Submit manuscript...
eISSN: 2378-315X

Biometrics & Biostatistics International Journal

Research Article Volume 9 Issue 3

A note on size– biased new quasi Poisson– Lindley distribution

Rama Shanker,1 Kamlesh Kumar Shukla,2 Ravi Shanker3

1Department of Statistics, Assam University, Silcher, India
2Department of Statistics, Mainefhi College of Science, Asmara, Eritrea
3 Department of Mathematics, G.L.A.College, N.P University, India

Correspondence: Kamlesh Kumar Shukla, Mainefhi College of Science, Asmara, Eritrea

Received: April 24, 2020 | Published: June 9, 2020

Citation: Shanker R, Shukla KK, Shanker R. A note on size– biased new quasi poisson– lindley distribution. Biom Biostat Int J. 2020;9(3):97-104. DOI: 10.15406/bbij.2020.09.00306

Download PDF

Abstract

In this paper some important properties including coefficients of variation, skewness, kurtosis and index of dispersion of size–biased new quasi Poisson–Lindley distribution (SBNQPLD) have been discussed and their behaviors have been explained graphically for varying values of parameters. Some applications of SBNQPLD have also been discussed.

Keywords: Size–biased new Quasi Poisson–Lindley distribution, moments based measures, maximum likelihood estimation, goodness of fit

Introduction

The size– biased version of Poisson–Lindley distribution (SBPLD) proposed by Sankaran1 has been introduced by Ghitany and Mutairi2 and is defined by its probability mass function (pmf)

P 1 ( x,θ )= θ 3 θ+2 x( x+θ+2 ) ( θ+1 ) x+2 ;θ>0,x=1,2,3,... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfadaWgaa WcbaGaaGymaaqabaGcdaqadaqaaiaadIhacaGGSaGaeqiUdehacaGL OaGaayzkaaGaeyypa0ZaaSaaaeaacqaH4oqCdaahaaWcbeqaaiaaio daaaaakeaacqaH4oqCcqGHRaWkcaaIYaaaaiabgwSixpaalaaabaGa amiEamaabmaabaGaamiEaiabgUcaRiabeI7aXjabgUcaRiaaikdaai aawIcacaGLPaaaaeaadaqadaqaaiabeI7aXjabgUcaRiaaigdaaiaa wIcacaGLPaaadaahaaWcbeqaaiaadIhacqGHRaWkcaaIYaaaaaaaki aaykW7caaMc8Uaai4oaiabeI7aXjabg6da+iaaicdacaGGSaGaaGPa VlaadIhacqGH9aqpcaaIXaGaaiilaiaaikdacaGGSaGaaG4maiaacY cacaGGUaGaaiOlaiaac6caaaa@67C8@

Shanker et al.3 have proposed a simple method of deriving moments of SBPLD and the applications of SBPLD to model thunderstorms events. The Poisson –Lindley distribution (PLD), a Poisson mixture of Lindley distribution of Lindley,4 is defined by its pmf

P 2 ( x;θ )= θ 2 ( x+θ+2 ) ( θ+1 ) x+3 ;x= 0, 1, 2,,  > 0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfadaWgaa WcbaGaaGOmaaqabaGcdaqadaqaaiaadIhacaGG7aGaaGPaVlabeI7a XbGaayjkaiaawMcaaiaaysW7cqGH9aqpcaaMe8UaaGPaVpaalaaaba GaeqiUde3aaWbaaSqabeaacaaIYaaaaOGaaGPaVpaabmaabaGaamiE aiabgUcaRiaaykW7cqaH4oqCcqGHRaWkcaaMc8UaaGOmaaGaayjkai aawMcaaaqaamaabmaabaGaeqiUdeNaey4kaSIaaGPaVlaaigdaaiaa wIcacaGLPaaadaahaaWcbeqaaiaadIhacqGHRaWkcaaMc8UaaG4maa aaaaGccaaMe8UaaGPaVlaacUdaqaaaaaaaaaWdbiaadIhacqGH9aqp caqGGaGaaGimaiaacYcacaqGGaGaaGymaiaacYcacaqGGaGaaGOmai aacYcacqGHMacVcaGGSaGaaiiOaiaacckacqGH+aGpcaqGGaGaaGim aiaac6caaaa@72BE@                                     

The Lindley distribution is defined by its probability density function (pdf)                         f 1 ( x,θ )= θ 2 θ+1 ( 1+x ) e θx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaWgaa WcbaGaaGymaaqabaGccaaMc8+aaeWaaeaacaWG4bGaaiilaiaaykW7 cqaH4oqCaiaawIcacaGLPaaacaaMe8Uaeyypa0JaaGjbVlaaykW7da WcaaqaaiabeI7aXnaaCaaaleqabaGaaGOmaaaaaOqaaiabeI7aXjab gUcaRiaaykW7caaIXaaaaiaaysW7daqadaqaaiaaigdacqGHRaWkca aMc8UaamiEaaGaayjkaiaawMcaaiaaykW7caaMc8UaamyzamaaCaaa leqabaGaeyOeI0IaeqiUdeNaaGPaVlaadIhaaaaaaa@5FDD@ ; x > 0, θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXbaa@39E0@ > 0                                                           

The size–biased quasi Poisson–Lindley distribution (SBQPLD), size–biased version of quasi Poisson–Lindley distribution (QPLD) of Shanker and Mishra,5 suggested by Shanker and Mishra6 with parameters θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXbaa@39E0@ and α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHbaa@39C9@ is defined by its pmf

P 3 ( x;θ,α )= θ 2 α+2 x( θx+θα+θ+α ) ( θ+1 ) x+2 ;x=1,2,3,...,θ>0,α>2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfadaWgaa WcbaGaaG4maaqabaGcdaqadaqaaiaadIhacaGG7aGaeqiUdeNaaiil aiabeg7aHbGaayjkaiaawMcaaiabg2da9maalaaabaGaeqiUde3aaW baaSqabeaacaaIYaaaaaGcbaGaeqySdeMaey4kaSIaaGOmaaaadaWc aaqaaiaadIhadaqadaqaaiabeI7aXjaadIhacqGHRaWkcqaH4oqCcq aHXoqycqGHRaWkcqaH4oqCcqGHRaWkcqaHXoqyaiaawIcacaGLPaaa aeaadaqadaqaaiabeI7aXjabgUcaRiaaigdaaiaawIcacaGLPaaada ahaaWcbeqaaiaadIhacqGHRaWkcaaIYaaaaaaakiaacUdacaWG4bGa eyypa0JaaGymaiaacYcacaaIYaGaaiilaiaaiodacaGGSaGaaiOlai aac6cacaGGUaGaaiilaiabeI7aXjabg6da+iaaicdacaGGSaGaeqyS deMaeyOpa4JaeyOeI0IaaGOmaaaa@70C3@         

The QPLD, a Poisson mixture of quasi Lindley distribution proposed by Shanker and Mishra,7 is defined by its pmf

P 4 ( x;θ,α )= θ( θx+θα+θ+α ) ( α+1 ) ( θ+1 ) x+2 ;x=0,1,2,...;θ>0,α>1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfadaWgaa WcbaGaaGinaaqabaGcdaqadaqaaiaadIhacaGG7aGaeqiUdeNaaiil aiabeg7aHbGaayjkaiaawMcaaiaaykW7caaMc8Uaeyypa0JaaGPaVl aaykW7daWcaaqaaiabeI7aXnaabmaabaGaeqiUdeNaaGPaVlaadIha cqGHRaWkcqaH4oqCcaaMc8UaeqySdeMaey4kaSIaeqiUdeNaey4kaS IaeqySdegacaGLOaGaayzkaaaabaWaaeWaaeaacqaHXoqycqGHRaWk caaIXaaacaGLOaGaayzkaaWaaeWaaeaacqaH4oqCcqGHRaWkcaaIXa aacaGLOaGaayzkaaWaaWbaaSqabeaacaWG4bGaey4kaSIaaGOmaaaa aaGccaaMc8Uaai4oaiaadIhacqGH9aqpcaaIWaGaaiilaiaaigdaca GGSaGaaGOmaiaacYcacaGGUaGaaiOlaiaac6cacaGG7aGaaGPaVlaa ykW7cqaH4oqCcqGH+aGpcaaIWaGaaiilaiabeg7aHjabg6da+iabgk HiTiaaigdaaaa@7E3A@          

The QLD is defined by its pdf

f 2 ( x;θ,α )= θ α+1 ( α+xθ ) e θx ;x>0,θ > 0, α>1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaWgaa WcbaGaaGOmaaqabaGccaaMc8+aaeWaaeaacaWG4bGaaGPaVlaacUda caaMc8UaeqiUdeNaaiilaiaaykW7cqaHXoqyaiaawIcacaGLPaaaca aMe8UaaGPaVlabg2da9iaaykW7caaMe8+aaSaaaeaacqaH4oqCaeaa cqaHXoqycqGHRaWkcaaMc8UaaGymaaaacaaMe8UaaGPaVpaabmaaba GaeqySdeMaey4kaSIaaGPaVlaadIhacaaMc8UaeqiUdehacaGLOaGa ayzkaaGaaGjbVlaadwgadaahaaWcbeqaaiabgkHiTiaaykW7cqaH4o qCcaaMc8UaamiEaaaakiaacUdacaWG4bGaeyOpa4JaaGimaiaacYca caaMc8UaaGPaVlaaykW7cqaH4oqCcaqGGaGaaeOpaiaabccacaqGWa GaaeilaiaabccacqaHXoqycqGH+aGpcqGHsislcaaIXaaaaa@7E6F@                        

