Submit manuscript...
eISSN: 2378-315X

Biometrics & Biostatistics International Journal

Research Article Volume 9 Issue 1

A new three-parameter size-biased poisson-lindley distribution with properties and applications

Rama Shanker,1 Kamlesh Kumar Shukla2

1Department of Statistics, Assam University, India
2Department of Statistics, College of Science, Eritrea

Correspondence: Rama Shanker, Department of Statistics, Assam University, Silchar, India

Received: September 02, 2019 | Published: February 11, 2020

Citation: Shanker R, Shukla KK. A new three-parameter size-biased poisson-lindley distribution with properties and applications. Biom Biostat Int J. 2020;9(1):1-14. DOI: 10.15406/bbij.2020.09.00294

Download PDF

Abstract

A new three-parameter size-biased Poisson-Lindley distribution which includes several one parameter and two-parameter size-biased distributions including size-biased geometric distribution (SBGD), size-biased negative binomial distribution (SBNBD), size-biased Poisson-Lindley distribution (SBPLD), size-biased Poisson-Shanker distribution (SBPSD), size-biased two-parameter Poisson-Lindley distribution-1 (SBTPPLD-1), size-biased two-parameter Poisson-Lindley distribution-2(SBTPPLD-2), size-biased quasi Poisson-Lindley distribution (SBQPLD) and size-biased new quasi Poisson-Lindley distribution (SBNQPLD) for particular cases of parameters has been proposed. Its various statistical properties based on moments including coefficient of variation, skewness, kurtosis and index of dispersion have been studied. Maximum likelihood estimation has been discussed for estimating the parameters of the distribution. Goodness of fit of the proposed distribution has been discussed.

Keywords: three-parameter Lindley distribution, new three-parameter Poisson-Lindley distribution, size-biased distributions, maximum likelihood estimation, goodness of fit

Abbreviations

SBGD, size-biased geometric distribution; SBNBD, size-biased negative binomial distribution; SBPLD, size-biased Poisson-Lindley distribution; SBPSD, size-biased Poisson-Shanker distribution; SBTPPLD-1, size-biased two-parameter Poisson-Lindley distribution-1; SBTPPLD-2, size-biased two-parameter Poisson-Lindley distribution-2; SBQPLD, size-biased quasi Poisson-Lindley distribution; SBNQPLD, size-biased new quasi Poisson-Lindley distribution; ATPLD, A three- parameter Lindley distribution

Introduction

A three- parameter Lindley distribution (ATPLD) introduced by Shanker et al.,1 is defined by its probability density function (pdf) and cumulative distribution function (cdf)

f( x;θ,α,β )= θ 2 θα+β ( α+βx ) e θx ;x>0,θ>0,β>0,θα+β>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaqada qaaiaadIhacaGG7aGaeqiUdeNaaiilaiabeg7aHjaacYcacqaHYoGy aiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiabeI7aXnaaCaaaleqaba GaaGOmaaaaaOqaaiabeI7aXjaaykW7cqaHXoqycqGHRaWkcqaHYoGy aaWaaeWaaeaacqaHXoqycqGHRaWkcqaHYoGycaaMc8UaamiEaaGaay jkaiaawMcaaiaadwgadaahaaWcbeqaaiabgkHiTiabeI7aXjaadIha aaGccaaMc8UaaGPaVlaaykW7caaMc8Uaai4oaiaadIhacqGH+aGpca aIWaGaaiilaiaaykW7caaMc8UaeqiUdeNaeyOpa4JaaGimaiaacYca cqaHYoGycqGH+aGpcaaIWaGaaiilaiaaykW7caaMc8UaeqiUdeNaaG PaVlabeg7aHjabgUcaRiabek7aIjabg6da+iaaicdaaaa@7B90@     (1.1)

