Submit manuscript...
eISSN: 2378-315X

Biometrics & Biostatistics International Journal

Research Article Volume 6 Issue 4

A simulation study on ishita distribution

Kamlesh Kumar Shukla, Rama Shanker

Department of Statistics, Eritrea Institute of Technology, Eritrea

Correspondence: Rama Shanker, Department of Statistics, Eritrea Institute of Technology, Asmara, Eritrea

Received: October 06, 2017 | Published: October 23, 2017

Citation: Shukla KK, Shanker R. A simulation study on ishita distribution. Biom Biostat Int J. 2017;6(4):381-386. DOI: 10.15406/bbij.2017.06.00173

Download PDF

Abstract

In this paper, a simulation study on Ishita distribution proposed by Shanker and Shukla1 has been carried out and presented. Average bias, mean square error and confidence interval of the parameter have been given for simulated data. Profile of likelihood estimator for the parameter has been illustrated graphically along with goodness of fit on real life time data. the goodness of fit has been established with an example from engineering and the fit has been compared with other one parameter lifetime distributions.

Introducton

A Simulation study is a computer programming which represent the real world based model. The accuracy of the simulation depends on the precision of the model. For example, suppose that the probability of head in a tossing a coin is unknown. The experiment of tossing a coin be perfomed n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGUb aaaa@389E@  times repetitively to approximate the probability of head. That is

                P(H)= Number of times head observed/ Number of times the experiment performed.

There are many situations where it is not possible to determine the probabilities by executing experiments a large number of times. Now a day using high level programming language R such problems are solved by generating random numbers to deal with problem.

It is crucial to generate random number for mathematical model especially probabilistic model. To use simulation, it is necessary to generate the sample random events that make up the model with the help of a computer to reproduce the process through which chance is generated in the actual situation. Thus, a problem that involves many interrelationships among random variables can evaluate as a function of given parameters.

During a short span of time a number of lifetime distributions have been introduced in statistical literature. The important one parameter classical lifetime distributions which are popular in statistics are exponential distribution and Lindley distribution introduced by Lindley.2 Ghitany et al.3 have detailed discussion about various properties of Lindley distribution along with the estimation of parameter and application. Shanker et al.4 have done extensive study on comparative study on modeling of lifetime data from biomedical science and engineering using exponential and Lindley distributions and concluded that there are several lifetime data where these classical distributions are not suitable due to their theoretical nature or application point of view. In search for new lifetime distributions which gives better fit than both exponential and Lindley distributions, Shanker5-7 has introduced four one parameter lifetime distributions namely, Shanker, Akash, Aradhana and Sujatha and showed that these lifetime distributions gives better fit than both exponential and Lindley distributions., In fact, it has been established by Shanker5-7 that these distributions have advantage over each other. The probability density function (pdf) and the cumulative distribution function (cdf) of exponential, Lindley, Shanker, Akash, Aradhana and Sujatha distributions are presented in table 1.

Distributions

Probability density function(cdf)

Cumulative distribution function (cdf)

Ishita

f( x )= θ 3 θ 3 +2 ( θ+ x 2 ) e θx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGMbWaaeWaaeaacaWG4baacaGLOaGaayzkaaGaeyypa0ZaaSaaaeaa cqaH4oqCdaahaaqabeaajugWaiaaiodaaaaajuaGbaGaeqiUde3cda ahaaqcfayabeaajugWaiaaiodaaaqcfaOaey4kaSIaaGOmaaaadaqa daqaaiabeI7aXjabgUcaRiaadIhalmaaCaaajuaGbeqaaKqzadGaaG OmaaaaaKqbakaawIcacaGLPaaacaWGLbWcdaahaaqcfayabeaajugW aiabgkHiTiabeI7aXjaaykW7caWG4baaaaaa@57E8@

F( x )=1[ 1+ θx( θx+2 ) θ 3 +2 ] e θx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGgbWaaeWaaeaacaWG4baacaGLOaGaayzkaaGaeyypa0JaaGymaiab gkHiTmaadmaabaGaaGymaiabgUcaRmaalaaabaGaeqiUdeNaamiEam aabmaabaGaeqiUdeNaamiEaiabgUcaRiaaikdaaiaawIcacaGLPaaa aeaacqaH4oqCdaahaaqabeaajugWaiaaiodaaaqcfaOaey4kaSIaaG OmaaaaaiaawUfacaGLDbaacaWGLbWaaWbaaeqabaqcLbmacqGHsisl cqaH4oqCcaaMc8UaamiEaaaaaaa@57B8@