Shanker and Amanuel8 proposed a new quasi Lindley distribution (NQLD) having pdf

f 3 ( x;θ,α )= θ 2 θ 2 +α ( θ+αx ) e θx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaWgaa WcbaGaaG4maaqabaGcdaqadaqaaiaadIhacaGG7aGaeqiUdeNaaiil aiabeg7aHbGaayjkaiaawMcaaiabg2da9maalaaabaGaeqiUde3aaW baaSqabeaacaaIYaaaaaGcbaGaeqiUde3aaWbaaSqabeaacaaIYaaa aOGaey4kaSIaeqySdegaamaabmaabaGaeqiUdeNaey4kaSIaeqySde MaaGPaVlaadIhaaiaawIcacaGLPaaacaWGLbWaaWbaaSqabeaacqGH sislcqaH4oqCcaWG4baaaaaa@573A@

where θ+αx>0and θ 2 +α>0orθ+αx<0and θ 2 +α<0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXjabgU caRiabeg7aHjaadIhacqGH+aGpcaaIWaGaaGPaVlaaykW7caqGHbGa aeOBaiaabsgacaaMc8UaaGPaVlabeI7aXnaaCaaaleqabaGaaGOmaa aakiabgUcaRiabeg7aHjabg6da+iaaicdacaaMc8UaaGPaVlaab+ga caqGYbGaaGPaVlaaykW7cqaH4oqCcqGHRaWkcqaHXoqycaWG4bGaey ipaWJaaGimaiaaykW7caaMc8Uaaeyyaiaab6gacaqGKbGaaGPaVlaa ykW7cqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcqaHXoqycq GH8aapcaaIWaaaaa@6DC9@ for x>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhacqGH+a GpcaaIWaaaaa@3AE9@ θ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXjabg6 da+iaaicdaaaa@3BA2@ . Lindley distribution is a particular case of NQLD at α=θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHjabg2 da9iabeI7aXbaa@3C85@ . A new quasi Poisson–Lindley distribution (NQPLD), a Poisson mixture of NQLD, has been suggested by Shanker and Tekie9 and defined by its pmf

P 5 ( x;θ,α )= θ 2 ( θ+1 ) x+2 [ 1+ θ+αx θ 2 +α ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfadaWgaa WcbaGaaGynaaqabaGccaaMc8+aaeWaaeaacaWG4bGaai4oaiabeI7a XjaacYcacqaHXoqyaiaawIcacaGLPaaacaaMc8UaaGPaVlabg2da9i aaykW7caaMc8+aaSaaaeaacqaH4oqCdaahaaWcbeqaaiaaikdaaaaa keaadaqadaqaaiabeI7aXjabgUcaRiaaigdaaiaawIcacaGLPaaada ahaaWcbeqaaiaadIhacqGHRaWkcaaIYaaaaaaakmaadmaabaGaaGym aiabgUcaRmaalaaabaGaeqiUdeNaey4kaSIaeqySdeMaamiEaaqaai abeI7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRiabeg7aHbaaaiaa wUfacaGLDbaaaaa@625F@

where θ+αx>0and θ 2 +α>0orθ+αx<0and θ 2 +α<0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXjabgU caRiabeg7aHjaadIhacqGH+aGpcaaIWaGaaGPaVlaaykW7caqGHbGa aeOBaiaabsgacaaMc8UaaGPaVlabeI7aXnaaCaaaleqabaGaaGOmaa aakiabgUcaRiabeg7aHjabg6da+iaaicdacaaMc8UaaGPaVlaab+ga caqGYbGaaGPaVlaaykW7cqaH4oqCcqGHRaWkcqaHXoqycaWG4bGaey ipaWJaaGimaiaaykW7caaMc8Uaaeyyaiaab6gacaqGKbGaaGPaVlaa ykW7cqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcqaHXoqycq GH8aapcaaIWaaaaa@6DC9@ for x=0,1,2,...; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhacqGH9a qpcaaIWaGaaiilaiaaigdacaGGSaGaaGOmaiaacYcacaGGUaGaaiOl aiaac6cacaGG7aaaaa@4143@ θ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXjabg6 da+iaaicdaaaa@3BA2@ .

It can be seen that the PLD is a particular case of it at α=θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHjabg2 da9iabeI7aXbaa@3C85@ . Shanker et al.10 derived the pmf of size biased new quasi Poisson–Lindley distribution (SBNQPLD) having pmf

P 6 ( x;θ,α )= θ 3 θ 2 +2α x( θ 2 +θ+α+αx ) ( θ+1 ) x+2 ;x=1,2,3,...,θ>0, θ 2 +2α>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfadaWgaa WcbaGaaGOnaaqabaGccaaMc8+aaeWaaeaacaWG4bGaai4oaiaaykW7 cqaH4oqCcaGGSaGaaGPaVlabeg7aHbGaayjkaiaawMcaaiaaysW7cq GH9aqpcaaMe8+aaSaaaeaacqaH4oqCdaahaaWcbeqaaiaaiodaaaaa keaacqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIYaGaeq ySdegaamaalaaabaGaamiEamaabmaabaGaeqiUde3aaWbaaSqabeaa caaIYaaaaOGaey4kaSIaeqiUdeNaey4kaSIaeqySdeMaey4kaSIaeq ySdeMaamiEaaGaayjkaiaawMcaaaqaamaabmaabaGaeqiUdeNaey4k aSIaaGymaaGaayjkaiaawMcaamaaCaaaleqabaGaamiEaiabgUcaRi aaikdaaaaaaOGaai4oaiaadIhacqGH9aqpcaaIXaGaaiilaiaaikda caGGSaGaaG4maiaacYcacaGGUaGaaiOlaiaac6cacaGGSaGaeqiUde NaeyOpa4JaaGimaiaacYcacqaH4oqCdaahaaWcbeqaaiaaikdaaaGc cqGHRaWkcaaIYaGaeqySdeMaeyOpa4JaaGimaaaa@7DC0@

Shanker et al.10 discussed various statistical properties, parameters estimation and applications of SBNQPLD. Shanker et al.10 have shown that SBNQPLD can also be obtained from the size–biased Poisson distribution when its parameter λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSbaa@39DE@ follows a SBNQLD with pdf       

f 4 ( λ;θ,α )= θ 3 θ 2 +2α λ( θ+αx ) e θx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaWgaa WcbaGaaGinaaqabaGcdaqadaqaaiabeU7aSjaacUdacqaH4oqCcaGG SaGaeqySdegacaGLOaGaayzkaaGaeyypa0ZaaSaaaeaacqaH4oqCda ahaaWcbeqaaiaaiodaaaaakeaacqaH4oqCdaahaaWcbeqaaiaaikda aaGccqGHRaWkcaaIYaGaeqySdegaaiabeU7aSnaabmaabaGaeqiUde Naey4kaSIaeqySdeMaamiEaaGaayjkaiaawMcaaiaadwgadaahaaWc beqaaiabgkHiTiabeI7aXjaadIhaaaaaaa@58D8@

 where θ+αx>0and θ 2 +α>0orθ+αx<0and θ 2 +α<0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXjabgU caRiabeg7aHjaadIhacqGH+aGpcaaIWaGaaGPaVlaaykW7caqGHbGa aeOBaiaabsgacaaMc8UaaGPaVlabeI7aXnaaCaaaleqabaGaaGOmaa aakiabgUcaRiabeg7aHjabg6da+iaaicdacaaMc8UaaGPaVlaab+ga caqGYbGaaGPaVlaaykW7cqaH4oqCcqGHRaWkcqaHXoqycaWG4bGaey ipaWJaaGimaiaaykW7caaMc8Uaaeyyaiaab6gacaqGKbGaaGPaVlaa ykW7cqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcqaHXoqycq GH8aapcaaIWaaaaa@6DC9@ for x>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhacqGH+a GpcaaIWaaaaa@3AE9@ θ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXjabg6 da+iaaicdaaaa@3BA2@ . That is

P( X=x )= 0 e λ λ x1 ( x1 )! θ 3 θ 2 +2α λ( θ+αλ ) e θλ dλ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfadaqada qaaiaadIfacqGH9aqpcaWG4baacaGLOaGaayzkaaGaeyypa0Zaa8qC aeaadaWcaaqaaiaadwgadaahaaWcbeqaaiabgkHiTiabeU7aSbaaki abeU7aSnaaCaaaleqabaGaamiEaiabgkHiTiaaigdaaaaakeaadaqa daqaaiaadIhacqGHsislcaaIXaaacaGLOaGaayzkaaGaaiyiaaaaaS qaaiaaicdaaeaacqGHEisPa0Gaey4kIipakiabgwSixpaalaaabaGa eqiUde3aaWbaaSqabeaacaaIZaaaaaGcbaGaeqiUde3aaWbaaSqabe aacaaIYaaaaOGaey4kaSIaaGOmaiabeg7aHbaacqaH7oaBdaqadaqa aiabeI7aXjabgUcaRiabeg7aHjabeU7aSbGaayjkaiaawMcaaiaadw gadaahaaWcbeqaaiabgkHiTiabeI7aXjabeU7aSbaakiaadsgacqaH 7oaBaaa@6C68@

= θ 3 θ 2 +2α x( θ 2 +θ+α+αx ) ( θ+1 ) x+2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabg2da9maala aabaGaeqiUde3aaWbaaSqabeaacaaIZaaaaaGcbaGaeqiUde3aaWba aSqabeaacaaIYaaaaOGaey4kaSIaaGOmaiabeg7aHbaadaWcaaqaai aadIhadaqadaqaaiabeI7aXnaaCaaaleqabaGaaGOmaaaakiabgUca RiabeI7aXjabgUcaRiabeg7aHjabgUcaRiabeg7aHjaadIhaaiaawI cacaGLPaaaaeaadaqadaqaaiabeI7aXjabgUcaRiaaigdaaiaawIca caGLPaaadaahaaWcbeqaaiaadIhacqGHRaWkcaaIYaaaaaaakiaayk W7caaMc8oaaa@5A6A@ ;x=1,2,3,... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacUdacaWG4b Gaeyypa0JaaGymaiaacYcacaaIYaGaaiilaiaaiodacaGGSaGaaiOl aiaac6cacaGGUaaaaa@4146@

The r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhaaaa@3921@ th factorial moment about origin μ ( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaadaqadaqaaiaadkhaaiaawIcacaGLPaaaaeqaaOWaaWbaaSqa beaakiadacUHYaIOaaaaaa@3FB5@ of SBNQPLD obtained by Shanker et al.10 as