F( x;θ,α,β )=1[ 1+ θβx θα+β ] e θx ;x>0,θ>,β>0,θα+β>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaqada qaaiaadIhacaGG7aGaeqiUdeNaaiilaiabeg7aHjaacYcacqaHYoGy aiaawIcacaGLPaaacqGH9aqpcaaIXaGaeyOeI0YaamWaaeaacaaIXa Gaey4kaSYaaSaaaeaacqaH4oqCcaaMc8UaeqOSdiMaaGPaVlaadIha aeaacqaH4oqCcaaMc8UaeqySdeMaey4kaSIaeqOSdigaaaGaay5wai aaw2faaiaadwgadaahaaWcbeqaaiabgkHiTiabeI7aXjaadIhaaaGc caaMc8UaaGPaVlaacUdacaWG4bGaeyOpa4JaaGimaiaacYcacqaH4o qCcqGH+aGpcaGGSaGaeqOSdiMaeyOpa4JaaGimaiaacYcacqaH4oqC caaMc8UaeqySdeMaey4kaSIaeqOSdiMaeyOpa4JaaGimaaaa@7339@     (1.2)

It has been observed that ATPLD is a convex combination of exponential and gamma distributions with mixing proportion p= θα θα+β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadchacqGH9a qpdaWcaaqaaiabeI7aXjaaykW7cqaHXoqyaeaacqaH4oqCcaaMc8Ua eqySdeMaey4kaSIaeqOSdigaaaaa@455C@ . Shanker et al.,1 discussed its statistical properties, estimation of parameters using maximum likelihood estimation and applications to model lifetime data. Further, ATPLD includes several one parameter and two-parameter lifetime distributions for particular values of parameters. The particular distributions of (1.2) are summarized in table 1 along with their pdf and introducers.

Although Lindley distribution was proposed by Lindley,2 but various statistical properties of Lindley distribution was studied by Ghitany et al.3 Statistical properties, estimation of parameters and applications of the particular distributions of ATPLD given in table 1 are available in the respective papers.

Parameter Values

   Probability density function

Name of the distribution

Introducers (years)

α=1,β=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHjabg2 da9iaaigdacaGGSaGaeqOSdiMaeyypa0JaaGimaaaa@3E7F@

f( x;θ )=θ e θx ;x>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaqada qaaiaadIhacaGG7aGaeqiUdehacaGLOaGaayzkaaGaeyypa0JaeqiU deNaaGPaVlaadwgadaahaaWcbeqaaiabgkHiTiaaykW7cqaH4oqCca aMc8UaamiEaaaakiaacUdacaWG4bGaeyOpa4JaaGimaaaa@4C90@

Exponential distribution

 

α=β=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHjabg2 da9iabek7aIjabg2da9iaaigdaaaa@3D15@

f( x;θ )= θ 2 θ+1 ( 1+x ) e θx ;x>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOzaO WaaeWaaeaajugibiaadIhacaGG7aGaeqiUdehakiaawIcacaGLPaaa jugibiabg2da9OWaaSaaaeaajugibiabeI7aXPWaaWbaaSqabeaaju gibiaaikdaaaaakeaajugibiabeI7aXjabgUcaRiaaigdaaaGcdaqa daqaaKqzGeGaaGymaiabgUcaRiaadIhaaOGaayjkaiaawMcaaKqzGe GaaGPaVlaadwgakmaaCaaaleqabaqcLbsacqGHsislcaaMc8UaeqiU deNaaGPaVlaadIhaaaGaai4oaiaadIhacqGH+aGpcaaIWaaaaa@5A4C@

Lindley distribution

Lindley2

α=θ,β=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHjabg2 da9iabeI7aXjaacYcacqaHYoGycqGH9aqpcaaIXaaaaa@3F7B@

f( x;θ )= θ 2 θ 2 +1 ( θ+x ) e θx ;x>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaqada qaaiaadIhacaGG7aGaeqiUdehacaGLOaGaayzkaaGaeyypa0ZaaSaa aeaacqaH4oqCdaahaaWcbeqaaiaaikdaaaaakeaacqaH4oqCdaahaa WcbeqaaiaaikdaaaGccqGHRaWkcaaIXaaaamaabmaabaGaeqiUdeNa ey4kaSIaamiEaaGaayjkaiaawMcaaiaaykW7caWGLbWaaWbaaSqabe aacqGHsislcaaMc8UaeqiUdeNaaGPaVlaadIhaaaGccaGG7aGaamiE aiabg6da+iaaicdaaaa@56F7@