Sujatha

f( x )= θ 3 θ 2 +θ+2 ( 1+x+ x 2 ) e θx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGMbWaaeWaaeaacaWG4baacaGLOaGaayzkaaGaeyypa0ZaaSaaaeaa cqaH4oqCdaahaaqabeaajugWaiaaiodaaaaajuaGbaGaeqiUde3cda ahaaqcfayabeaajugWaiaaikdaaaqcfaOaey4kaSIaeqiUdeNaey4k aSIaaGOmaaaadaqadaqaaiaaigdacqGHRaWkcaWG4bGaey4kaSIaam iEaSWaaWbaaKqbagqabaqcLbmacaaIYaaaaaqcfaOaayjkaiaawMca aiaadwgalmaaCaaajuaGbeqaaKqzadGaeyOeI0IaeqiUdeNaaGPaVl aadIhaaaaaaa@5B63@

F( x )=1[ 1+ θx( θx+θ+2 ) θ 2 +θ+2 ] e θx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGgbWaaeWaaeaacaWG4baacaGLOaGaayzkaaGaeyypa0JaaGymaiab gkHiTmaadmaabaGaaGymaiabgUcaRmaalaaabaGaeqiUdeNaamiEam aabmaabaGaeqiUdeNaamiEaiabgUcaRiabeI7aXjabgUcaRiaaikda aiaawIcacaGLPaaaaeaacqaH4oqClmaaCaaajuaGbeqaaKqzadGaaG OmaaaajuaGcqGHRaWkcqaH4oqCcqGHRaWkcaaIYaaaaaGaay5waiaa w2faaiaadwgalmaaCaaajuaGbeqaaKqzadGaeyOeI0IaeqiUdeNaaG PaVlaadIhaaaaaaa@5E19@

Aradhana

f( x )= θ 3 θ 2 +2θ+2 ( 1+x ) 2 e θx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGMbWaaeWaaeaacaWG4baacaGLOaGaayzkaaGaeyypa0ZaaSaaaeaa cqaH4oqCdaahaaqabeaajugWaiaaiodaaaaajuaGbaGaeqiUde3cda ahaaqcfayabeaajugWaiaaikdaaaqcfaOaey4kaSIaaGOmaiabeI7a XjabgUcaRiaaikdaaaWaaeWaaeaacaaIXaGaey4kaSIaamiEaaGaay jkaiaawMcaamaaCaaabeqaaKqzadGaaGOmaaaajuaGcaWGLbWaaWba aeqabaqcLbmacqGHsislcqaH4oqCcaaMc8UaamiEaaaaaaa@590E@

F( x )=1[ 1+ θx( θx+2θ+2 ) θ 2 +2θ+2 ] e θx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGgbWaaeWaaeaacaWG4baacaGLOaGaayzkaaGaeyypa0JaaGymaiab gkHiTmaadmaabaGaaGymaiabgUcaRmaalaaabaGaeqiUdeNaamiEam aabmaabaGaeqiUdeNaamiEaiabgUcaRiaaikdacqaH4oqCcqGHRaWk caaIYaaacaGLOaGaayzkaaaabaGaeqiUde3aaWbaaeqabaqcLbmaca aIYaaaaKqbakabgUcaRiaaikdacqaH4oqCcqGHRaWkcaaIYaaaaaGa ay5waiaaw2faaiaadwgadaahaaqabeaajugWaiabgkHiTiabeI7aXj aaykW7caWG4baaaKqbakaaykW7aaa@6078@

Akash

f( x )= θ 3 θ 2 +2 ( 1+ x 2 ) e θx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGMbWaaeWaaeaacaWG4baacaGLOaGaayzkaaGaeyypa0ZaaSaaaeaa cqaH4oqClmaaCaaajuaGbeqaaKqzadGaaG4maaaaaKqbagaacqaH4o qCdaahaaqabeaajugWaiaaikdaaaqcfaOaey4kaSIaaGOmaaaadaqa daqaaiaaigdacqGHRaWkcaWG4bWaaWbaaeqabaqcLbmacaaIYaaaaa qcfaOaayjkaiaawMcaaiaadwgadaahaaqabeaajugWaiabgkHiTiab eI7aXjaaykW7caWG4baaaaaa@55BA@