μ ( r ) = r!{ r θ 3 +( r+1 ) θ 2 +r( r+1 )αθ+( r+1 )( r+2 )α } θ r ( θ 2 +2α ) ;r=1,2,3,... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaadaqadaqaaiaadkhaaiaawIcacaGLPaaaaeqaaOWaaWbaaSqa beaakiadacUHYaIOaaGaeyypa0ZaaSaaaeaacaWGYbGaaiyiamaacm aabaGaamOCaiaaykW7cqaH4oqCdaahaaWcbeqaaiaaiodaaaGccqGH RaWkdaqadaqaaiaadkhacqGHRaWkcaaIXaaacaGLOaGaayzkaaGaeq iUde3aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamOCamaabmaabaGa amOCaiabgUcaRiaaigdaaiaawIcacaGLPaaacqaHXoqycaaMc8Uaeq iUdeNaey4kaSYaaeWaaeaacaWGYbGaey4kaSIaaGymaaGaayjkaiaa wMcaamaabmaabaGaamOCaiabgUcaRiaaikdaaiaawIcacaGLPaaacq aHXoqyaiaawUhacaGL9baaaeaacqaH4oqCdaahaaWcbeqaaiaadkha aaGcdaqadaqaaiabeI7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRi aaikdacqaHXoqyaiaawIcacaGLPaaaaaGaai4oaiaadkhacqGH9aqp caaIXaGaaiilaiaaikdacaGGSaGaaG4maiaacYcacaGGUaGaaiOlai aac6caaaa@7A67@

Thus, the first four moments about origin obtained by Shanker et al.10 are

μ 1 =1+ 2( θ 2 +3α ) θ( θ 2 +2α ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaIXaaabeaakmaaCaaaleqabaGccWaGGBOmGikaaiabg2da 9iaaigdacqGHRaWkdaWcaaqaaiaaikdadaqadaqaaiabeI7aXnaaCa aaleqabaGaaGOmaaaakiabgUcaRiaaiodacqaHXoqyaiaawIcacaGL PaaaaeaacqaH4oqCdaqadaqaaiabeI7aXnaaCaaaleqabaGaaGOmaa aakiabgUcaRiaaikdacqaHXoqyaiaawIcacaGLPaaaaaaaaa@51F4@

μ 2 =1+ 6( θ 2 +3α ) θ( θ 2 +2α ) + 6( θ 2 +4α ) θ 2 ( θ 2 +2α ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaIYaaabeaakmaaCaaaleqabaGccWaGGBOmGikaaiabg2da 9iaaigdacqGHRaWkdaWcaaqaaiaaiAdadaqadaqaaiabeI7aXnaaCa aaleqabaGaaGOmaaaakiabgUcaRiaaiodacqaHXoqyaiaawIcacaGL PaaaaeaacqaH4oqCdaqadaqaaiabeI7aXnaaCaaaleqabaGaaGOmaa aakiabgUcaRiaaikdacqaHXoqyaiaawIcacaGLPaaaaaGaey4kaSYa aSaaaeaacaaI2aWaaeWaaeaacqaH4oqCdaahaaWcbeqaaiaaikdaaa GccqGHRaWkcaaI0aGaeqySdegacaGLOaGaayzkaaaabaGaeqiUde3a aWbaaSqabeaacaaIYaaaaOWaaeWaaeaacqaH4oqCdaahaaWcbeqaai aaikdaaaGccqGHRaWkcaaIYaGaeqySdegacaGLOaGaayzkaaaaaaaa @6534@

μ 3 =1+ 14( θ 2 +3α ) θ( θ 2 +2α ) + 36( θ 2 +4α ) θ 2 ( θ 2 +2α ) + 24( θ 2 +5α ) θ 3 ( θ 2 +2α ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaIZaaabeaakmaaCaaaleqabaGccWaGGBOmGikaaiabg2da 9iaaigdacqGHRaWkdaWcaaqaaiaaigdacaaI0aWaaeWaaeaacqaH4o qCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIZaGaeqySdegacaGL OaGaayzkaaaabaGaeqiUde3aaeWaaeaacqaH4oqCdaahaaWcbeqaai aaikdaaaGccqGHRaWkcaaIYaGaeqySdegacaGLOaGaayzkaaaaaiab gUcaRmaalaaabaGaaG4maiaaiAdadaqadaqaaiabeI7aXnaaCaaale qabaGaaGOmaaaakiabgUcaRiaaisdacqaHXoqyaiaawIcacaGLPaaa aeaacqaH4oqCdaahaaWcbeqaaiaaikdaaaGcdaqadaqaaiabeI7aXn aaCaaaleqabaGaaGOmaaaakiabgUcaRiaaikdacqaHXoqyaiaawIca caGLPaaaaaGaey4kaSYaaSaaaeaacaaIYaGaaGinamaabmaabaGaeq iUde3aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGynaiabeg7aHbGa ayjkaiaawMcaaaqaaiabeI7aXnaaCaaaleqabaGaaG4maaaakmaabm aabaGaeqiUde3aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGOmaiab eg7aHbGaayjkaiaawMcaaaaaaaa@7AA2@

μ 4 =1+ 30( θ 2 +3α ) θ( θ 2 +2α ) + 126( θ 2 +4α ) θ 2 ( θ 2 +2α ) + 240( θ 2 +5α ) θ 3 ( θ 2 +2α ) + 120( θ 2 +6α ) θ 4 ( θ 2 +2α ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaI0aaabeaakmaaCaaaleqabaGccWaGGBOmGikaaiabg2da 9iaaigdacqGHRaWkdaWcaaqaaiaaiodacaaIWaWaaeWaaeaacqaH4o qCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIZaGaeqySdegacaGL OaGaayzkaaaabaGaeqiUde3aaeWaaeaacqaH4oqCdaahaaWcbeqaai aaikdaaaGccqGHRaWkcaaIYaGaeqySdegacaGLOaGaayzkaaaaaiab gUcaRmaalaaabaGaaGymaiaaikdacaaI2aWaaeWaaeaacqaH4oqCda ahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaI0aGaeqySdegacaGLOaGa ayzkaaaabaGaeqiUde3aaWbaaSqabeaacaaIYaaaaOWaaeWaaeaacq aH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIYaGaeqySdega caGLOaGaayzkaaaaaiabgUcaRmaalaaabaGaaGOmaiaaisdacaaIWa WaaeWaaeaacqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaI 1aGaeqySdegacaGLOaGaayzkaaaabaGaeqiUde3aaWbaaSqabeaaca aIZaaaaOWaaeWaaeaacqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGH RaWkcaaIYaGaeqySdegacaGLOaGaayzkaaaaaiabgUcaRmaalaaaba GaaGymaiaaikdacaaIWaWaaeWaaeaacqaH4oqCdaahaaWcbeqaaiaa ikdaaaGccqGHRaWkcaaI2aGaeqySdegacaGLOaGaayzkaaaabaGaeq iUde3aaWbaaSqabeaacaaI0aaaaOWaaeWaaeaacqaH4oqCdaahaaWc beqaaiaaikdaaaGccqGHRaWkcaaIYaGaeqySdegacaGLOaGaayzkaa aaaaaa@90C5@ .

It has been observed that the central moments (moments about the mean) has not been given by et al.10 and hence many important characteristics including coefficient of variation, skewness, kurtosis and index of dispersion of SBNQPLD has not been studied by Shanker et al.10

The main purpose of this paper is to derive expressions for coefficients of variation, skewness, kurtosis and index of dispersion of SBNQPLD and study their behaviour graphically. The goodness of fit of the distribution has been presented with a number of count datasets using maximum likelihood estimates from various fields of knowledge.    

Moments based measures

Using the relationship between moments about the mean and the moments about the origin, the moments about mean of SBNQPLD can be obtained as

μ 2 = 2( θ 5 + θ 4 +5α θ 3 +6α θ 2 +6 α 2 θ+6 α 2 ) θ 2 ( θ 2 +2α ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaIYaaabeaakiabg2da9maalaaabaGaaGOmamaabmaabaGa eqiUde3aaWbaaSqabeaacaaI1aaaaOGaey4kaSIaeqiUde3aaWbaaS qabeaacaaI0aaaaOGaey4kaSIaaGynaiabeg7aHjabeI7aXnaaCaaa leqabaGaaG4maaaakiabgUcaRiaaiAdacqaHXoqycqaH4oqCdaahaa WcbeqaaiaaikdaaaGccqGHRaWkcaaI2aGaeqySde2aaWbaaSqabeaa caaIYaaaaOGaeqiUdeNaey4kaSIaaGOnaiabeg7aHnaaCaaaleqaba GaaGOmaaaaaOGaayjkaiaawMcaaaqaaiabeI7aXnaaCaaaleqabaGa aGOmaaaakmaabmaabaGaeqiUde3aaWbaaSqabeaacaaIYaaaaOGaey 4kaSIaaGOmaiabeg7aHbGaayjkaiaawMcaamaaCaaaleqabaGaaGOm aaaaaaaaaa@6559@

μ 3 = 2{ θ 8 +3 θ 7 +( 7α+2 ) θ 6 +24α θ 5 +( 16 α 2 +18α ) θ 4 +54 α 2 θ 3 +( 12 α 3 +36 α 2 ) θ 2 +36 α 3 θ+24 α 3 } θ 3 ( θ 2 +2α ) 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaIZaaabeaakiabg2da9maalaaabaGaaGOmamaacmaaeaqa beaacqaH4oqCdaahaaWcbeqaaiaaiIdaaaGccqGHRaWkcaaIZaGaeq iUde3aaWbaaSqabeaacaaI3aaaaOGaey4kaSYaaeWaaeaacaaI3aGa eqySdeMaey4kaSIaaGOmaaGaayjkaiaawMcaaiabeI7aXnaaCaaale qabaGaaGOnaaaakiabgUcaRiaaikdacaaI0aGaeqySdeMaeqiUde3a aWbaaSqabeaacaaI1aaaaOGaey4kaSYaaeWaaeaacaaIXaGaaGOnai abeg7aHnaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaigdacaaI4aGa eqySdegacaGLOaGaayzkaaGaeqiUde3aaWbaaSqabeaacaaI0aaaaO Gaey4kaSIaaGynaiaaisdacqaHXoqydaahaaWcbeqaaiaaikdaaaGc cqaH4oqCdaahaaWcbeqaaiaaiodaaaaakeaacqGHRaWkdaqadaqaai aaigdacaaIYaGaeqySde2aaWbaaSqabeaacaaIZaaaaOGaey4kaSIa aG4maiaaiAdacqaHXoqydaahaaWcbeqaaiaaikdaaaaakiaawIcaca GLPaaacqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIZaGa aGOnaiabeg7aHnaaCaaaleqabaGaaG4maaaakiabeI7aXjabgUcaRi aaikdacaaI0aGaeqySde2aaWbaaSqabeaacaaIZaaaaaaakiaawUha caGL9baaaeaacqaH4oqCdaahaaWcbeqaaiaaiodaaaGcdaqadaqaai abeI7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaikdacqaHXoqy aiaawIcacaGLPaaadaahaaWcbeqaaiaaiodaaaaaaaaa@8EFB@

