Submit manuscript...
eISSN: 2378-315X

Biometrics & Biostatistics International Journal

Research Article Volume 10 Issue 2

A review on mathematically transformed Lindley random variables

Lishamol Tomy,1 Jiju Gillariose2

1Department of Statistics, Deva Matha College, Kuravilangad, India
2Department of Statistics, St.Thomas College, Palai, India

Correspondence: Lishamol Tomy, Department of Statistics, Deva Matha College, Kuravilangad, Kerala, 686633, India

Received: April 05, 2021 | Published: April 26, 2021

Citation: Tomy L, Gillariose J. A review on mathematically transformed Lindley random variables. Biom Biostat Int J. 2021;10(2):46-48. DOI: 10.15406/bbij.2021.10.00329

Download PDF

Abstract

Lindley distribution has been used quite successfully to analyze lifetime data. Recent advances in the theory of the distribution have built numerous specialized applications. This article reviews recent developments of Lindley distribution, along with a brief review of sum and difference of two Lindley random variables. An extensive set of references to the distribution is given.

Keywords: Lindley distribution, probability density function, random variable

AMS subject classification: 60E05, 62E15, 62F10

Introduction

In statistical theory, modelling lifetime data utilizing lifetime distributions has gained the attention of many statisticians. The one-parameter Lindley distribution is irrefutably one of the most eminent distributions in Statistics. The classical one-parameter Lindley distribution was proposed by Lindley,1 Lindley2 to encapsulate a difference between fiducial distribution and posterior distribution. The survival function (SF) of the Lindley distribution with parameter η>0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0=Mr0=MrY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeaabaWaaeaaeaaakeaaqaaaaaaaaaWdbiabeE 7aOjabg6da+iaaicdaaaa@3A36@ , is given by

F ¯ ( x )=[ 1+ ηx 1+η ] e ηx ;        x>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qaceWGgbWdayaaraGcpeWaaeWaa8aabaqcLbsapeGaamiEaaGc caGLOaGaayzkaaqcLbsacqGH9aqpkmaadmaapaqaaKqzGeWdbiaaig dacqGHRaWkkmaalaaapaqaaKqzGeWdbiabeE7aOjaadIhaaOWdaeaa jugib8qacaaIXaGaey4kaSIaeq4TdGgaaaGccaGLBbGaayzxaaqcLb sacaWGLbGcpaWaaWbaaSqabeaajugib8qacqGHsislcqaH3oaAcaWG 4baaaiaacUdacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaadIhacqGH+aGpcaaIWaaaaa@5C13@ (1)

It has used for analysing copious lifetime data especially in applications of modelling stress-strength reliability. There is, of course, a comprehensive literature on the Lindley distribution. For example, the dominance of Lindley distribution over the exponential distribution for waiting times before service of bank customers was pointed out by Ghitany et al.3 Shanker et al.4 also studied a comparison study of the goodness-of-fit of exponential and Lindley distributions on modelling of lifetime data. The parameter of Lindley distribution with progressive Type-II censoring scheme was estimated by Krishna and Kumar5 and they showed that it may fit better than exponential, lognormal and gamma distributions in some real life situations. Furthermore, the inverse and discrete versions of Lindley distribution are developed by Sharma et al.6 and Deniz and Ojeda,7 respectively.