Shanker distribution

Shanker11

β=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek7aIjabg2 da9iaaigdaaaa@3A70@

f( x;θ,α )= θ 2 θα+1 ( α+x ) e θx ;x>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaqada qaaiaadIhacaGG7aGaeqiUdeNaaiilaiabeg7aHbGaayjkaiaawMca aiabg2da9maalaaabaGaeqiUde3aaWbaaSqabeaacaaIYaaaaaGcba GaeqiUdeNaaGPaVlabeg7aHjabgUcaRiaaigdaaaWaaeWaaeaacqaH XoqycqGHRaWkcaWG4baacaGLOaGaayzkaaGaaGPaVlaadwgadaahaa WcbeqaaiabgkHiTiaaykW7cqaH4oqCcaaMc8UaamiEaaaakiaacUda caWG4bGaeyOpa4JaaGimaaaa@5B66@

Two-parameter Lindley distribution-1 (TPLD-1)

Shanker and Mishra12

α=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHjabg2 da9iaaigdaaaa@3A6E@

f( x;θ,β )= θ 2 θ+β ( 1+βx ) e θx ;x>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaqada qaaiaadIhacaGG7aGaeqiUdeNaaiilaiabek7aIbGaayjkaiaawMca aiabg2da9maalaaabaGaeqiUde3aaWbaaSqabeaacaaIYaaaaaGcba GaeqiUdeNaey4kaSIaeqOSdigaamaabmaabaGaaGymaiabgUcaRiab ek7aIjaaykW7caWG4baacaGLOaGaayzkaaGaaGPaVlaadwgadaahaa WcbeqaaiabgkHiTiaaykW7cqaH4oqCcaaMc8UaamiEaaaakiaacUda caWG4bGaeyOpa4JaaGimaaaa@5B6C@

Two-parameter Lindley distribution-2 (TPLD-2)

Shanker et al.13

β=θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek7aIjabg2 da9iabeI7aXbaa@3B6B@

f( x;θ,α )= θ α+1 ( α+θx ) e θx ;x>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaqada qaaiaadIhacaGG7aGaeqiUdeNaaiilaiabeg7aHbGaayjkaiaawMca aiabg2da9maalaaabaGaeqiUdehabaGaeqySdeMaey4kaSIaaGymaa aadaqadaqaaiabeg7aHjabgUcaRiabeI7aXjaaykW7caWG4baacaGL OaGaayzkaaGaaGPaVlaadwgadaahaaWcbeqaaiabgkHiTiaaykW7cq aH4oqCcaaMc8UaamiEaaaakiaacUdacaWG4bGaeyOpa4JaaGimaaaa @5A73@

Quasi Lindley distribution (QLD)

   Shanker and Mishra14

α=θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHjabg2 da9iabeI7aXbaa@3B69@

f( x;θ,β )= θ 2 θ 2 +β ( θ+βx ) e θx ;x>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaqada qaaiaadIhacaGG7aGaeqiUdeNaaiilaiabek7aIbGaayjkaiaawMca aiabg2da9maalaaabaGaeqiUde3aaWbaaSqabeaacaaIYaaaaaGcba GaeqiUde3aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaeqOSdigaamaa bmaabaGaeqiUdeNaey4kaSIaeqOSdiMaaGPaVlaadIhaaiaawIcaca GLPaaacaaMc8UaamyzamaaCaaaleqabaGaeyOeI0IaaGPaVlabeI7a XjaaykW7caWG4baaaOGaai4oaiaadIhacqGH+aGpcaaIWaaaaa@5D5A@

New Quasi Lindley distribution (NQLD)

Shanker and Amanuel15

Table 1 Particular continuous distributions for specific values of parameters of ATPLD with probability density function and its introducers (year)

Recently, Das et al.4 proposed a new three-parameter Poisson-Lindley distribution (NTPPLD) by mixing Poisson distribution with ATPLD introduced by Shanker et al.1 given in (1.1). The probability mass function of NTPPLD proposed by Das et al. 4 is given by