μ 4 = 2{ θ 11 +13 θ 10 +( 9α+24 ) θ 9 +( 130α+12 ) θ 8 +( 30 α 2 +264α ) θ 7 +( 460 α 2 +144α ) θ 6 +( 44 α 3 +936 α 2 ) θ 5 +( 696 α 3 +504 α 2 ) θ 4 +( 24 α 4 +1368 α 3 ) θ 3 +( 384 α 4 +720 α 3 ) θ 2 +720 α 4 θ+360 α 4 } θ 4 ( θ 2 +2α ) 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaI0aaabeaakiabg2da9maalaaabaGaaGOmamaacmaaeaqa beaacqaH4oqCdaahaaWcbeqaaiaaigdacaaIXaaaaOGaey4kaSIaaG ymaiaaiodacqaH4oqCdaahaaWcbeqaaiaaigdacaaIWaaaaOGaey4k aSYaaeWaaeaacaaI5aGaeqySdeMaey4kaSIaaGOmaiaaisdaaiaawI cacaGLPaaacqaH4oqCdaahaaWcbeqaaiaaiMdaaaGccqGHRaWkdaqa daqaaiaaigdacaaIZaGaaGimaiabeg7aHjabgUcaRiaaigdacaaIYa aacaGLOaGaayzkaaGaeqiUde3aaWbaaSqabeaacaaI4aaaaOGaey4k aSYaaeWaaeaacaaIZaGaaGimaiabeg7aHnaaCaaaleqabaGaaGOmaa aakiabgUcaRiaaikdacaaI2aGaaGinaiabeg7aHbGaayjkaiaawMca aiabeI7aXnaaCaaaleqabaGaaG4naaaaaOqaaiabgUcaRmaabmaaba GaaGinaiaaiAdacaaIWaGaeqySde2aaWbaaSqabeaacaaIYaaaaOGa ey4kaSIaaGymaiaaisdacaaI0aGaeqySdegacaGLOaGaayzkaaGaeq iUde3aaWbaaSqabeaacaaI2aaaaOGaey4kaSYaaeWaaeaacaaI0aGa aGinaiabeg7aHnaaCaaaleqabaGaaG4maaaakiabgUcaRiaaiMdaca aIZaGaaGOnaiabeg7aHnaaCaaaleqabaGaaGOmaaaaaOGaayjkaiaa wMcaaiabeI7aXnaaCaaaleqabaGaaGynaaaakiabgUcaRmaabmaaba GaaGOnaiaaiMdacaaI2aGaeqySde2aaWbaaSqabeaacaaIZaaaaOGa ey4kaSIaaGynaiaaicdacaaI0aGaeqySde2aaWbaaSqabeaacaaIYa aaaaGccaGLOaGaayzkaaGaeqiUde3aaWbaaSqabeaacaaI0aaaaaGc baGaey4kaSYaaeWaaeaacaaIYaGaaGinaiabeg7aHnaaCaaaleqaba GaaGinaaaakiabgUcaRiaaigdacaaIZaGaaGOnaiaaiIdacqaHXoqy daahaaWcbeqaaiaaiodaaaaakiaawIcacaGLPaaacqaH4oqCdaahaa WcbeqaaiaaiodaaaGccqGHRaWkdaqadaqaaiaaiodacaaI4aGaaGin aiabeg7aHnaaCaaaleqabaGaaGinaaaakiabgUcaRiaaiEdacaaIYa GaaGimaiabeg7aHnaaCaaaleqabaGaaG4maaaaaOGaayjkaiaawMca aiabeI7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaiEdacaaIYa GaaGimaiabeg7aHnaaCaaaleqabaGaaGinaaaakiabeI7aXjabgUca RiaaiodacaaI2aGaaGimaiabeg7aHnaaCaaaleqabaGaaGinaaaaaa GccaGL7bGaayzFaaaabaGaeqiUde3aaWbaaSqabeaacaaI0aaaaOWa aeWaaeaacqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIYa GaeqySdegacaGLOaGaayzkaaWaaWbaaSqabeaacaaI0aaaaaaaaaa@CF3B@ .

The coefficient of variation (C.V), coefficient of Skewness ( β 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaWaaO aaaeaacqaHYoGydaWgaaWcbaGaaGymaaqabaaabeaaaOGaayjkaiaa wMcaaaaa@3C55@ , coefficient of Kurtosis ( β 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq OSdi2aaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaaaaa@3C46@ and Index of dispersion ( γ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq 4SdCgacaGLOaGaayzkaaaaaa@3B5A@ of SBNQPLD are obtained as

C.V.= σ μ 1 = 2( θ 5 + θ 4 +5α θ 3 +6α θ 2 +6 α 2 θ+6 α 2 ) θ 3 +2 θ 2 +2αθ+6α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadoeacaGGUa GaamOvaiaac6cacqGH9aqpdaWcaaqaaiabeo8aZbqaaiabeY7aTnaa BaaaleaacaaIXaaabeaakmaaCaaaleqabaGccWaGGBOmGikaaaaacq GH9aqpdaWcaaqaamaakaaabaGaaGOmamaabmaabaGaeqiUde3aaWba aSqabeaacaaI1aaaaOGaey4kaSIaeqiUde3aaWbaaSqabeaacaaI0a aaaOGaey4kaSIaaGynaiabeg7aHjabeI7aXnaaCaaaleqabaGaaG4m aaaakiabgUcaRiaaiAdacqaHXoqycqaH4oqCdaahaaWcbeqaaiaaik daaaGccqGHRaWkcaaI2aGaeqySde2aaWbaaSqabeaacaaIYaaaaOGa eqiUdeNaey4kaSIaaGOnaiabeg7aHnaaCaaaleqabaGaaGOmaaaaaO GaayjkaiaawMcaaaWcbeaaaOqaaiabeI7aXnaaCaaaleqabaGaaG4m aaaakiabgUcaRiaaikdacqaH4oqCdaahaaWcbeqaaiaaikdaaaGccq GHRaWkcaaIYaGaeqySdeMaeqiUdeNaey4kaSIaaGOnaiabeg7aHbaa aaa@72A0@

β 1 = μ 3 ( μ 2 ) 3/2 = { θ 8 +3 θ 7 +( 7α+2 ) θ 6 +24α θ 5 +( 16 α 2 +18α ) θ 4 +54 α 2 θ 3 +( 12 α 3 +36 α 2 ) θ 2 +36 α 3 θ+24 α 3 } 2 ( θ 5 + θ 4 +5α θ 3 +6α θ 2 +6 α 2 θ+6 α 2 ) 3/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaakaaabaGaeq OSdi2aaSbaaSqaaiaaigdaaeqaaaqabaGccqGH9aqpdaWcaaqaaiab eY7aTnaaBaaaleaacaaIZaaabeaaaOqaamaabmaabaGaeqiVd02aaS baaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaWaaWbaaSqabeaadaWc gaqaaiaaiodaaeaacaaIYaaaaaaaaaGccqGH9aqpdaWcaaqaamaacm aaeaqabeaacqaH4oqCdaahaaWcbeqaaiaaiIdaaaGccqGHRaWkcaaI ZaGaeqiUde3aaWbaaSqabeaacaaI3aaaaOGaey4kaSYaaeWaaeaaca aI3aGaeqySdeMaey4kaSIaaGOmaaGaayjkaiaawMcaaiabeI7aXnaa CaaaleqabaGaaGOnaaaakiabgUcaRiaaikdacaaI0aGaeqySdeMaeq iUde3aaWbaaSqabeaacaaI1aaaaOGaey4kaSYaaeWaaeaacaaIXaGa aGOnaiabeg7aHnaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaigdaca aI4aGaeqySdegacaGLOaGaayzkaaGaeqiUde3aaWbaaSqabeaacaaI 0aaaaOGaey4kaSIaaGynaiaaisdacqaHXoqydaahaaWcbeqaaiaaik daaaGccqaH4oqCdaahaaWcbeqaaiaaiodaaaaakeaacqGHRaWkdaqa daqaaiaaigdacaaIYaGaeqySde2aaWbaaSqabeaacaaIZaaaaOGaey 4kaSIaaG4maiaaiAdacqaHXoqydaahaaWcbeqaaiaaikdaaaaakiaa wIcacaGLPaaacqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkca aIZaGaaGOnaiabeg7aHnaaCaaaleqabaGaaG4maaaakiabeI7aXjab gUcaRiaaikdacaaI0aGaeqySde2aaWbaaSqabeaacaaIZaaaaaaaki aawUhacaGL9baaaeaadaGcaaqaaiaaikdaaSqabaGcdaqadaqaaiab eI7aXnaaCaaaleqabaGaaGynaaaakiabgUcaRiabeI7aXnaaCaaale qabaGaaGinaaaakiabgUcaRiaaiwdacqaHXoqycqaH4oqCdaahaaWc beqaaiaaiodaaaGccqGHRaWkcaaI2aGaeqySdeMaeqiUde3aaWbaaS qabeaacaaIYaaaaOGaey4kaSIaaGOnaiabeg7aHnaaCaaaleqabaGa aGOmaaaakiabeI7aXjabgUcaRiaaiAdacqaHXoqydaahaaWcbeqaai aaikdaaaaakiaawIcacaGLPaaadaahaaWcbeqaamaalyaabaGaaG4m aaqaaiaaikdaaaaaaaaaaaa@AD3C@