But in some sense, the Lindley distribution does not provide enough tractability for analyzing different types of lifetime data. In this regard, by using various approaches, researchers have focused on discovering modified, extended and generalized Lindley distributions. We mention: generalized Lindley distribution Zakerzadeh H & Dolati A,8 quasi Lindley distribution Shanker R & Mishra A,9 power Lindley distribution Ghitany et al.,10 two-parameter Lindley distribution Shanker and Mishra,11 transmuted Lindley distribution Merovci F,12 transmuted Lindley-geometric distribution Merovci F & Elbatal I,13 beta-Lindley distribution Merovci F & Sharma V.K.,14 Wrapped Lindley distribution Joshi S & Jose KK,15 Marshall-Olkin modified Lindley distribution Gillariose J, et al.16 Marshall-Olkin two-parameter Lindley distribution Tomy GJ,17 etc. For more details, the reader can refer a review study by tomy18 which highlights a survey of developments on the Lindley distribution. The review about Lindley distribution show that the literature on the Lindley distribution continues to grow. Motivated by previous review, in this paper, we give a recent expository review of the Lindley distribution, especially with a discussion of recent innovations regarding sum and difference of Lindley random variables. The rest of the paper is organized as follows. In Section 2, we discuss some recent contributions. Conclusions are presented in Section 3.

Recent developments of lindley distribution

Distribution of sum and difference

Zakerzadeh and Dolati8 showed that the distribution of a sum of n independent random variables from Lindley distribution can be written as a mixture of gamma distribution. Hassan19 discussed sum of n independent random variables having Lindley distribution with both same and different parameters. In addition, he showed the convolution of Lindly distribution with the same parameters is useful to obtain the uniformly minimum variance unbiased estimator (UMVUE) of the stress-strength parameter R=P(Y<X) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOuaiabg2da9iaadcfacaGGOaGaamywaiabgYda8iaadIfacaGG Paaaaa@3DF9@ model-reliability. Recently, Chesneau et al.20 specified the distributions of sum and differences of two independent and identically distributed random variables with the common Lindley distribution. Let X and Y be two independent random variables following the Lindley distribution with parameter η>0. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4TdGMaeyOpa4JaaGimaiaac6caaaa@3B4F@  Then, the random variable Z=X+Y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOwaiabg2da9iaadIfacqGHRaWkcaWGzbaaaa@3BB1@ has the SF given by (1). This result is a particular case of Hassan,19 Theorem 2. Since X and Y are independent, the probability density function (PDF) of Z is given by the following convolution product: for  x>0, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEaiabg6da+iaaicdacaGGSaaaaa@3A9E@

f (x) S = + + f x ( xt ) f x ( t )dt= 0 x η 2 1+η ( 1+xt ) e η( xt ) η 2 1+η ( 1+t ) e ηt dt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOzaiaacIcacaWG4bGaaiyka8aadaWgaaWcbaWdbiaadofaa8aa beaak8qacqGH9aqpdaWdXaqaaiaadAgadaWgaaWcbaGaamiEaaqaba aabaGaey4kaSIaeqOhIukabaGaey4kaSIaeqOhIukaniabgUIiYdGc daqadaWdaeaapeGaamiEaiabgkHiTiaadshaaiaawIcacaGLPaaaca WGMbWaaSbaaSqaaiaadIhaaeqaaOWaaeWaaeaacaWG0baacaGLOaGa ayzkaaGaamizaiaadshacqGH9aqpdaWdXaqaamaalaaapaqaa8qacq aH3oaApaWaaWbaaSqabeaapeGaaGOmaaaaaOWdaeaapeGaaGymaiab gUcaRiabeE7aObaadaqadaWdaeaapeGaaGymaiabgUcaRiaadIhacq GHsislcaWG0baacaGLOaGaayzkaaGaamyza8aadaahaaWcbeqaa8qa cqGHsislcqaH3oaAdaqadaWdaeaapeGaamiEaiabgkHiTiaadshaai aawIcacaGLPaaaaaaabaGaaGimaaqaaiaadIhaa0Gaey4kIipakmaa laaapaqaa8qacqaH3oaApaWaaWbaaSqabeaapeGaaGOmaaaaaOWdae aapeGaaGymaiabgUcaRiabeE7aObaadaqadaWdaeaapeGaaGymaiab gUcaRiaadshaaiaawIcacaGLPaaacaWGLbWdamaaCaaaleqabaWdbi abgkHiTiabeE7aOjaadshaaaGccaWGKbGaamiDaaaa@7BCF@

