWgaaadbaqcLbmacaqGXa aameqaaKqzadGaeSykIKKaaeyEaSWaaSbaaWqaaKqzadGaaeymaaad beaajugWaiabgsMiJkaadkhalmaaBaaameaajugWaiaaigdaaWqaba qcLbsacaGGGbaaleqajugibiabggHiLdaaaa@5C37@ + xr x 1 > r 1 y 1 > r 1 ` Pr(x)f( x 1 , y 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaabuaO qaaKqbaoaaqafakeaajugibiGaccfacaGGYbGaaiikaiaadIhacaGG PaGaamOzaiaacIcacaWG4bWcdaWgaaqaaKqzadGaaGymaaWcbeaaju gibiaacYcacaWG5bWcdaWgaaqaaKqzadGaaGymaaWcbeaajugibiaa cMcaaSqaaKqzadGaaeiEaSWaaSbaaWqaaKqzadGaaeymaaadbeaaju gWaiabg6da+iaabkhalmaaBaaameaajugWaiaabgdaaWqabaqcLbma cqWIQisvcaqG5bWcdaWgaaadbaqcLbmacaqGXaaameqaaKqzadGaey Opa4JaamOCaSWaaSbaaWqaaKqzadGaaGymaaadbeaajugibiaaccga aSqabKqzGeGaeyyeIuoaaSqaaKqzadGaaeiEaiabgsMiJkaabkhaaS qabKqzGeGaeyyeIuoaaaa@6646@ (3)

The type II error in H 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamisam aaBaaabaqcLbmacaaIWaaajuaGbeaaaaa@39E8@ can be obtained by setting p=pA MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiCai abg2da9iaadchacaWGbbaaaa@3A3A@ .

An example

The proposed method is applied to a planned phase II trial in metastatic breast cancer.  ORR and percentage of patients without deterioration in Global Health Status (GHS) of European Organization for Research and Treatment of Cancer Quality of Life Questionnaire – core 30 (EORTC QLC-C30) in the first two cycles of treatment were two key efficacy variables of interest. Hence, two hypotheses are set up as H 0 : ORR=5% MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamisam aaBaaabaqcLbmacaaIWaaajuaGbeaaqaaaaaaaaaWdbiaacQdacaqG GaGaam4taiaadkfacaWGsbGaeyypa0JaaGynaiaacwcaaaa@4059@ vs. H A : ORR=15% MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGibWcdaqhaaadbaGaamyqaaqaaaaajuaGcaGG6aGaaeii aiaad+eacaWGsbGaamOuaiabg2da9iaaigdacaaI1aGaaiyjaaaa@400A@ and H 0 : GHS=45% MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadIeal8aadaWgaaqaaKqzadWdbiaaicdaaSWdaeqaaKqz GeWdbiaacQdacaqGGaGaam4raiaadIeacaWGtbGaeyypa0JaaGinai aaiwdacaGGLaaaaa@415C@ vs. H A : GHS=60% MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadIeal8aadaWgaaqaaKqzadWdbiaadgeaaSWdaeqaaKqz GeWdbiaacQdacaqGGaGaam4raiaadIeacaWGtbGaeyypa0JaaGOnai aaicdacaGGLaaaaa@4165@ . Among 636 sets of boundaries satisfying overall α0.05 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeg7aHjabgsMiJkaaicdacaGGUaGaaGimaiaaiwdaaaa@3CDE@ and β 0.2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabek7aIjaabccacqGHKjYOcaaIWaGaaiOlaiaaikdaaaa@3CC6@ assuming independence between ORR and GHS, the stopping boundaries ( r 1 =0, r=6,  r 1 `=7 and r`=31) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaKqzGe aeaaaaaaaaa8qacaWGYbWcpaWaaSbaaeaajugWa8qacaaIXaaal8aa beaajugib8qacqGH9aqpcaaIWaGaaiilaiaabccacaWGYbGaeyypa0 JaaGOnaiaacYcacaqGGaGaamOCaSWdamaaBaaabaqcLbmapeGaaGym aaWcpaqabaqcLbmapeGaaiiyaKqzGeGaeyypa0JaaG4naiaabccaca WGHbGaamOBaiaadsgacaqGGaGaamOCaKqzadGaaiiyaKqzGeGaeyyp a0JaaG4maiaaigdacaGGPaaaaa@54E0@ are chosen when n 1 =15 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaad6gal8aadaWgaaqaaKqzadWdbiaaigdaaSWdaeqaaKqz GeWdbiabg2da9iaaigdacaaI1aaaaa@3D05@ and n=55 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaad6gacqGH9aqpcaaI1aGaaGynaaaa@3A1C@ .