β 2 = μ 4 μ 2 2 = { θ 11 +13 θ 10 +( 9α+24 ) θ 9 +( 130α+12 ) θ 8 +( 30 α 2 +264α ) θ 7 +( 460 α 2 +144α ) θ 6 +( 44 α 3 +936 α 2 ) θ 5 +( 696 α 3 +504 α 2 ) θ 4 +( 24 α 4 +1368 α 3 ) θ 3 +( 384 α 4 +720 α 3 ) θ 2 +720 α 4 θ+360 α 4 } 2 ( θ 5 + θ 4 +5α θ 3 +6α θ 2 +6 α 2 θ+6 α 2 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek7aInaaBa aaleaacaaIYaaabeaakiabg2da9maalaaabaGaeqiVd02aaSbaaSqa aiaaisdaaeqaaaGcbaGaeqiVd02aaSbaaSqaaiaaikdaaeqaaOWaaW baaSqabeaacaaIYaaaaaaakiabg2da9maalaaabaWaaiWaaqaabeqa aiabeI7aXnaaCaaaleqabaGaaGymaiaaigdaaaGccqGHRaWkcaaIXa GaaG4maiabeI7aXnaaCaaaleqabaGaaGymaiaaicdaaaGccqGHRaWk daqadaqaaiaaiMdacqaHXoqycqGHRaWkcaaIYaGaaGinaaGaayjkai aawMcaaiabeI7aXnaaCaaaleqabaGaaGyoaaaakiabgUcaRmaabmaa baGaaGymaiaaiodacaaIWaGaeqySdeMaey4kaSIaaGymaiaaikdaai aawIcacaGLPaaacqaH4oqCdaahaaWcbeqaaiaaiIdaaaGccqGHRaWk daqadaqaaiaaiodacaaIWaGaeqySde2aaWbaaSqabeaacaaIYaaaaO Gaey4kaSIaaGOmaiaaiAdacaaI0aGaeqySdegacaGLOaGaayzkaaGa eqiUde3aaWbaaSqabeaacaaI3aaaaaGcbaGaey4kaSYaaeWaaeaaca aI0aGaaGOnaiaaicdacqaHXoqydaahaaWcbeqaaiaaikdaaaGccqGH RaWkcaaIXaGaaGinaiaaisdacqaHXoqyaiaawIcacaGLPaaacqaH4o qCdaahaaWcbeqaaiaaiAdaaaGccqGHRaWkdaqadaqaaiaaisdacaaI 0aGaeqySde2aaWbaaSqabeaacaaIZaaaaOGaey4kaSIaaGyoaiaaio dacaaI2aGaeqySde2aaWbaaSqabeaacaaIYaaaaaGccaGLOaGaayzk aaGaeqiUde3aaWbaaSqabeaacaaI1aaaaOGaey4kaSYaaeWaaeaaca aI2aGaaGyoaiaaiAdacqaHXoqydaahaaWcbeqaaiaaiodaaaGccqGH RaWkcaaI1aGaaGimaiaaisdacqaHXoqydaahaaWcbeqaaiaaikdaaa aakiaawIcacaGLPaaacqaH4oqCdaahaaWcbeqaaiaaisdaaaaakeaa cqGHRaWkdaqadaqaaiaaikdacaaI0aGaeqySde2aaWbaaSqabeaaca aI0aaaaOGaey4kaSIaaGymaiaaiodacaaI2aGaaGioaiabeg7aHnaa CaaaleqabaGaaG4maaaaaOGaayjkaiaawMcaaiabeI7aXnaaCaaale qabaGaaG4maaaakiabgUcaRmaabmaabaGaaG4maiaaiIdacaaI0aGa eqySde2aaWbaaSqabeaacaaI0aaaaOGaey4kaSIaaG4naiaaikdaca aIWaGaeqySde2aaWbaaSqabeaacaaIZaaaaaGccaGLOaGaayzkaaGa eqiUde3aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaG4naiaaikdaca aIWaGaeqySde2aaWbaaSqabeaacaaI0aaaaOGaeqiUdeNaey4kaSIa aG4maiaaiAdacaaIWaGaeqySde2aaWbaaSqabeaacaaI0aaaaaaaki aawUhacaGL9baaaeaacaaIYaWaaeWaaeaacqaH4oqCdaahaaWcbeqa aiaaiwdaaaGccqGHRaWkcqaH4oqCdaahaaWcbeqaaiaaisdaaaGccq GHRaWkcaaI1aGaeqySdeMaeqiUde3aaWbaaSqabeaacaaIZaaaaOGa ey4kaSIaaGOnaiabeg7aHjabeI7aXnaaCaaaleqabaGaaGOmaaaaki abgUcaRiaaiAdacqaHXoqydaahaaWcbeqaaiaaikdaaaGccqaH4oqC cqGHRaWkcaaI2aGaeqySde2aaWbaaSqabeaacaaIYaaaaaGccaGLOa GaayzkaaWaaWbaaSqabeaacaaIYaaaaaaaaaa@EA17@

γ= σ 2 μ 1 = 2( θ 5 + θ 4 +5α θ 3 +6α θ 2 +6 α 2 θ+6 α 2 ) θ( θ 2 +2α )( θ 3 +2 θ 2 +2αθ+6α ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo7aNjabg2 da9maalaaabaGaeq4Wdm3aaWbaaSqabeaacaaIYaaaaaGcbaGaeqiV d02aaSbaaSqaaiaaigdaaeqaaOWaaWbaaSqabeaakiadacUHYaIOaa aaaiabg2da9maalaaabaGaaGOmamaabmaabaGaeqiUde3aaWbaaSqa beaacaaI1aaaaOGaey4kaSIaeqiUde3aaWbaaSqabeaacaaI0aaaaO Gaey4kaSIaaGynaiabeg7aHjabeI7aXnaaCaaaleqabaGaaG4maaaa kiabgUcaRiaaiAdacqaHXoqycqaH4oqCdaahaaWcbeqaaiaaikdaaa GccqGHRaWkcaaI2aGaeqySde2aaWbaaSqabeaacaaIYaaaaOGaeqiU deNaey4kaSIaaGOnaiabeg7aHnaaCaaaleqabaGaaGOmaaaaaOGaay jkaiaawMcaaaqaaiabeI7aXnaabmaabaGaeqiUde3aaWbaaSqabeaa caaIYaaaaOGaey4kaSIaaGOmaiabeg7aHbGaayjkaiaawMcaamaabm aabaGaeqiUde3aaWbaaSqabeaacaaIZaaaaOGaey4kaSIaaGOmaiab eI7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaikdacqaHXoqycq aH4oqCcqGHRaWkcaaI2aGaeqySdegacaGLOaGaayzkaaaaaaaa@7CBC@ .

Shapes of coefficient of variation, skewness, kurtosis and index of dispersion of SBNQPLD for varying values of parameters have been shown in figure 1.

Figure 1 Behaviors of C.V, Skewness, Kurtosis and Index of dispersion of SBNQPLD for values of θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXbaa@39E0@ and α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHbaa@39C9@

Maximum likelihood estimation of parameters

Suppose ( x 1 , x 2 ,, x n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaam iEamaaBaaaleaacaaIXaaabeaakiaacYcacaWG4bWaaSbaaSqaaiaa ikdaaeqaaOGaaiilaiablAciljaacYcacaWG4bWaaSbaaSqaaiaad6 gaaeqaaaGccaGLOaGaayzkaaaaaa@42E8@ as random samples of size n from the SBNQPLD and f x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaWgaa WcbaGaamiEaaqabaaaaa@3A3E@ , the observed frequency in the sample corresponding to X=x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfacqGH9a qpcaWG4baaaa@3B0A@ ( x=1,2,...,k ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaam iEaiabg2da9iaaigdacaGGSaGaaGOmaiaacYcacaGGUaGaaiOlaiaa c6cacaGGSaGaam4AaaGaayjkaiaawMcaaaaa@4243@ such that x=1 k f x =n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaqahabaGaam OzamaaBaaaleaacaWG4baabeaakiabg2da9iaad6gaaSqaaiaadIha cqGH9aqpcaaIXaaabaGaam4AaaqdcqGHris5aaaa@4231@ , where k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUgaaaa@391A@ being the largest observed value having non–zero frequency. The log likelihood function of SBNQPLD can be presented as

logL=nlog( θ 3 θ 2 +2α ) x=1 k f x ( x+2 )log( θ+1 ) + x=1 k f x log[ α x 2 +x( θ 2 +θ+α ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiGacYgacaGGVb Gaai4zaiaadYeacqGH9aqpcaWGUbGaciiBaiaac+gacaGGNbWaaeWa aeaadaWcaaqaaiabeI7aXnaaCaaaleqabaGaaG4maaaaaOqaaiabeI 7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaikdacqaHXoqyaaaa caGLOaGaayzkaaGaeyOeI0YaaabCaeaacaWGMbWaaSbaaSqaaiaadI haaeqaaOWaaeWaaeaacaWG4bGaey4kaSIaaGOmaaGaayjkaiaawMca aiGacYgacaGGVbGaai4zamaabmaabaGaeqiUdeNaey4kaSIaaGymaa GaayjkaiaawMcaaaWcbaGaamiEaiabg2da9iaaigdaaeaacaWGRbaa niabggHiLdGccqGHRaWkdaaeWbqaaiaadAgadaWgaaWcbaGaamiEaa qabaGcciGGSbGaai4BaiaacEgadaWadaqaaiabeg7aHjaadIhadaah aaWcbeqaaiaaikdaaaGccqGHRaWkcaWG4bWaaeWaaeaacqaH4oqCda ahaaWcbeqaaiaaikdaaaGccqGHRaWkcqaH4oqCcqGHRaWkcqaHXoqy aiaawIcacaGLPaaaaiaawUfacaGLDbaaaSqaaiaadIhacqGH9aqpca aIXaaabaGaam4AaaqdcqGHris5aaaa@7BFD@