P 0 ( x;θ,α,β )= θ 2 θα+β βx+( θα+α+β ) ( θ+1 ) x+2 ;x=0,1,2,...,θ>0,α>0,θα+β>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfadaWgaa WcbaGaaGimaaqabaGcdaqadaqaaiaadIhacaGG7aGaeqiUdeNaaiil aiabeg7aHjaacYcacqaHYoGyaiaawIcacaGLPaaacqGH9aqpdaWcaa qaaiabeI7aXnaaCaaaleqabaGaaGOmaaaaaOqaaiabeI7aXjaaykW7 cqaHXoqycqGHRaWkcqaHYoGyaaWaaSaaaeaacqaHYoGycaaMc8Uaam iEaiabgUcaRmaabmaabaGaeqiUdeNaaGPaVlabeg7aHjabgUcaRiab eg7aHjabgUcaRiabek7aIbGaayjkaiaawMcaaaqaamaabmaabaGaeq iUdeNaey4kaSIaaGymaaGaayjkaiaawMcaamaaCaaaleqabaGaamiE aiabgUcaRiaaikdaaaaaaOGaai4oaiaadIhacqGH9aqpcaaIWaGaai ilaiaaigdacaGGSaGaaGOmaiaacYcacaGGUaGaaiOlaiaac6cacaGG SaGaeqiUdeNaeyOpa4JaaGimaiaacYcacqaHXoqycqGH+aGpcaaIWa GaaiilaiabeI7aXjaaykW7cqaHXoqycqGHRaWkcqaHYoGycqGH+aGp caaIWaaaaa@80ED@     (1.3)

Statistical properties including moments based measures, generating functions, estimation of parameters and applications of the distribution have been discussed by Das et al.4

It has been observed that NTPPLD includes several one parameter and two-parameter discrete distributions based on Poisson mixture of lifetime distributions given in table 1. The particular discrete distributions of (1.3) for particular values of parametersare summarized in table 2 along with their probability mass function (pmf) and introducers (year).

Parameter Values

Probability mass function

Name of the distribution

Introducers (years)

β=0,α=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek7aIjabg2 da9iaaicdacaGGSaGaeqySdeMaeyypa0JaaGymaaaa@3E7F@

P( X=x )= θ θ+1 ( 1 θ+1 ) x ;x=0,1,2,... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfadaqada qaaiaadIfacqGH9aqpcaWG4baacaGLOaGaayzkaaGaeyypa0ZaaSaa aeaacqaH4oqCaeaacqaH4oqCcqGHRaWkcaaIXaaaamaabmaabaWaaS aaaeaacaaIXaaabaGaeqiUdeNaey4kaSIaaGymaaaaaiaawIcacaGL PaaadaahaaWcbeqaaiaadIhaaaGccaGG7aGaamiEaiabg2da9iaaic dacaGGSaGaaGymaiaacYcacaaIYaGaaiilaiaac6cacaGGUaGaaiOl aaaa@525F@

Geometric distribution

 

α=0,β=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHjabg2 da9iaaicdacaGGSaGaeqOSdiMaeyypa0JaaGymaaaa@3E7F@

P( X=x )=( x+1 ) ( θ θ+1 ) 2 ( 1 θ+1 ) x ;x=0,1,2,... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfadaqada qaaiaadIfacqGH9aqpcaWG4baacaGLOaGaayzkaaGaeyypa0ZaaeWa aeaacaWG4bGaey4kaSIaaGymaaGaayjkaiaawMcaamaabmaabaWaaS aaaeaacqaH4oqCaeaacqaH4oqCcqGHRaWkcaaIXaaaaaGaayjkaiaa wMcaamaaCaaaleqabaGaaGOmaaaakmaabmaabaWaaSaaaeaacaaIXa aabaGaeqiUdeNaey4kaSIaaGymaaaaaiaawIcacaGLPaaadaahaaWc beqaaiaadIhaaaGccaGG7aGaamiEaiabg2da9iaaicdacaGGSaGaaG ymaiaacYcacaaIYaGaaiilaiaac6cacaGGUaGaaiOlaaaa@58FE@

Negative Binomial distribution

Greenwood and Yule16

α=β=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHjabg2 da9iabek7aIjabg2da9iaaigdaaaa@3D15@