= η 4 (1+η) 2 e ηx 0 x ( 1+xt )( 1+t ) dt= η 4 (1+η) 2 x( x 2 6 +x+1 ) e ηx . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeyypa0ZaaSaaa8aabaWdbiabeE7aO9aadaahaaWcbeqaa8qacaaI 0aaaaaGcpaqaa8qacaGGOaGaaGymaiabgUcaRiabeE7aOjaacMcapa WaaWbaaSqabeaapeGaaGOmaaaaaaGccaWGLbWdamaaCaaaleqabaWd biabgkHiTiabeE7aOjaadIhaaaGcpaWaa8qmaeaadaqadaqaaiaaig dacqGHRaWkcaWG4bGaeyOeI0IaamiDaaGaayjkaiaawMcaamaabmaa baGaaGymaiabgUcaRiaadshaaiaawIcacaGLPaaaaSqaaiaaicdaae aacaWG4baaniabgUIiYdGccaWGKbGaamiDaiabg2da98qadaWcaaWd aeaapeGaeq4TdG2damaaCaaaleqabaWdbiaaisdaaaaak8aabaWdbi aacIcacaaIXaGaey4kaSIaeq4TdGMaaiyka8aadaahaaWcbeqaa8qa caaIYaaaaaaakiaadIhadaqadaWdaeaapeWaaSaaa8aabaWdbiaadI hapaWaaWbaaSqabeaapeGaaGOmaaaaaOWdaeaapeGaaGOnaaaacqGH RaWkcaWG4bGaey4kaSIaaGymaaGaayjkaiaawMcaaiaadwgapaWaaW baaSqabeaapeGaeyOeI0Iaeq4TdGMaamiEaaaakiaac6caaaa@6E6E@

The corresponding SF is given by

G ¯ (x) S = 1 6 (1+θ) 2 [ θ 3 x( x 2 +6x+6 )+3 θ 2 ( x 2 +4x+2 )+6θ( x+2 )+6 ] e θx ,    x>0. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gabm4ra8aagaqea8qacaGGOaGaamiEaiaacMcapaWaaSbaaSqaa8qa caWGtbaapaqabaGcpeGaeyypa0ZaaSaaa8aabaWdbiaaigdaa8aaba WdbiaaiAdacaGGOaGaaGymaiabgUcaRiabeI7aXjaacMcapaWaaWba aSqabeaapeGaaGOmaaaaaaGcdaWadaWdaeaapeGaeqiUde3damaaCa aaleqabaWdbiaaiodaaaGccaWG4bWaaeWaa8aabaWdbiaadIhapaWa aWbaaSqabeaapeGaaGOmaaaakiabgUcaRiaaiAdacaWG4bGaey4kaS IaaGOnaaGaayjkaiaawMcaaiabgUcaRiaaiodacqaH4oqCpaWaaWba aSqabeaapeGaaGOmaaaakmaabmaapaqaa8qacaWG4bWdamaaCaaale qabaWdbiaaikdaaaGccqGHRaWkcaaI0aGaamiEaiabgUcaRiaaikda aiaawIcacaGLPaaacqGHRaWkcaaI2aGaeqiUde3aaeWaa8aabaWdbi aadIhacqGHRaWkcaaIYaaacaGLOaGaayzkaaGaey4kaSIaaGOnaaGa ay5waiaaw2faaiaadwgapaWaaWbaaSqabeaapeGaeyOeI0IaeqiUde NaamiEaaaakiaacYcacaGGGcGaaiiOaiaacckacaGGGcGaamiEaiab g6da+iaaicdacaGGUaaaaa@7557@