The two log likelihood equations are thus obtained as

logL θ = 3n θ 2nθ θ 2 +2α x=1 k ( x+2 ) f x θ+1 + x=1 k ( 2θ+1 )x f x [ α x 2 +x( θ 2 +θ+α ) ] =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaey OaIyRaciiBaiaac+gacaGGNbGaamitaaqaaiabgkGi2kabeI7aXbaa cqGH9aqpdaWcaaqaaiaaiodacaWGUbaabaGaeqiUdehaaiabgkHiTm aalaaabaGaaGOmaiaad6gacqaH4oqCaeaacqaH4oqCdaahaaWcbeqa aiaaikdaaaGccqGHRaWkcaaIYaGaeqySdegaaiabgkHiTmaaqahaba WaaSaaaeaadaqadaqaaiaadIhacqGHRaWkcaaIYaaacaGLOaGaayzk aaGaamOzamaaBaaaleaacaWG4baabeaaaOqaaiabeI7aXjabgUcaRi aaigdaaaaaleaacaWG4bGaeyypa0JaaGymaaqaaiaadUgaa0Gaeyye IuoakiabgUcaRmaaqahabaWaaSaaaeaadaqadaqaaiaaikdacqaH4o qCcqGHRaWkcaaIXaaacaGLOaGaayzkaaGaamiEaiaaykW7caWGMbWa aSbaaSqaaiaadIhaaeqaaaGcbaWaamWaaeaacqaHXoqycaWG4bWaaW baaSqabeaacaaIYaaaaOGaey4kaSIaamiEamaabmaabaGaeqiUde3a aWbaaSqabeaacaaIYaaaaOGaey4kaSIaeqiUdeNaey4kaSIaeqySde gacaGLOaGaayzkaaaacaGLBbGaayzxaaaaaaWcbaGaamiEaiabg2da 9iaaigdaaeaacaWGRbaaniabggHiLdGccqGH9aqpcaaIWaaaaa@8342@

logL α = 2n θ 2 +2α + x=1 k x( x+1 ) f x [ α x 2 +x( θ 2 +θ+α ) ] =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaey OaIyRaciiBaiaac+gacaGGNbGaamitaaqaaiabgkGi2kabeg7aHbaa cqGH9aqpdaWcaaqaaiabgkHiTiaaikdacaWGUbaabaGaeqiUde3aaW baaSqabeaacaaIYaaaaOGaey4kaSIaaGOmaiabeg7aHbaacqGHRaWk daaeWbqaamaalaaabaGaamiEamaabmaabaGaamiEaiabgUcaRiaaig daaiaawIcacaGLPaaacaWGMbWaaSbaaSqaaiaadIhaaeqaaaGcbaWa amWaaeaacqaHXoqycaWG4bWaaWbaaSqabeaacaaIYaaaaOGaey4kaS IaamiEamaabmaabaGaeqiUde3aaWbaaSqabeaacaaIYaaaaOGaey4k aSIaeqiUdeNaey4kaSIaeqySdegacaGLOaGaayzkaaaacaGLBbGaay zxaaaaaaWcbaGaamiEaiabg2da9iaaigdaaeaacaWGRbaaniabggHi LdGccqGH9aqpcaaIWaaaaa@6A73@ .

These two log likelihood equations seems difficult to solve directly as these cannot be expressed in closed forms. The (MLE’s) ( θ ^ , α ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacIcacuaH4o qCgaqcaiaacYcacuaHXoqygaqcaiaacMcaaaa@3DA8@ of parameters (θ,α) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacIcacqaH4o qCcaGGSaGaeqySdeMaaiykaaaa@3D88@ can be computed directly by solving the log likelihood equation using Newton–Raphson iteration available in R–software till sufficiently close values of θ ^ and α ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja GaaGPaVlaabggacaqGUbGaaeizaiaaykW7cuaHXoqygaqcaaaa@4171@ are obtained. The initial values of parameters θ and α are the MOME ( θ ˜ , α ˜ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacIcacuaH4o qCgaacaiaacYcacuaHXoqygaacaiaacMcaaaa@3DA6@ of the parameters (θ,α) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacIcacqaH4o qCcaGGSaGaeqySdeMaaiykaaaa@3D88@ , given in Shanker et al.10

Goodness of fit

To test the goodness of fit of SBNQPLD along with SBPD, SBPLD and SBQPLD, several cont datasets have been considered from various fields of knowledge. The expected frequencies of SBPD, SBPLD and SBQPLD have also been given in the tables (Table 1–10). The estimates of the parameters have been obtained by the method of maximum likelihood. It is obvious from the goodness of fit of SBNQPLD that it provides better fit over SBPD and SBPLD and competing well with SBQPLD in majority of datasets. The following datasets have been considered for testing the goodness of fit of SBNQPLD.

Group Size

Observed frequency

Expected frequency

SBPD

SBPLD

SBQPLD

SBNQPLD

1

2

3

4

5

6

1486

694

195

37

10

1

1452.4

743.3

190.2

32.4

4.1

0.6

1532.5

630.6

191.9

51.3

12.8

3.9

1485.4

697.2

189.7

41.1

7.8

1.8

1505.5

656.8

202.5

49.2

9.0

0.0

Total

2423

2423.0

2423.0

2423

 

ML Estimate

 

θ ^ =0.5118 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja Gaeyypa0JaaGimaiaac6cacaaI1aGaaGymaiaaigdacaaI4aaaaa@3F59@ θ ^ =4.5082 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja Gaeyypa0JaaGinaiaac6cacaaI1aGaaGimaiaaiIdacaaIYaaaaa@3F5D@ θ ^ =7.14063 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja Gaeyypa0deaaaaaaaaa8qacaaI3aGaaiOlaiaaigdacaaI0aGaaGim aiaaiAdacaaIZaaaaa@4039@
α ^ =0.79104 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeg7aHzaaja Gaeyypa0deaaaaaaaaa8qacqGHsislcaaIWaGaaiOlaiaaiEdacaaI 5aGaaGymaiaaicdacaaI0aaaaa@410F@
θ ^ =2.69606 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja Gaeyypa0deaaaaaaaaa8qacaaIYaGaaiOlaiaaiAdacaaI5aGaaGOn aiaaicdacaaI2aaaaa@4041@
α ^ =1.39128 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeg7aHzaaja Gaeyypa0deaaaaaaaaa8qacqGHsislcaaIXaGaaiOlaiaaiodacaaI 5aGaaGymaiaaikdacaaI4aaaaa@4112@
χ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE8aJnaaCa aaleqabaGaaGOmaaaaaaa@3ACA@

 

7.370

13.760

0.776

6.1

d.f.

 

2

3

2

2

p-value

 

0.0251

0.003

0.6804

0.04735

2logL MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgkHiTiaaik daciGGSbGaai4BaiaacEgacaWGmbaaaa@3D74@

 

10445.34

4622.36

4607.8

4610.0

AIC

 

10447.34

4624.36

4611.8

4614.0

Table 1 Pedestrians-Eugene, Spring, Morning, available in Coleman and James11

Group Size

Observed frequency

Expected frequency

SBPD

SBPLD

SBQPLD

SBNQPLD

1

2

3

4

5

316

141

44

5

4

306.3

156.1

39.8

6.7

1.1

322.9

132.5

40.2

10.7

3.7

315.7

142.7

40.1

9.1

2.4

313.5

141.4

44.1

10.4

0.6

Total

510

510.0

510.0

510.0

 

ML Estimate

 

θ ^ =0.5098 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja Gaeyypa0deaaaaaaaaa8qacaaIWaGaaiOlaiaaiwdacaaIWaGaaGyo aiaaiIdaaaa@3F80@ θ ^ =4.5211 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja Gaeyypa0deaaaaaaaaa8qacaaI0aGaaiOlaiaaiwdacaaIYaGaaGym aiaaigdaaaa@3F77@ θ ^ =6.5501 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja Gaeyypa0deaaaaaaaaa8qacaaI2aGaaiOlaiaaiwdacaaI1aGaaGim aiaaigdaaaa@3F7B@
α ^ =0.5069 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeg7aHzaaja Gaeyypa0deaaaaaaaaa8qacqGHsislcaaIWaGaaiOlaiaaiwdacaaI WaGaaGOnaiaaiMdaaaa@4054@
θ ^ =2.4693 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja Gaeyypa0deaaaaaaaaa8qacaaIYaGaaiOlaiaaisdacaaI2aGaaGyo aiaaiodaaaa@3F82@
α ^ =1.2977 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeg7aHzaaja Gaeyypa0deaaaaaaaaa8qacqGHsislcaaIXaGaaiOlaiaaikdacaaI 5aGaaG4naiaaiEdaaaa@405A@
χ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE8aJnaaCa aaleqabaGaaGOmaaaaaaa@3ACA@

 

2.39

3.07

0.94

0.38

d.f.

 

2

2

1

1

p-value

 

0.3027

0.2154

0.3322

0.5376

2logL MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgkHiTiaaik daciGGSbGaai4BaiaacEgacaWGmbaaaa@3D74@

 

916.63

972.78

971.07

970.24

AIC

 

918.63

974.78

975.07

974.24

Table 2 Play Groups-Eugene, Spring, Public Playground A, available in Coleman and James11

Group Size

Observed frequency

Expected frequency

SBPD

SBPLD

SBQPLD

SBNQPLD

1

2

3

4

5

306

132

47

10

2

292.2

155.2

41.2

7.3

1.1

309.4

131.2

41.1

11.3

4.0

304.4

137.9

41.3

10.3

3.1

306.4

134.4

41.6

11.0

3.6

Total

497

497.0

497.0

 

 

ML Estimate

 

θ ^ =0.5312 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja Gaeyypa0JaaGimaiaac6cacaaI1aGaaG4maiaaigdacaaIYaaaaa@3F55@ θ ^ =4.3548 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja Gaeyypa0JaaGinaiaac6cacaaIZaGaaGynaiaaisdacaaI4aaaaa@3F62@ θ ^ =5.71547 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja Gaeyypa0deaaaaaaaaa8qacaaI1aGaaiOlaiaaiEdacaaIXaGaaGyn aiaaisdacaaI3aaaaa@4041@
α ^ =4.9998 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeg7aHzaaja Gaeyypa0deaaaaaaaaa8qacaaI0aGaaiOlaiaaiMdacaaI5aGaaGyo aiaaiIdaaaa@3F7A@

θ ^ =4.9998 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja Gaeyypa0deaaaaaaaaa8qacaaI0aGaaiOlaiaaiMdacaaI5aGaaGyo aiaaiIdaaaa@3F91@
α ^ =25.6948 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeg7aHzaaja Gaeyypa0deaaaaaaaaa8qacaaIYaGaaGynaiaac6cacaaI2aGaaGyo aiaaisdacaaI4aaaaa@402F@

χ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE8aJnaaCa aaleqabaGaaGOmaaaaaaa@3ACA@

 

6.479

0.932

1.19

1.2

d.f.