F( x )=1[ 1+ θx( θx+2 ) θ 2 +2 ] e θx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGgbWaaeWaaeaacaWG4baacaGLOaGaayzkaaGaeyypa0JaaGymaiab gkHiTmaadmaabaGaaGymaiabgUcaRmaalaaabaGaeqiUdeNaaGPaVl aadIhadaqadaqaaiabeI7aXjaaykW7caWG4bGaey4kaSIaaGOmaaGa ayjkaiaawMcaaaqaaiabeI7aXnaaCaaabeqaaKqzadGaaGOmaaaaju aGcqGHRaWkcaaIYaaaaaGaay5waiaaw2faaiaadwgalmaaCaaajuaG beqaaKqzadGaeyOeI0IaeqiUdeNaaGPaVlaadIhaaaGaaGPaVlaayk W7aaa@5E7C@

Shanker

f( x )= θ 2 θ 2 +1 ( θ+x ) e θx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGMbWaaeWaaeaacaWG4baacaGLOaGaayzkaaGaaGPaVlaaykW7cqGH 9aqpcaaMc8UaaGPaVpaalaaabaGaeqiUde3aaWbaaeqabaqcLbmaca aIYaaaaaqcfayaaiabeI7aXnaaCaaabeqaaKqzadGaaGOmaaaajuaG cqGHRaWkcaaIXaaaaiaaykW7caaMc8+aaeWaaeaacqaH4oqCcqGHRa WkcaWG4baacaGLOaGaayzkaaGaaGPaVlaaykW7caWGLbWcdaahaaqc fayabeaajugWaiabgkHiTiabeI7aXjaadIhaaaqcfaOaaGPaVdaa@60FF@

F( x )=1[ 1+ θx θ 2 +1 ] e θx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGgbWaaeWaaeaacaWG4baacaGLOaGaayzkaaGaeyypa0JaaGymaiab gkHiTmaadmaabaGaaGymaiabgUcaRmaalaaabaGaeqiUdeNaamiEaa qaaiabeI7aXnaaCaaabeqaaKqzadGaaGOmaaaajuaGcqGHRaWkcaaI XaaaaaGaay5waiaaw2faaiaaysW7caWGLbWcdaahaaqcfayabeaaju gWaiabgkHiTiabeI7aXjaadIhaaaqcfaOaaGPaVdaa@5490@

Lindley

f( x )= θ 2 θ+1 ( 1+x ) e θx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGMbWaaeWaaeaacaWG4baacaGLOaGaayzkaaGaeyypa0ZaaSaaaeaa cqaH4oqCdaahaaqabeaajugWaiaaikdaaaaajuaGbaGaeqiUdeNaey 4kaSIaaGymaaaadaqadaqaaiaaigdacqGHRaWkcaWG4baacaGLOaGa ayzkaaGaamyzaSWaaWbaaKqbagqabaqcLbmacqGHsislcqaH4oqCca aMc8UaamiEaaaaaaa@5084@

F( x )=1[ 1+ θx θ+1 ] e θx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGgbWaaeWaaeaacaWG4baacaGLOaGaayzkaaGaeyypa0JaaGymaiab gkHiTmaadmaabaGaaGymaiabgUcaRmaalaaabaGaeqiUdeNaaGPaVl aadIhaaeaacqaH4oqCcqGHRaWkcaaIXaaaaaGaay5waiaaw2faaiaa dwgadaahaaqabeaajugWaiabgkHiTiabeI7aXjaaykW7caWG4baaaa aa@50CD@

Exponential

f( x )=θ e θx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGMbWaaeWaaeaacaWG4baacaGLOaGaayzkaaGaeyypa0JaeqiUdeNa amyzamaaCaaabeqaaKqzadGaeyOeI0IaeqiUdeNaaGPaVlaadIhaaa aaaa@45CB@