To show the effect of correlation between ORR and GHS on the type I and II errors, a range of τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabes8a0baa@386A@ is set such that the correlation under alternative hypothesis ( ρ A ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabeg 8aYnaaBaaaleaajugWaiaadgeaaSqabaGccaGGPaaaaa@3B44@ are -0.80, -0.50, -0.25, 0, 0.25, 0.5 and 0.8. Hence, the correlation under null hypothesis ( ρ o ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabeg 8aYnaaBaaaleaajugWaiaad+gaaSqabaGccaGGPaaaaa@3B72@ are -0.48, -0.30, -0.15, 0, 0.15, 0.30 and 0.48. Type I and II errors in the overall trial and within each endpoint are calculated using equations (2) and (3) (Table 1). In general, the type I errors decrease and the type II errors increase as correlation between two endpoints, ρ0 and ρA, increases. The impact is more noticeable in the overall type I and II errors, which is consistent to the findings one would expect in a one-stage test involving multivariate normal variables. A similar, yet much smaller effect is observed in error rates of the individual endpoint; it is due to the fact that the correlation only matters at interim analysis in which only one boundary needs to be crossed in order to move both hypotheses tests to the final analysis. The results also show overall type II error is more sensitive to the level of correlation as compared to overall type I error, which is probably more specific to the design chosen and not to be generalized to others. Similar to the one-stage testing, the impact of correlation is not only influenced by the design characteristics within each test; but also the relative difference of type I or type II errors between the two endpoints.5 In addition, the percentages of type I or II errors spent at interim analysis are also the factors in assessing correlation effect.

 

Overall

ORR

GHS

τ

ρ0

ρA

α

β

α1

β1

α2

β2

-0.5233

-0.48

-0.80

0.0500

0.0124

0.0186

0.2632

0.0315

0.3377

-0.4069

-0.30

-0.50

0.0497

0.0379

0.0185

0.2644

0.0313

0.3389

-0.2554

-0.15

-0.25

0.0494

0.0668

0.0184

0.2666

0.0312

0.3409

0

0

0

0.0488

0.1001

0.0183

0.2701

0.0311

0.3440

0.5221

0.15

0.25

0.0478

0.1366

0.0182

0.2749

0.0311

0.3478

2.1847

0.30

0.50

0.0466

0.1757

0.0181

0.2803

0.0311

0.3515

-11.2469

0.48

0.80

0.0445

0.2243

0.0181

0.2867

0.0312

0.3545

Table 1 The type I and II errors in the trial (overall) and within each endpoint: ORR and GHS

Conclusions

This short communication describes an extension of Song1 to the two-stage design involving two correlated co-primary endpoints. The exact method using bivariate density function proposed by Biswas and Hwang4 is implemented to calculate various probabilities under Simon two-stage design framework. The purpose of the current work is to explore the impact of correlation on the type I and II errors of the design chosen under independence assumption. First, under independence assumption, admissible designs are identified by exact binomial probability calculation which requires less computing resource. Desirable designs with comparable type I or II errors between two tests can then be selected among all admissible designs. In this selection process, designs with high type I errors at interim can be screened out; an objective function S (β) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadofacaqGGaGaaeikaiabek7aIjaabMcaaaa@3B18@ can also be used to select the designs minimizes the type II errors. Finally, the independence assumption is relaxed in the selected designs from earlier steps, type I and type II errors are recalculated to select the final desirable design. The method provides a useful tool for a more robust assessment of the design operating characteristics, especially when the independence assumption is questionable.

In case of overlapping between two endpoints, i.e., all responders in one endpoint are also the responders in the other, the correlation between two endpoints is defined when the marginal distribution of each variable is specified. For example, when setting p A =15% MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadchal8aadaWgaaqaaKqzadWdbiaadgeaaSWdaeqaaKqz GeWdbiabg2da9iaaigdacaaI1aGaaiyjaaaa@3DBB@ in ORR and p A `=60% MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadchal8aadaWgaaqaaKqzadWdbiaadgeaaSWdaeqaaKqz adWdbiaaccgajugibiabg2da9iaaiAdacaaIWaGaaiyjaaaa@3FCD@ in DCR, percentage of subjects in each cell of the 2x2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaaikdacaWG4bGaaGOmaaaa@391A@ ORR by DCR table is fixed since all subjects achieve objective response also have disease control (i.e. one is a subset of the other).  Hence, correlation estimate such as phi coefficient can be obtained and be subsequently used in equations (2) and (3).  Regardless correlation being implicitly specified or not, sensitivity analysis such as the one performed in the example is important to evaluate trial designs.

Acknowledgments

None.

Conflicts of interest

Author declares that there are no conflicts of interest.

References

Creative Commons Attribution License

©2017 Song. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.