 

2

2

1

1

p-value

 

0.039

0.6281

0.2753

0.2733

2logL MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgkHiTiaaik daciGGSbGaai4BaiaacEgacaWGmbaaaa@3D74@

 

2142.03

971.86

970.96

971.25

AIC

 

2144.03

973.86

974.96

975.25

Table 3 Play Groups-Eugene, Spring, Public Playground A, available in Coleman and James11

Group Size

Observed frequency

Expected frequency

SBPD

SBPLD

SBQPLD

SBNQPLD

1

2

3

4

5

6

305

144

50

5

2

1

296.5

159.0

42.6

7.6

1.0

0.3

314.4

134.4

42.5

11.8

3.1

0.8

304.3

148.2

42.3

9.6

1.9

0.7

310.1

138.8

43.1

11.3

2.7

1.0

Total

507

507.0

507.0

507.0

507.0

ML Estimate

 

θ ^ =0.5365 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja Gaeyypa0JaaGimaiaac6cacaaI1aGaaG4maiaaiAdacaaI1aaaaa@3F5D@ θ ^ =4.3179 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja Gaeyypa0JaaGinaiaac6cacaaIZaGaaGymaiaaiEdacaaI5aaaaa@3F62@ θ ^ =6.70804 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja Gaeyypa0deaaaaaaaaa8qacaaI2aGaaiOlaiaaiEdacaaIWaGaaGio aiaaicdacaaI0aaaaa@403D@
α ^ =0.74907 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeg7aHzaaja Gaeyypa0deaaaaaaaaa8qacqGHsislcaaIWaGaaiOlaiaaiEdacaaI 0aGaaGyoaiaaicdacaaI3aaaaa@4115@
θ ^ =5.1516 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja Gaeyypa0deaaaaaaaaa8qacaaI1aGaaiOlaiaaigdacaaI1aGaaGym aiaaiAdaaaa@3F7C@
α ^ =48.6067 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeg7aHzaaja Gaeyypa0deaaaaaaaaa8qacaaI0aGaaGioaiaac6cacaaI2aGaaGim aiaaiAdacaaI3aaaaa@402C@
χ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE8aJnaaCa aaleqabaGaaGOmaaaaaaa@3ACA@

 

3.035

6.415

2.96

4.64

d.f.

 

2

2

1

1

p-value

 

0.219

0.040

0.0853

0.0312

2logL MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgkHiTiaaik daciGGSbGaai4BaiaacEgacaWGmbaaaa@3D74@

 

2376.75

993.10

990.02

991.51

AIC

 

2378.75

995.1

994.02

995.51

Table 4 Play Groups-Eugene, Spring, Public Playground D, available in Coleman and James11

Group Size

Observed frequency

Expected frequency

SBPD

SBPLD

SBQPLD

SBNQPLD

1

2

3

4

5

 

276

229

61

12

3

 

292.3

200.7

68.9

15.8

3.3

 

319.6

166.5

63.8

21.4

9.7

 

276.0

228.3

61.9

12.2

2.6

313.7

173.1

65.2

20.7

8.3

Total

581

581.0

581.0

581.0

581.0

ML Estimate

 

θ ^ =0.6867 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja Gaeyypa0deaaaaaaaaa8qacaaIWaGaaiOlaiaaiAdacaaI4aGaaGOn aiaaiEdaaaa@3F85@ θ ^ =3.4359 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja Gaeyypa0deaaaaaaaaa8qacaaIZaGaaiOlaiaaisdacaaIZaGaaGyn aiaaiMdaaaa@3F82@ θ ^ =8.6724 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja Gaeyypa0deaaaaaaaaa8qacaaI4aGaaiOlaiaaiAdacaaI3aGaaGOm aiaaisdaaaa@3F85@
α ^ =1.4944 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeg7aHzaaja Gaeyypa0deaaaaaaaaa8qacqGHsislcaaIXaGaaiOlaiaaisdacaaI 5aGaaGinaiaaisdaaaa@4056@
θ ^ =4.1645 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja Gaeyypa0deaaaaaaaaa8qacaaI0aGaaiOlaiaaigdacaaI2aGaaGin aiaaiwdaaaa@3F7E@
α ^ =61.0287 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeg7aHzaaja Gaeyypa0deaaaaaaaaa8qacaaI2aGaaGymaiaac6cacaaIWaGaaGOm aiaaiIdacaaI3aaaaa@4025@
χ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE8aJnaaCa aaleqabaGaaGOmaaaaaaa@3ACA@

 

6.68

37.86

0.017

29.6

d.f.

 

2

2

1

1

p-value

 

0.0354

0.00

0.8962

0.000

2logL MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgkHiTiaaik daciGGSbGaai4BaiaacEgacaWGmbaaaa@3D74@

 

1146.7

1277.42

1238.11

1268.77

AIC

 

1148.7

1279.42

1242.11

1272.77

Table 5 Play Groups-Eugene, Spring, Public Playground D, available in Coleman and James11

No. of sites with particles

Observed Frequency

Expected Frequency

SBPD

SBPLD

SBQPLD

SBNQPLD

1

2

3

4

5

122

50

18

4

4

111.3

64.1

119.0

53.8

18.0

119.2

53.5

17.9

5.3

2.1

119.3

53.3

17.8

5.3

2.3

Total

198

198.0

198.0

198.0

198.0

ML estimate

 

θ ^ =0.575758 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja Gaeyypa0JaaGimaiaac6cacaaI1aGaaG4naiaaiwdacaaI3aGaaGyn aiaaiIdaaaa@40E3@ θ ^ =4.050987 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja Gaeyypa0JaaGinaiaac6cacaaIWaGaaGynaiaaicdacaaI5aGaaGio aiaaiEdaaaa@40DF@ θ ^ =3.7564 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja Gaeyypa0deaaaaaaaaa8qacaaIZaGaaiOlaiaaiEdacaaI1aGaaGOn aiaaisdaaaa@3F83@
α ^ =10.1281 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeg7aHzaaja Gaeyypa0deaaaaaaaaa8qacaaIXaGaaGimaiaac6cacaaIXaGaaGOm aiaaiIdacaaIXaaaaa@401A@
θ ^ =3.4795 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja Gaeyypa0deaaaaaaaaa8qacaaIZaGaaiOlaiaaisdacaaI3aGaaGyo aiaaiwdaaaa@3F86@
α ^ =0.0216 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeg7aHzaaja Gaeyypa0deaaaaaaaaa8qacaaIWaGaaiOlaiaaicdacaaIYaGaaGym aiaaiAdaaaa@3F5C@
χ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE8aJnaaCa aaleqabaGaaGOmaaaaaaa@3ACA@

 

4.64

0.43

0.34

0.28

d.f.

 

1

2

1

1

p-value

 

0.0312

0.8065

0.5598

0.5967

2logL MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgkHiTiaaik daciGGSbGaai4BaiaacEgacaWGmbaaaa@3D74@

 

393.95

409.28

409.17

409.13

AIC

 

395.95

411.28

413.17

413.13

Table 6 Distribution of number of counts of sites with particles from Immunogold data, available in Mathews and Appleton12

No. times hares caught

Observed Frequency

Expected Frequency

SBPD

SBPLD

SBQPLD

SBNQPLD

1

2

3

4

5

184

55

14

4

4

170.6

72.5

177.3

62.5

177.4

62.3

16.3

3.8

1.2

177.5

62.2

16.3

3.8

1.2

Total

261

261.0

261.0

261

261.0

ML estimate

 

θ ^ =0.425287 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja Gaeyypa0JaaGimaiaac6cacaaI0aGaaGOmaiaaiwdacaaIYaGaaGio aiaaiEdaaaa@40DA@ θ ^ =5.351256 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja Gaeyypa0JaaGynaiaac6cacaaIZaGaaGynaiaaigdacaaIYaGaaGyn aiaaiAdaaaa@40D9@ θ ^ =4.9800 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja Gaeyypa0deaaaaaaaaa8qacaaI0aGaaiOlaiaaiMdacaaI4aGaaGim aiaaicdaaaa@3F7F@
α ^ =14.9193 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeg7aHzaaja Gaeyypa0deaaaaaaaaa8qacaaIXaGaaGinaiaac6cacaaI5aGaaGym aiaaiMdacaaIZaaaaa@4028@
θ ^ =4.6959 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja Gaeyypa0deaaaaaaaaa8qacaaI0aGaaiOlaiaaiAdacaaI5aGaaGyn aiaaiMdaaaa@3F8B@
α ^ =0.0302 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeg7aHzaaja Gaeyypa0deaaaaaaaaa8qacqGHsislcaaIWaGaaiOlaiaaicdacaaI ZaGaaGimaiaaikdaaaa@4045@
χ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE8aJnaaCa aaleqabaGaaGOmaaaaaaa@3ACA@

 

6.22

1.18

3.2

3.19

d.f.