P( X=x )= θ 2 ( x+θ+2 ) ( θ+1 ) x+3 ;x=0,1,2,... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfadaqada qaaiaadIfacqGH9aqpcaWG4baacaGLOaGaayzkaaGaeyypa0ZaaSaa aeaacqaH4oqCdaahaaWcbeqaaiaaikdaaaGcdaqadaqaaiaadIhacq GHRaWkcqaH4oqCcqGHRaWkcaaIYaaacaGLOaGaayzkaaaabaWaaeWa aeaacqaH4oqCcqGHRaWkcaaIXaaacaGLOaGaayzkaaWaaWbaaSqabe aacaWG4bGaey4kaSIaaG4maaaaaaGccaGG7aGaamiEaiabg2da9iaa icdacaGGSaGaaGymaiaacYcacaaIYaGaaiilaiaac6cacaGGUaGaai Olaaaa@578F@

Poisson-Lindley distribution (PLD)

Sankaran17

α=θ,β=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHjabg2 da9iabeI7aXjaacYcacqaHYoGycqGH9aqpcaaIXaaaaa@3F7B@

P( X=x )= θ 2 θ 2 +1 x+( θ 2 +θ+1 ) ( θ+1 ) x+2 ;x=0,1,2,... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfadaqada qaaiaadIfacqGH9aqpcaWG4baacaGLOaGaayzkaaGaeyypa0ZaaSaa aeaacqaH4oqCdaahaaWcbeqaaiaaikdaaaaakeaacqaH4oqCdaahaa WcbeqaaiaaikdaaaGccqGHRaWkcaaIXaaaaiabgwSixpaalaaabaGa amiEaiabgUcaRmaabmaabaGaeqiUde3aaWbaaSqabeaacaaIYaaaaO Gaey4kaSIaeqiUdeNaey4kaSIaaGymaaGaayjkaiaawMcaaaqaamaa bmaabaGaeqiUdeNaey4kaSIaaGymaaGaayjkaiaawMcaamaaCaaale qabaGaamiEaiabgUcaRiaaikdaaaaaaOGaaGPaVlaaykW7caGG7aGa amiEaiabg2da9iaaicdacaGGSaGaaGymaiaacYcacaaIYaGaaiilai aac6cacaGGUaGaaiOlaaaa@64CE@

Poisson-Shanker distribution (PSD)

Shanker6

α=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHjabg2 da9iaaigdaaaa@3A6E@

P( X=x )= θ 2 θ 2 +β βx+ θ 2 +θ+β ( θ+1 ) x+2 ;x=0,1,2,... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfadaqada qaaiaadIfacqGH9aqpcaWG4baacaGLOaGaayzkaaGaeyypa0ZaaSaa aeaacqaH4oqCdaahaaWcbeqaaiaaikdaaaaakeaacqaH4oqCdaahaa WcbeqaaiaaikdaaaGccqGHRaWkcqaHYoGyaaGaeyyXIC9aaSaaaeaa cqaHYoGycaaMc8UaamiEaiabgUcaRiabeI7aXnaaCaaaleqabaGaaG OmaaaakiabgUcaRiabeI7aXjabgUcaRiabek7aIbqaamaabmaabaGa eqiUdeNaey4kaSIaaGymaaGaayjkaiaawMcaamaaCaaaleqabaGaam iEaiabgUcaRiaaikdaaaaaaOGaaGPaVlaaykW7caGG7aGaamiEaiab g2da9iaaicdacaGGSaGaaGymaiaacYcacaaIYaGaaiilaiaac6caca GGUaGaaiOlaaaa@683D@

Two-parameter Poisson-Lindley distribution-1 (TPPLD-1)

Shanker et al.18

β=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek7aIjabg2 da9iaaigdaaaa@3A70@

P( X=x )= θ 2 θα+1 x+θα+α+1 ( θ+1 ) x+2 ;x=0,1,2,... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfadaqada qaaiaadIfacqGH9aqpcaWG4baacaGLOaGaayzkaaGaeyypa0ZaaSaa aeaacqaH4oqCdaahaaWcbeqaaiaaikdaaaaakeaacqaH4oqCcaaMc8 UaeqySdeMaey4kaSIaaGymaaaacqGHflY1daWcaaqaaiaadIhacqGH RaWkcqaH4oqCcaaMc8UaeqySdeMaey4kaSIaeqySdeMaey4kaSIaaG ymaaqaamaabmaabaGaeqiUdeNaey4kaSIaaGymaaGaayjkaiaawMca amaaCaaaleqabaGaamiEaiabgUcaRiaaikdaaaaaaOGaaGPaVlaayk W7caGG7aGaamiEaiabg2da9iaaicdacaGGSaGaaGymaiaacYcacaaI YaGaaiilaiaac6cacaGGUaGaaiOlaaaa@679C@