F( x )=1 e θx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGgbWaaeWaaeaacaWG4baacaGLOaGaayzkaaGaeyypa0JaaGymaiab gkHiTiaadwgadaahaaqabeaajugWaiabgkHiTiabeI7aXjaaykW7ca WG4baaaaaa@459D@

Table 1 pdf and cdf of exponential, Lindley, Shanker, Akash, Aradhana, Sujatha and Ishita distributions ( x>0,θ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WG4bGaeyOpa4JaaGimaiaacYcacqaH4oqCcqGH+aGpcaaIWaaaaa@3F20@ )

Recently, Shanker and Shukla1 have proposed a new lifetime distribution named Ishita distribution for modeling lifetime distribution and showed that it gives better fit than exponential, Lindley, Shanker, Akash, Aradhana and Sujatha distributions. Detailed study about various mathematical and Statistical properties, estimation of parameter and applications of Ishita distribution are available in Shanker and Shukla.1

It seems that Ishita distribution has not been fully studied by Shanker and Shukla.1 In this paper firstly some graphs of pdf and cdf of Ishita distribution has been drawn for varying values of parameters to know its nature. Its coefficients of variation, skewness, kurtosis and index of dispersion have been studied graphically. A simulation study has been conducted and its average bias, mean square error and confidence interval have been presented for simulated data. Profile of the likelihood estimator for parameter along with its goodness of fit has been illustrated graphically. Finally an example has been discussed for testing goodness of fit of Ishita distribution along with other one parameter lifetime distributions.

Descriptive properties of ishita distribution

The graphs of pdf and cdf of Ishita distribution are shown in figure 1 and 2. From the graphs of pdf it is obvious that Ishita distribution is monotonically decreasing. As the value of parameter θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibi abeI7aXbaa@39F0@  increases, the graphs start upward but for increasing values of x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibi aadIhaaaa@3937@  it start decreasing at faster rate. Similarly the graphs of cdf shows that for increasing values of the parameter θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibi abeI7aXbaa@39F0@ , it becomes concave downward.

The coefficient of variation (C.V.), coefficient of skewness ( β 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaanmaabm aakeaanmaakaaakeaajugibiabek7aI1WaaSbaaKqaafaajugWaiaa igdaaSqabaaabeaaaOGaayjkaiaawMcaaaaa@4029@ , coefficient of kurtosis ( β 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaanmaabm aakeaajugibiabek7aI1WaaSbaaKqaafaajugWaiaaikdaaSqabaaa kiaawIcacaGLPaaaaaa@4003@  and index of dispersion ( γ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaanmaabm aakeaajugibiabeo7aNbGccaGLOaGaayzkaaaaaa@3D9C@  of Ishita distribution obtained by Shanker and Shukla1 are given by

C.V.= ( θ 6 +16 θ 3 +12 ) 1/2 θ 3 +6 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibi aadoeacaGGUaGaamOvaiaac6cacqGH9aqpnmaalaaakeaanmaabmaa keaajugibiabeI7aX1WaaWbaaSqabKqaafaajugWaiaaiAdaaaqcLb sacqGHRaWkcaaIXaGaaGOnaiabeI7aX1WaaWbaaSqabKqaafaajugW aiaaiodaaaqcLbsacqGHRaWkcaaIXaGaaGOmaaGccaGLOaGaayzkaa qddaahbaWcbeqcbauaaKqzadGaaGymaiaac+cacaaIYaaaaaGcbaqc LbsacqaH4oqCnmaaCaaaleqajeaqbaqcLbmacaaIZaaaaKqzGeGaey 4kaSIaaGOnaaaaaaa@59A5@