 

1

1

1

1

p-value

 

0.0126

0.2773

0.0736

0.07409

2logL MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgkHiTiaaik daciGGSbGaai4BaiaacEgacaWGmbaaaa@3D74@

 

452.40

457.10

456.86

456.80

AIC

 

454.40

459.10

460.86

460.80

Table 7 Distribution of snowshoe hares captured over 7 days, available in Keith and Meslow13  

Number of pairs of running shoes

Observed frequency

Expected Frequency

SBPD

SBPLD

SBQPLD

SBNQPLD

1

18

15.0

20.3

17.4

19.5

2

18

20.8

17.4

19.6

18.0

3

12

14.4

10.9

12.3

11.3

4

5

7

5

 

5.9

5.5

6.1

4.6

6.0

5.2

Total

60

60.0

60.0

60.0

60

ML Estimate

 

θ ^ =1.383333 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja Gaeyypa0JaaGymaiaac6cacaaIZaGaaGioaiaaiodacaaIZaGaaG4m aiaaiodaaaa@40D6@ θ ^ =1.818978 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja Gaeyypa0JaaGymaiaac6cacaaI4aGaaGymaiaaiIdacaaI5aGaaG4n aiaaiIdaaaa@40E8@ θ ^ =2.5858 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja Gaeyypa0deaaaaaaaaa8qacaaIYaGaaiOlaiaaiwdacaaI4aGaaGyn aiaaiIdaaaa@3F86@
α ^ =0.7318 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeg7aHzaaja Gaeyypa0deaaaaaaaaa8qacqGHsislcaaIWaGaaiOlaiaaiEdacaaI ZaGaaGymaiaaiIdaaaa@4053@
θ ^ =2.08739 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja Gaeyypa0deaaaaaaaaa8qacaaIYaGaaiOlaiaaicdacaaI4aGaaG4n aiaaiodacaaI5aaaaa@4041@
α ^ =17.3228 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeg7aHzaaja Gaeyypa0deaaaaaaaaa8qacaaIXaGaaG4naiaac6cacaaIZaGaaGOm aiaaikdacaaI4aaaaa@4024@
χ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE8aJnaaCa aaleqabaGaaGOmaaaaaaa@3ACA@

 

1.87

0.64

0.31

0.33

d.f.

 

2

3

1

2

P-value

 

0.3926

0.8872

0.5777

0.8478

2logL MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgkHiTiaaik daciGGSbGaai4BaiaacEgacaWGmbaaaa@3D74@

 

147.1

187.08

185.55

186.33

AIC

 

149.1

189.08

189.55

190.33

Table 8 Number of counts of pairs of running shoes owned by 60 members of an athletics club, reported by Simonoff14

Number of fly eggs

Observed Frequency

Expected Frequency

SBPD

SBPLD

SBQPLD

SBNQPLD

1

2

3

4

5

6

7

8

9

22

18

18

11

9

6

3

0

1

11.3

23.2

23.8

16.2

8.3

3.4

1.1

0.3

0.4

20.3

22.0

17.2

11.6

7.2

4.2

2.4

1.3

1.8

19.8

22.1

17.5

11.8

7.3

4.2

2.3

1.3

1.7

19.8

22.1

17.5

11.8

7.3

4.2

2.3

1.3

1.7

Total

88

 

 

88.0

88.0

ML estimate

 

θ ^ =2.0454 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja Gaeyypa0deaaaaaaaaa8qacaaIYaGaaiOlaiaaicdacaaI0aGaaGyn aiaaisdaaaa@3F79@ θ ^ =1.2822 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja Gaeyypa0deaaaaaaaaa8qacaaIXaGaaiOlaiaaikdacaaI4aGaaGOm aiaaikdaaaa@3F79@ θ ^ =1.3483 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja Gaeyypa0deaaaaaaaaa8qacaaIXaGaaiOlaiaaiodacaaI0aGaaGio aiaaiodaaaa@3F7D@
α ^ =0.6925 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeg7aHzaaja Gaeyypa0deaaaaaaaaa8qacaaIWaGaaiOlaiaaiAdacaaI5aGaaGOm aiaaiwdaaaa@3F69@
θ ^ =1.3465 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja Gaeyypa0deaaaaaaaaa8qacaaIXaGaaiOlaiaaiodacaaI0aGaaGOn aiaaiwdaaaa@3F7D@
α ^ =2.5654 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeg7aHzaaja Gaeyypa0deaaaaaaaaa8qacaaIYaGaaiOlaiaaiwdacaaI2aGaaGyn aiaaisdaaaa@3F69@
χ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE8aJnaaCa aaleqabaGaaGOmaaaaaaa@3ACA@

 

18.8

1.39

1.49

1.49

d.f.

 

4

4

3

3

p-value

 

0.0008

0.8459

0.6845

0.6845

2logL MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgkHiTiaaik daciGGSbGaai4BaiaacEgacaWGmbaaaa@3D74@

 

206.59

329.92

329.86

329.86

AIC

 

208.59

331.92

333.86

333.86

Table 9 The numbers of counts of flower heads as per the number of fly eggs reported by Finney and Varley15

x

Observed frequency

Expected Frequency

SBPD

SBPLD

SBQPLD

SBNQPLD

1

375

341.2

262.8

363.3

363.6

2

143

186.8

157.4

156.5

156.3

3

49

51.1

50.4

50.4

50.4

4

5

6

7

8

17

2

2

1

1

9.3

1.2

0.1

0.2

0.1

14.2

3.7

0.9

0.2

0.3

14.4

3.9

1.0

0.2

0.4

14.4

3.8

1.0

0.2

0.3

Total

590

 

590.0

590.0

590.0

ML Estimate

 

θ ^ =0.5474 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja Gaeyypa0deaaaaaaaaa8qacaaIWaGaaiOlaiaaiwdacaaI0aGaaG4n aiaaisdaaaa@3F7E@ θ ^ =4.24 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja Gaeyypa0deaaaaaaaaa8qacaaI0aGaaiOlaiaaikdacaaI0aaaaa@3E00@ θ ^ =3.8386 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja Gaeyypa0deaaaaaaaaa8qacaaIZaGaaiOlaiaaiIdacaaIZaGaaGio aiaaiAdaaaa@3F86@
α ^ =17.2968 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeg7aHzaaja Gaeyypa0deaaaaaaaaa8qacaaIXaGaaG4naiaac6cacaaIYaGaaGyo aiaaiAdacaaI4aaaaa@402E@
θ ^ =3.6534 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja Gaeyypa0deaaaaaaaaa8qacaaIZaGaaiOlaiaaiAdacaaI1aGaaG4m aiaaisdaaaa@3F7F@
α ^ =0.00067 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeg7aHzaaja Gaeyypa0deaaaaaaaaa8qacaaIWaGaaiOlaiaaicdacaaIWaGaaGim aiaaiAdacaaI3aaaaa@401A@
χ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE8aJnaaCa aaleqabaGaaGOmaaaaaaa@3ACA@

 

14.1

2.48

2.11

2.08

d.f.

 

2

3

2

2

P-value

 

0.0008

0.4789

0.3481

0.3534

2logL MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgkHiTiaaik daciGGSbGaai4BaiaacEgacaWGmbaaaa@3D74@

 

1124.3

1190.4

1189.67

1189.57

AIC

 

1126.3

1192.4

1193.67

1193.57

Table 10 Number of households having at least one migrant according to the number of migrants, reported by Singh and Yadav16

Conclusion

In this paper expressions based ob central moments including coefficients of variation, skewness, kurtosis and index of dispersion of SBNQPLD have been derived and their behaviors have been explained graphically for varying values of the parameters. Some important applications of SBNQPLD have also been discussed and its goodness of fit has been compared with other discrete distributions. It has been observed that SBNQPLD provides much better fit over SBPD, SBPLD and competing well with SBQPLD in majority of datasets.

Acknowledgments

None.

Conflicts of interest

None.

References

  1. Sankaran M. The discrete Poisson–Lindley distribution, Biometrics, 1970;26(1):145–149.
  2. Ghitany ME, Al–Mutairi DK. Size– biased Poisson–Lindley distribution and its applications. International Journal of Statistics. 2008; LXVI(3):299–311.
  3. Shanker R, Hagos F, Abrehe Y. On size–biased Poisson–Lindley distribution and Its applications to model Thunderstorms, American Journal of Mathematics and Statistics. 2015;5(6):354–360.
  4. Lindley DV. Fiducial distributions and Bayes’ theorem. Journal of the Royal Statistical Society, Series B. 1958;20(1):102– 107.
  5. Shanker R, Mishra A. A quasi Poisson–Lindley distribution. Journal of Indian Statistical Association. 2016;54(1&2):113–125.
  6. Shanker R, Mishra A. On a size–biased quasi poisson lindley distribution. International Journal of Probability and Statistics, 2013a;2(2):28–34.
  7. Shanker R, Mishra A. A quasi Lindley distribution. African journal of mathematics and computer science research. 2013b;6(4):64.
  8. Shanker R, Amanuel AG. A new quasi Lindley distribution. International Journal of Statistics and Systems. 2013;8(2): 143–156.
  9. Shanker R, Tekie AL. A new quasi Poisson–Lindley distribution, International Journal of Statistics and Systems. 2014;9(1):87–94.
  10. Shanker R, Shanker R, Tekie AL. et al. Size–biased new quasi poisson lindley distribution and its applications. International Journal of Statistics and Systems. 2014;9(2):109–118.
  11. Coleman JS, James J. The equilibrium size distribution of freely–forming groups. Sociometry. 1961;24(1):36–45.
  12. Mathews JNS, Appleton DR. An application of the truncated Poisson distribution to Immunogold assay. Biometrics. 1993;49(2):617–621.
  13. Keith LB, Meslow EC. Trap response by snowshoe hares. Journal of Wildlife Management. 1968;32(4):795–801.
  14. Simonoff JS. Analyzing categorical data, New York Springer. 2003.
  15. Finney DJ, Varley GC. An example of the truncated Poisson distribution, Biometrics. 1955;11:387–394.
  16. Singh SN, Yadav RC. Trends in rural out–migration at household level, Rural Demogr. 1971;8(1):53–61.
Creative Commons Attribution License

©2020 Shanker, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.