Two-parameter Poisson-Lindley distribution-2 (TPPLD-2)

Shanker and Mishra18

β=θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek7aIjabg2 da9iabeI7aXbaa@3B6B@

P( X=x )= θ α+1 θx+θα+α+θ ( θ+1 ) x+2 ;x=0,1,2,... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfadaqada qaaiaadIfacqGH9aqpcaWG4baacaGLOaGaayzkaaGaeyypa0ZaaSaa aeaacqaH4oqCaeaacqaHXoqycqGHRaWkcaaIXaaaaiabgwSixpaala aabaGaeqiUdeNaaGPaVlaadIhacqGHRaWkcqaH4oqCcaaMc8UaeqyS deMaey4kaSIaeqySdeMaey4kaSIaeqiUdehabaWaaeWaaeaacqaH4o qCcqGHRaWkcaaIXaaacaGLOaGaayzkaaWaaWbaaSqabeaacaWG4bGa ey4kaSIaaGOmaaaaaaGccaaMc8UaaGPaVlaacUdacaWG4bGaeyypa0 JaaGimaiaacYcacaaIXaGaaiilaiaaikdacaGGSaGaaiOlaiaac6ca caGGUaaaaa@67A4@

Quasi Poisson-Lindley distribution (QPLD)

Shanker and Mishra19

α=θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHjabg2 da9iabeI7aXbaa@3B69@

P( X=x )= θ 2 θ 2 +β βx+ θ 2 +θ+β ( θ+1 ) x+2 ;x=0,1,2,... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfadaqada qaaiaadIfacqGH9aqpcaWG4baacaGLOaGaayzkaaGaeyypa0ZaaSaa aeaacqaH4oqCdaahaaWcbeqaaiaaikdaaaaakeaacqaH4oqCdaahaa WcbeqaaiaaikdaaaGccqGHRaWkcqaHYoGyaaGaeyyXIC9aaSaaaeaa cqaHYoGycaaMc8UaamiEaiabgUcaRiabeI7aXnaaCaaaleqabaGaaG OmaaaakiabgUcaRiabeI7aXjabgUcaRiabek7aIbqaamaabmaabaGa eqiUdeNaey4kaSIaaGymaaGaayjkaiaawMcaamaaCaaaleqabaGaam iEaiabgUcaRiaaikdaaaaaaOGaaGPaVlaaykW7caGG7aGaamiEaiab g2da9iaaicdacaGGSaGaaGymaiaacYcacaaIYaGaaiilaiaac6caca GGUaGaaiOlaaaa@683D@

New Quasi Poisson-Lindley distribution (NQPLD)

Shanker and Tekie20

Table 2 Particular discrete distributions for specific values of parameters of NTPPLD with pmf and its introducers (year)

The first four moments about origin and the variance of NTPPLD, obtained by Das et al.,4 are given by 

μ 1 = θα+2β θ( θα+β ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaIXaaabeaakmaaCaaaleqabaGccWaGGBOmGikaaiabg2da 9maalaaabaGaeqiUdeNaaGPaVlabeg7aHjabgUcaRiaaikdacqaHYo GyaeaacqaH4oqCdaqadaqaaiabeI7aXjaaykW7cqaHXoqycqGHRaWk cqaHYoGyaiaawIcacaGLPaaaaaaaaa@50AB@

μ 2 = θ 2 α+2( α+β )θ+6β θ 2 ( θα+β ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaIYaaabeaakmaaCaaaleqabaGccWaGGBOmGikaaiabg2da 9maalaaabaGaeqiUde3aaWbaaSqabeaacaaIYaaaaOGaeqySdeMaey 4kaSIaaGOmamaabmaabaGaeqySdeMaey4kaSIaeqOSdigacaGLOaGa ayzkaaGaeqiUdeNaey4kaSIaaGOnaiabek7aIbqaaiabeI7aXnaaCa aaleqabaGaaGOmaaaakmaabmaabaGaeqiUdeNaaGPaVlabeg7aHjab gUcaRiabek7aIbGaayjkaiaawMcaaaaaaaa@5A0A@