β 1 = 2( θ 9 +30 θ 6 +36 θ 3 +24 ) ( θ 6 +16 θ 3 +12 ) 3/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaanmaaka aakeaajugibiabek7aI1WaaSbaaKqaafaajugWaiaaigdaaSqabaaa beaajugibiabg2da90WaaSaaaOqaaKqzGeGaaGOma0WaaeWaaOqaaK qzGeGaeqiUdexddaahaaGdbeqceasaaKqzadGaaGyoaaaajugibiab gUcaRiaaiodacaaIWaGaeqiUdexddaahaaGdbeqceasaaKqzadGaaG OnaaaajugibiabgUcaRiaaiodacaaI2aGaeqiUdexddaahaaGdbeqc easaaKqzadGaaG4maaaajugibiabgUcaRiaaikdacaaI0aaakiaawI cacaGLPaaaaeaanmaabmaakeaajugibiabeI7aX1WaaWbaa4qabKab GeaajugWaiaaiAdaaaqcLbsacqGHRaWkcaaIXaGaaGOnaiabeI7aX1 WaaWbaa4qabKabGeaajugWaiaaiodaaaqcLbsacqGHRaWkcaaIXaGa aGOmaaGccaGLOaGaayzkaaqddaahaaWcbeqcbauaaKqzadGaaG4mai aac+cacaaIYaaaaaaaaaa@6CAE@

β 2 = 3( θ 12 +128 θ 9 +408 θ 6 +576 θ 3 +240 ) ( θ 6 +16 θ 3 +12 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibi abek7aI1WaaSbaaKabGeaajugWaiaaikdaa4qabaqcLbsacqGH9aqp nmaalaaakeaajugibiaaiodanmaabmaakeaajugibiabeI7aX1WaaW baa4qabKabGeaajugWaiaaigdacaaIYaaaaKqzGeGaey4kaSIaaGym aiaaikdacaaI4aGaeqiUdexddaahaaGdbeqceasaaKqzadGaaGyoaa aajugibiabgUcaRiaaisdacaaIWaGaaGioaiabeI7aX1WaaWbaa4qa bKazea2=baqcLbmacaaI2aaaaKqzGeGaey4kaSIaaGynaiaaiEdaca aI2aGaeqiUdexddaahaaGdbeqceasaaKqzadGaaG4maaaajugibiab gUcaRiaaikdacaaI0aGaaGimaaGccaGLOaGaayzkaaaabaqddaqada GcbaqcLbsacqaH4oqCnmaaCaaaoeqajqgbG9FaaKqzadGaaGOnaaaa jugibiabgUcaRiaaigdacaaI2aGaeqiUdexddaahaaGdbeqcKray=h aajugWaiaaiodaaaqcLbsacqGHRaWkcaaIXaGaaGOmaaGccaGLOaGa ayzkaaqddaahaaWcbeqcbauaaKqzadGaaGOmaaaaaaaaaa@7A97@

γ= θ 6 +16 θ 3 +12 θ( θ 3 +2 )( θ 3 +6 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibi abeo7aNjabg2da90WaaSaaaOqaaKqzGeGaeqiUdexddaahaaWcbeqc bauaaKqzadGaaGOnaaaajugibiabgUcaRiaaigdacaaI2aGaeqiUde xddaahaaWcbeqcbauaaKqzadGaaG4maaaajugibiabgUcaRiaaigda caaIYaaakeaajugibiabeI7aX1WaaeWaaOqaaKqzGeGaeqiUdexdda ahaaWcbeqcbauaaKqzadGaaG4maaaajugibiabgUcaRiaaikdaaOGa ayjkaiaawMcaa0WaaeWaaOqaaKqzGeGaeqiUdexddaahaaWcbeqcba uaaKqzadGaaG4maaaajugibiabgUcaRiaaiAdaaOGaayjkaiaawMca aaaaaaa@5F38@

Figure 1 Graph of pdf of the Ishita distribution for different values of the parameter θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aH4oqCaaa@39EF@ .

Figure 2 Graphs cdf of Ishita distribution for different values of the parameter θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aH4oqCaaa@39EF@ .

Graphs of coefficient of variation, coefficient of skewness, coefficient of kurtosis and the index of dispersion of Ishita distribution are shown in figure 3. From the graphs it is obvious that coefficient of variation, coefficient of skewness and coefficient of kurtosis are initially increasing for increasing values of parameter θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibi abeI7aXbaa@39F0@  but later on start decreasing slowly for increasing values of parameter θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibi abeI7aXbaa@39F0@ . The graph of index of dispersion is decreasing for increasing values of parameter θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibi abeI7aXbaa@39F0@ .

Figure 3a Graphs of Coefficient of Variation, coefficient of Skewness, coefficient of Kurtosis and Index of dispersion of Ishita distribution for varying values of parameter θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aH4oqCaaa@39EF@ .