In addition, the difference of two independent random variables following the Lindley distribution with the same parameter. Then, its PDF given by

f (x) D = η 4 (1+η) 2 [ η( 2η+1 )| x |+2 η 2 +2η+1 ] e η| x | ,    x,η>0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOzaiaacIcacaWG4bGaaiyka8aadaWgaaWcbaWdbiaadseaa8aa beaak8qacqGH9aqpdaWcaaWdaeaapeGaeq4TdGgapaqaa8qacaaI0a GaaiikaiaaigdacqGHRaWkcqaH3oaAcaGGPaWdamaaCaaaleqabaWd biaaikdaaaaaaOWaamWaa8aabaWdbiabeE7aOnaabmaapaqaa8qaca aIYaGaeq4TdGMaey4kaSIaaGymaaGaayjkaiaawMcaamaaemaapaqa a8qacaWG4baacaGLhWUaayjcSdGaey4kaSIaaGOmaiabeE7aO9aada ahaaWcbeqaa8qacaaIYaaaaOGaey4kaSIaaGOmaiabeE7aOjabgUca RiaaigdaaiaawUfacaGLDbaacaWGLbWdamaaCaaaleqabaWdbiabgk HiTiabeE7aOnaaemaapaqaa8qacaWG4baacaGLhWUaayjcSdaaaOGa aiilaiaacckacaGGGcGaaiiOaiaacckacaWG4bGaeyicI48efv3ySL gznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFDeIucaGGSaGa eq4TdGMaeyOpa4JaaGimaaaa@7AB8@

The corresponding SF is given by

G ¯ (x) D ={ 1 1 4 (1+η) 2 [ η( 2η+1 )x+2 (1+η) 2 ] e ηx ifx<0, 1 4 (1+η) 2 [ η( 2η+1 )x+2 (1+η) 2 ] e ηx ifx0. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gabm4ra8aagaqea8qacaGGOaGaamiEaiaacMcapaWaaSbaaSqaa8qa caWGebaapaqabaGcpeGaeyypa0Zaaiqaa8aabaqbaeaabiabaaaaba aabaWdbiaaigdacqGHsisldaWcaaWdaeaapeGaaGymaaWdaeaapeGa aGinaiaacIcacaaIXaGaey4kaSIaeq4TdGMaaiyka8aadaahaaWcbe qaa8qacaaIYaaaaaaakmaadmaapaqaa8qacqGHsislcqaH3oaAdaqa daWdaeaapeGaaGOmaiabeE7aOjabgUcaRiaaigdaaiaawIcacaGLPa aacaWG4bGaey4kaSIaaGOmaiaacIcacaaIXaGaey4kaSIaeq4TdGMa aiyka8aadaahaaWcbeqaa8qacaaIYaaaaaGccaGLBbGaayzxaaGaam yza8aadaahaaWcbeqaa8qacqaH3oaAcaWG4baaaaGcpaqaaaqaa8qa caqGPbGaaeOzaiaabIhacqGH8aapcaaIWaGaaiilaaWdaeaaaeaape WaaSaaa8aabaWdbiaaigdaa8aabaWdbiaaisdacaGGOaGaaGymaiab gUcaRiabeE7aOjaacMcapaWaaWbaaSqabeaapeGaaGOmaaaaaaGcda WadaWdaeaapeGaeq4TdG2aaeWaa8aabaWdbiaaikdacqaH3oaAcqGH RaWkcaaIXaaacaGLOaGaayzkaaGaamiEaiabgUcaRiaaikdacaGGOa GaaGymaiabgUcaRiabeE7aOjaacMcapaWaaWbaaSqabeaapeGaaGOm aaaaaOGaay5waiaaw2faaiaadwgapaWaaWbaaSqabeaapeGaeyOeI0 Iaeq4TdGMaamiEaaaaaOWdaeaaaeaapeGaaeyAaiaabAgacaqG4bGa eyyzImRaaGimaiaac6caaaaacaGL7baaaaa@8772@

Moreover, Chesneau et al.20 provided several statistical and mathematical peculiarities of these models. As a continuation, Hamedani21 showed that the assumption of independence can be replaced with a much weaker assumption of ”sub-independenceâ€.