μ 3 = θ 3 α+6( α+β ) θ 2 +6( α+3β )θ+24β θ 3 ( θα+β ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaIZaaabeaakmaaCaaaleqabaGccWaGGBOmGikaaiabg2da 9maalaaabaGaeqiUde3aaWbaaSqabeaacaaIZaaaaOGaeqySdeMaey 4kaSIaaGOnamaabmaabaGaeqySdeMaey4kaSIaeqOSdigacaGLOaGa ayzkaaGaeqiUde3aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGOnam aabmaabaGaeqySdeMaey4kaSIaaG4maiabek7aIbGaayjkaiaawMca aiabeI7aXjabgUcaRiaaikdacaaI0aGaeqOSdigabaGaeqiUde3aaW baaSqabeaacaaIZaaaaOWaaeWaaeaacqaH4oqCcaaMc8UaeqySdeMa ey4kaSIaeqOSdigacaGLOaGaayzkaaaaaaaa@657E@

μ 4 = θ 4 α+2( 7α+β ) θ 3 +6( 6α+7β ) θ 2 +24( α+6β )θ+120β θ 4 ( θα+β ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaI0aaabeaakmaaCaaaleqabaGccWaGGBOmGikaaiabg2da 9maalaaabaGaeqiUde3aaWbaaSqabeaacaaI0aaaaOGaeqySdeMaey 4kaSIaaGOmamaabmaabaGaaG4naiabeg7aHjabgUcaRiabek7aIbGa ayjkaiaawMcaaiabeI7aXnaaCaaaleqabaGaaG4maaaakiabgUcaRi aaiAdadaqadaqaaiaaiAdacqaHXoqycqGHRaWkcaaI3aGaeqOSdiga caGLOaGaayzkaaGaeqiUde3aaWbaaSqabeaacaaIYaaaaOGaey4kaS IaaGOmaiaaisdadaqadaqaaiabeg7aHjabgUcaRiaaiAdacqaHYoGy aiaawIcacaGLPaaacqaH4oqCcqGHRaWkcaaIXaGaaGOmaiaaicdacq aHYoGyaeaacqaH4oqCdaahaaWcbeqaaiaaisdaaaGcdaqadaqaaiab eI7aXjaaykW7cqaHXoqycqGHRaWkcqaHYoGyaiaawIcacaGLPaaaaa aaaa@732A@

μ 2 = σ 2 = θ 3 α 2 +( α+3β ) θ 2 α+2( 2α+β )θβ+2 β 2 θ 2 ( θα+β ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaIYaaabeaakiabg2da9iabeo8aZnaaCaaaleqabaGaaGOm aaaakiabg2da9maalaaabaGaeqiUde3aaWbaaSqabeaacaaIZaaaaO GaeqySde2aaWbaaSqabeaacaaIYaaaaOGaey4kaSYaaeWaaeaacqaH XoqycqGHRaWkcaaIZaGaaGPaVlabek7aIbGaayjkaiaawMcaaiabeI 7aXnaaCaaaleqabaGaaGOmaaaakiabeg7aHjabgUcaRiaaikdadaqa daqaaiaaikdacqaHXoqycqGHRaWkcqaHYoGyaiaawIcacaGLPaaaca aMc8UaeqiUdeNaeqOSdiMaaGPaVlabgUcaRiaaikdacqaHYoGydaah aaWcbeqaaiaaikdaaaaakeaacqaH4oqCdaahaaWcbeqaaiaaikdaaa GcdaqadaqaaiabeI7aXjaaykW7cqaHXoqycaaMc8Uaey4kaSIaeqOS digacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaaaaaa@718E@

The main purpose of this paper is to propose a new three-parameter size-biased Poisson-Lindley distribution which includes several one parameter and two-parameter size-biased distributions for particular cases of parameters. Its moments have been derived and various statistical properties based on moments have been studied. Maximum likelihood estimation has been discussed. Goodness of fit of the distribution has been discussed with several count datasets.