Figure 3b Estimated mean squared error of the MLEs for different values of θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aH4oqCaaa@39EF@ and n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGUbaaaa@392C@ .

The plots between simulated and estimated values of parameter θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcq aH4oqCaaa@39EF@ are shown in figure 4.

A simulation study

In this section, we seek to evaluate the numerous properties of the proposed technique by performing a simulation study. This process consists in generating N=10,000 pseudo-random samples of sizes 20, 40, 60, 80, 100 from Ishita distribution. Acceptance and rejection method has been used for the simulation of data. Average bias and mean square error of the MLEs of the parameter θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibi abeI7aXbaa@39F0@ are estimated using the following formulae

Average Bias= 1 N j=1 N ( θ j θ ) ,MSE( θ )= 1 N j=1 N ( θ j θ ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaamyqaiaadAhacaWGLbGaamOCaiaadggacaWGNbGa amyzaiaabccacaWGcbGaamyAaiaadggacaWGZbGaeyypa0tddaWcaa GcbaqcLbsacaaIXaaakeaajugibiaad6eaaaqddaaeWaGcbaqddaqa daGcbaqcLbsacuaH4oqCgaWea0WaaSbaaKqaafaajugWaiaadQgaaS qabaqcLbsacqGHsislcqaH4oqCaOGaayjkaiaawMcaaaWcbaqcLbsa caWGQbGaeyypa0JaaGymaaWcbaqcLbsacaWGobaacqGHris5aiaacY cacaWGnbGaam4uaiaadweanmaabmaakeaajugibiabeI7aXbGccaGL OaGaayzkaaqcLbsacqGH9aqpnmaalaaakeaajugibiaaigdaaOqaaK qzGeGaamOtaaaanmaaqadakeaanmaabmaakeaajugibiqbeI7aXzaa taqddaWgaaqcKray=haajugWaiaadQgaa4qabaqcLbsacqGHsislcq aH4oqCaOGaayjkaiaawMcaaaWcbaqcLbsacaWGQbGaeyypa0JaaGym aaWcbaqcLbsacaWGobaacqGHris5a0WaaWbaaSqabKqaafaajugWai aaikdaaaaaaa@7984@

The following algorithm can be used to generate random sample from Ishita distribution. The process to generate a random sample consists of running the algorithm as often as necessary, say n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibi aad6gaaaa@392D@  times.

Algorithm

Rejection method: To simulate from the density  f X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibi aadAganmaaBaaajeaqbaqcLbmacaWGybaaleqaaaaa@3DC4@ , it is assumed that we have envelope density h from which it can simulate, and that we have some k< MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibi aadUgacqGH8aapcqGHEisPaaa@3DB0@  such that su p x f X ( x ) h( x ) k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieGaju gibiaa=nhacaWF1bGaa8hCa0WaaSbaaKqaafaajugWaiaadIhaaSqa baqddaWcaaGcbaqcLbsacaWGMbqddaWgaaqcbauaaKqzadGaamiwaa WcbeaanmaabmaakeaajugibiaadIhaaOGaayjkaiaawMcaaaqaaKqz GeGaamiAa0WaaeWaaOqaaKqzGeGaamiEaaGccaGLOaGaayzkaaaaaK qzGeGaeyizImQaam4Aaaaa@4F2A@  

Simulate X from h.

  1. Generate Y~U(0,kh( X ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugiba baaaaaaaaapeGaamywaiaac6hacaWGvbWdaiaacIcapeGaaGimaiaa cYcacaWGRbGaamiAa0Wdamaabmaakeaajugib8qacaWGybaak8aaca GLOaGaayzkaaaaaa@447B@ , where k= θ 3 θ 3 +2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibi aadUgacqGH9aqpnmaalaaakeaajugibiabeI7aX1WaaWbaaSqabKqa afaajugWaiaaiodaaaaakeaajugibiabeI7aX1WaaWbaaSqabKqaaf aajugWaiaaiodaaaqcLbsacqGHRaWkcaaIYaaaaaaa@4807@  
  2. If Y< f x ( X ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacNqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibi aadMfacqGH8aapcaWGMbqddaWgaaqcbauaceaaQ0FcLbmacaWG4baa leqaa0WaaeWaaOqaaKqzGeGaamiwaaGccaGLOaGaayzkaaaaaa@4406@  then return X, otherwise go back to step 1.