Modified lindley distribution

 In the recent past, Chesneau et al.22 introduced a new modified Lindley distribution, as a simple one-parameter alternative to the exponential and Lindley distributions. The SF is given as

G ¯ ( x )=[ 1+ ηx 1+η e ηx ] e ηx ,        x>0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gabm4ra8aagaqea8qadaqadaWdaeaapeGaamiEaaGaayjkaiaawMca aiabg2da9maadmaapaqaa8qacaaIXaGaey4kaSYaaSaaa8aabaWdbi abeE7aOjaadIhaa8aabaWdbiaaigdacqGHRaWkcqaH3oaAaaGaamyz a8aadaahaaWcbeqaa8qacqGHsislcqaH3oaAcaWG4baaaaGccaGLBb GaayzxaaGaamyza8aadaahaaWcbeqaa8qacqGHsislcqaH3oaAcaWG 4baaaOGaaiilaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaamiEaiabg6da+iaaicdaaaa@5C06@

One of the eminent properties of the modified Lindley distribution is that, its PDF can be expressed as a linear combination of exponential and gamma PDFs. In addition, modified Lindley distribution is a strong one-parameter competitor to the Lindley and exponential distributions. Furthermore, Chesneau et al.,23 Chesneau et al.24 studied two generalizations for the modified Lindley distribution, such as the inverse modified Lindley and the wrapped modified Lindley distributions, respectively and presented their statistical properties.

Transformed lindley distributions

Maurya et al.25 proposed exponential transformed Lindley distribution and provided an application to yarn data. Hassan et al.26 introduced a new distribution called a new generalization of the power Lindley distribution namely the alpha power transformed power Lindley, which includes the alpha power transformed Lindley, power Lindley, Lindley, and gamma as sub-models. They proved that the model provides a better fit than the power Lindley distribution. In addition to this, Alpha-Power transformed Lindley distribution Dey et al.28 and Alpha-Power transformed inverse Lindley distribution Dey et al.27 are introduced in the literature.

The one-parameter unit-Lindley distribution and its associated regression model for proportion data has been proposed by Mazucheli et al.28 Moreover, Algarni29 suggested an extension of the generalized Lindley distribution using the Marshall-Olkin method. An extension of Lindley distribution has also been proposed by Maurya et al.30

Conclusions

The literature on theory and application of Lindley distribution is flourishing and rapidly growing. Several methods may be found in the literature. This paper has tried to review some recent techniques to find new Lindley distribution. These new innovations may have great promise elsewhere in Statistics.

Acknowledgments

The second author is grateful to the Department of Science and Technology (DST), Govt. of India for the financial support under the INSPIRE Fellowship.

Conflicts of interest

None.