The average bias (mean square error) of simulated estimate of parameter θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibi abeI7aXbaa@39F0@  is presented in table 2.

n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGca WGUbaaaa@392C@

Parameter θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacqaH4oqCaaa@39A5@

0.5

1

2

3

20

0.12529(0.1252)
0.04534 (0.04113)
-0.03517 (0.0247)
-0.0987(0.19485)

40

0.054755(0.11992)
0.01868 (0.01396)
-0.02022 (0.0163)
-0.0515(0.10648)

60

0.038151(0.08732)
0.013337(0.01067)
-0.0129 (0.00999)
-0.0339(0.069003)

80

0.028079(0.06307
0.00975 (0.00761)
-0.0098(0.00773)
-0.0255(0.05236)

100

0.021859(0.047783)
0.00748(0.00560)
-0.0080(0.00653)
-0.0206(0.04268)

Table 2 Average bias (mean square error) of the simulated estimates of parameter θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacqaH4oqCaaa@39A5@

Values of the estimate of parameter, standard error, -2logL, AIC and Confidence Interval (C.I) for simulated data on N=10,000 for different values of parameter  are presented in table 3.

θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacqaH4oqCaaa@39A5@

Estimates of
θ ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOafq iUdeNbaKaaaaa@3994@

S.E.

-2logL

AIC

C. I.

Lower

Upper

0.4

2.907545

0.0221610
1502.83
1504.83
2.86446
2.95133

0.5

2.486496

0.01728233

5975.21
5977.217
2.45288

2.52063

0.8

1.860619

0.010777

15372.96

15374.96

1.83963

1.88188

0.9

1.740233
0.0097021
17728.03  

17730.03

1.721330

1.759362

1

1.641053

0.0088720

19840.31

19842.31

1.623761

1.65854

1.2

1.484858

0.00767496

23521.97  
23523.97
1.469890

1.499976

1.5

1.314178

0.00652887

28113.48  
28115.48
1.301434  

1.327027

2.0

1.117259  

0.00541481

34273.16  
342735.16
1.106683  
1.127909

2.5

0.9766439  

0.00473939

39311.69  
39313.69
0.9673826  
0.9859608

3

0.8674364
0.004265468
43620.11  
43622.11
0.8590990
0.8758194  

Table 3 Values of estimate of parameter, standard error, -2logL, AIC and Confidence Interval for simulated data at N=10,000 on different values of θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaa aaaaaaa8qacqaH4oqCaaa@39A5@

The graphs of estimated mean square error of the maximum likelihood estimate (MLE) for different values of parameter θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibi abeI7aXbaa@39F0@  and n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibi aad6gaaaa@392D@  have been shown in figure 3.

Data analysis

In this section Ishtita distribution has been used to model for data which is due to Birnbaum and Saunders8  on the fatique life of 6061-T6 aluminum coupons cut parallel to direction of rolling and oscillated at 18 cycles per second. The goodness of fit of the Ishita distribution has been compared with one parameter Akash, Sujatha, Shanker, Aradhana, Lindley and Exponential distributions.

Data Set: The data is given by Birnbaum and Saunders8 on the fatigue life of 6061 – T6 aluminum coupons cut parallel to the direction of rolling and oscillated at 18 cycles per second. The data set consists of 101 observations with maximum stress per cycle 31,000 psi. The data  are presented below (after subtracting 65).

5 25 31 32 34 35 38 39 39 40 42 43 43 43 44
44 47 47 48 49 49 49 51 54 55 55 55 56 56
56 58 59 59 59 59 59 63 63 64 64 65 65 65
66 66 66 66 66 67 67 67 68 69 69 69 69 71 71
72 73 73 73 74 74 76 76 77 77 77 77 77
77 79 79 80 81 83 83 84 86 86 87 90 91
92 92 92 92 93 94 97 98 98 99 101 103 105 109
136 147

In order to compare the goodness of fit of Ishita with Akash, Shanker Sujatha, Aradhana, Lindley and exponential distributions, 2lnL MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibi abgkHiTiaaikdaciGGSbGaaiOBaiaadYeaaaa@3C98@ , AIC (Akaike Information Criterion),) of distributions for real lifetime data set have been computed and presented in table 4. The formulae for computing AIC and K-S statistic as follows:

  AIC=2lnL+2k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibi aadgeacaWGjbGaam4qaiabg2da9iabgkHiTiaaikdaciGGSbGaaiOB aiaadYeacqGHRaWkcaaIYaGaam4Aaaaa@4288@ , BIC=2lnL+klnn MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibi aadkeacaWGjbGaam4qaiabg2da9iabgkHiTiaaikdaciGGSbGaaiOB aiaadYeacqGHRaWkcaWGRbGaciiBaiaac6gacaaMc8UaamOBaaaa@462F@ , where k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibi aadUgaaaa@392A@  the number of parameters, n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibi aad6gaaaa@392D@ = the sample size D= sup x | F n ( x ) F 0 ( x ) | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibi aadseacqGH9aqpciGGZbGaaiyDaiaacchajuaGdaWgaaqcfasaaKqz adGaamiEaaqcfayabaWaaqWaaOqaaKqzGeGaamOraKqbaoaaBaaajq waa+FaaKqzadGaamOBaaWcbeaajuaGdaqadaGcbaqcLbsacaWG4baa kiaawIcacaGLPaaajugibiabgkHiTiaadAeajuaGdaWgaaqcKfaG=h aajugWaiaaicdaaSqabaqcfa4aaeWaaOqaaKqzGeGaamiEaaGccaGL OaGaayzkaaaacaGLhWUaayjcSdaaaa@5817@ , where k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibi aadUgaaaa@392A@  = the number of parameters, n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibi aad6gaaaa@392D@ = the sample size and F n ( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibi aadAeajuaGdaWgaaqcbasaaKqzadGaamOBaaWcbeaajuaGdaqadaGc baqcLbsacaWG4baakiaawIcacaGLPaaaaaa@3FC1@ is the empirical distribution function. The best distribution is the distribution which corresponds to lower values of 2lnL MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibi abgkHiTiaaikdaciGGSbGaaiOBaiaadYeaaaa@3C98@ , AIC and K-S statistics.

The fitted plot of one parameter lifetime distributions and profile of likelihood estimate of parameter plot for data set has been presented in figure 5.

Distributions

Parameters estimates( θ ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOafq iUdeNbaKaaaaa@3994@ )

S.E( θ ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOafq iUdeNbaKaaaaa@3994@ )

-2logL

AIC

K-S

Ishita

0.04390977

0.002533

950.91

952.91

0.193

Akash

0.0438789

0.002531

950.97

952.97

0.194

Sujatha

0.0435654

0.002513

951.78

953.78

0.195

Aradhana

0.0432677

0.002496

952.58

954.58

0.196

Shanker

0.029263

0.002065

980.97

982.97

0.248

Lindley

0.0288712

0.002039

983.10

985.10

0.252

Exponential

0.014634

0.001456

1044.87

1046.87

0.367

Table 4 MLEs θ ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOafq iUdeNbaKaaaaa@3994@ ,SE( θ ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFzI8F4rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOafq iUdeNbaKaaaaa@3994@ ,-2logL,AIC and K-S statistic for one parameter lifetime distributions

Figure 4 Plot between simulated values of theta and estimated values of theta.

Figure 5 Fitted plot of distributions and profile of likelihood estimate of parameter plot for data set.

Conclusions

A simulation study on Ishita distribution proposed by Shanker and Shukla1 has been discussed and presented. Average bias, mean square error and confidence interval of the parameter have been studied for simulated data from Ishita distribution. Profile of likelihood estimator for the parameter has been illustrated graphically. The goodness of fit for Ishita distribution has been discussed with an example from engineering and the fit has been compared with some one parameter lifetime distributions. The goodness of fit of Ishita distribution shows that it can be considered an important lifetime distribution for modeling lifetime data from engineering.

Acknowledgments

None.

Conflicts of interest

None.

References

Creative Commons Attribution License

©2017 Shukla, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.