References

  1. Lindley D.V. Fiducial distributions and Bayes theorem, Journal of the Royal Statistical Society, A.1958;20(1):102–107.
  2. Lindley DV. Introduction to Probability and Statistics from a Bayesian Viewpoint, Part II : inference, Combridge University Press, New Yourk.1965.
  3. Ghitany M.E, Atieh B, Nadarajah S. Lindley distribution and its Applications, Mathematical Computation and Simulation.2008;78(4): 493–506.
  4. Shanker R, Hagos F, Sujatha S. On modelling of lifetimes data using exponential and lindley distributions. Biometrics & Biostatistics International Journal. 2015;2(5):1–9.
  5. Krishna H, Kumar K. Reliability estimation in Lindley distribution with Progressive type II right censored sample, Journal Mathematics and Computers in Simulation archive.2011;82(2):281–294.
  6. Sharma V, Singh S, Singh U, et al. The inverse Lindley distribution: a stress-strength reliability model with applications to head and neck cancer data. Journal of Industrial and Production Engineering. 2015;32(3):162–173.
  7. Deniz E, Ojeda E. The discrete lindley distribution: Properties and application, Journal of Statistical Computation and Simulation. 2011;81(11):1405–1416.
  8. Zakerzadeh H, Dolati A. Generalized Lindley distribution. Journal of mathematical extension. 2009;3(2):13–25.
  9. Shanker R, Mishra A. A quasi Lindley distribution. African Journal of Mathematics and Computer Science Researc. 2013;6(4):64–71.
  10. Ghitany M.E, Al-Mutairi D.K, Balakrishnan N, et al. Power Lindley distribution and associated inference. Computational Statistics and Data Analysis.2013;64:20–33.
  11. Shanker R, Mishra A. A two parameter Lindley distribution. Statistics in transition new series. 2013;14(1):45–56.
  12. Merovci F. Transmuted Lindley distribution, International Journal of Open Problems in Computer Science and Mathematics.2013; 6(2):63–72.
  13. Merovci F, Elbatal I. Transmuted Lindley-geometric distribution and its applications. Journal of Statistics Applications & Probabilit2014;3(1):77–91.
  14. Merovci F, Sharma VK. The beta Lindley distribution: Properties and applications, Journal of Applied Mathematics.2014;1–10.
  15. Joshi S, Jose KK. Wrapped Lindley distribution, Communications in Statistics-Theory and Methods.2018;47(5):1013–1021.
  16. Gillariose J, Tomy L, Jamal F, et al. The marshall-olkin modified lindley distribution: properties and applications. Journal of Reliability and Statistical Studies. 2020;13(1):177–198.
  17. Tomy GJ. On an extension of the two-parameter Lindley distribution (Preprint). 2020.
  18. Tomy L. A retrospective study on Lindley distribution. Biometrics and Biostatistics International Journal. 2018;7:163-169.
  19. Hassan, M.K. On the Convolution of Lindley Distribution, Columbia International Publishing Contemporary Mathematics and Statistics.2014;2(1):47–54.
  20. Chesneau C, Tomy L, Gillariose J. On a sum and difference of two Lindley distributions: Theory and applications, REVSTAT - Statistical Journal.2020;18(5):673–695.
  21. Hamedani GG, Naj M. Remarks on and Characterizations of 2S-Lindley and 2D-Lindley Distributions Introduced by Chesneau et al.(2020), Pakistan Journal of statistics and operation research.2021;17(1):227–234
  22. Chesneau C, Tomy L, Gillariose J. A new modified Lindley distribution with properties and applications. Journal of Statistics and Management Systems.2021.
  23. Chesneau C, Tomy L, Gillariose J. The inverted modified Lindley distribution, Journal of Statistical Theory and Practice.2020;14(46):1–17.
  24. Chesneau C, Tomy L, Jose M. Wrapped modified Lindley distribution, Journal of Statistics and Management Systems.2021.
  25. Maurya S. K, Kaushik A, Singh S. K,et al. A new class of exponential transformed Lindley distribution and its application to yarn data, International Journal of Statistics and Economics.2017;18(2):135–151.
  26. Hassan A.S, Elgarhy M, Mohamd R.E, et al. On the Alpha Power Transformed Power Lindley Distribution, Journal of Probability and Statistics.2019.
  27. Dey S, Nassar M, Kumar D. Alpha power transformed inverse Lindley distribution: A distribution with an upside-down bathtub-shaped hazard function.Journal of Computational and Applied Mathematics.2019;348:130–145.
  28. Mazucheli J, Menezes A. F. B, and Chakraborty S. On the one parameter unit-lindley distribution and its associated regression model for proportion data. Journal of Applied Statistics.2019; 46(4):700–714.
  29. Algarni A0. On a new generalized lindley distribution: Properties, estimation and applications. PLoS ONE. 2021;16(2): e0244328.
  30. Maurya S.K, Kumar D, Kumar P.A New Extension of Lindley Distribution And Its Application, Journal of Scientific Research .2020;64(2): 366–373.
Creative Commons Attribution License

©2021 Tomy, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.