A new three-parameter size-biased poisson-lindley distribution

Using the pmf (1.3) and the mean of NTPPLD, a new three-parameter size-biased Poisson-Lindley distribution (NTPSBPLD) can be obtained as

P 1 ( x;θ,α,β )= x P 0 ( x;θ,α,β ) μ 1 = θ 3 θα+2β x( βx+θα+α+β ) ( θ+1 ) x+2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfadaWgaa WcbaGaaGymaaqabaGcdaqadaqaaiaadIhacaGG7aGaeqiUdeNaaiil aiabeg7aHjaacYcacqaHYoGyaiaawIcacaGLPaaacqGH9aqpdaWcaa qaaiaadIhacqGHflY1caWGqbWaaSbaaSqaaiaaicdaaeqaaOWaaeWa aeaacaWG4bGaai4oaiabeI7aXjaacYcacqaHXoqycaGGSaGaeqOSdi gacaGLOaGaayzkaaaabaGafqiVd0MbauaadaWgaaWcbaGaaGymaaqa baaaaOGaeyypa0ZaaSaaaeaacqaH4oqCdaahaaWcbeqaaiaaiodaaa aakeaacqaH4oqCcqaHXoqycqGHRaWkcaaIYaGaeqOSdigaamaalaaa baGaamiEamaabmaabaGaeqOSdiMaamiEaiabgUcaRiabeI7aXjabeg 7aHjabgUcaRiabeg7aHjabgUcaRiabek7aIbGaayjkaiaawMcaaaqa amaabmaabaGaeqiUdeNaey4kaSIaaGymaaGaayjkaiaawMcaamaaCa aaleqabaGaamiEaiabgUcaRiaaikdaaaaaaaaa@7546@     (2.1)


;x=1,2,3,..,( θ,α,β )>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaykW7caaMc8 Uaai4oaiaadIhacqGH9aqpcaaIXaGaaiilaiaaikdacaGGSaGaaG4m aiaacYcacaGGUaGaaiOlaiaacYcadaqadaqaaiabeI7aXjaacYcacq aHXoqycaGGSaGaeqOSdigacaGLOaGaayzkaaGaeyOpa4JaaGimaaaa @4CDF@

It can be easily verified that NTPSBPLD contains several one-parameter and two-parameter size-biased distributions including size-biased geometric distribution (SBGD), size-biased negative binomial distribution (SBNBD), size-biased Poisson-Lindley distribution (SBPLD) proposed by Ghitany and Mutairi,5 size-biased Poisson-Shanker distribution(SBPSD) proposed by Shanker,6 size-biased two-parameter Poisson-Lindley distribution-1 (SBTPPLD-1) introduced by Shanker,7 size-biased two-parameter Poisson-Lindley distribution-2 (SBTPPLD-2) suggested by Shanker and Mishra,8 size-biased quasi Poisson-Lindley distribution (SBQPLD) proposed by Shanker and Mishra9 and size-biased new quasi Poisson-Lindley distribution (SBNQPLD) introduced by Shanker et al.,10 respectively for ( β=0,α=1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq OSdiMaeyypa0JaaGimaiaacYcacqaHXoqycqGH9aqpcaaIXaaacaGL OaGaayzkaaaaaa@4008@ , ( α=0,β=1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq ySdeMaeyypa0JaaGimaiaacYcacqaHYoGycqGH9aqpcaaIXaaacaGL OaGaayzkaaaaaa@4008@ , ( α=β=1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq ySdeMaeyypa0JaeqOSdiMaeyypa0JaaGymaaGaayjkaiaawMcaaaaa @3E9E@ , ( α=θ,β=1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceaa0bXaaeWaae aacqaHXoqycqGH9aqpcqaH4oqCcaGGSaGaeqOSdiMaeyypa0JaaGym aaGaayjkaiaawMcaaaaa@418B@ , ( α=1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq ySdeMaeyypa0JaaGymaaGaayjkaiaawMcaaaaa@3BF7@ , ( β=1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq OSdiMaeyypa0JaaGymaaGaayjkaiaawMcaaaaa@3BF9@ , ( β=θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq OSdiMaeyypa0JaeqiUdehacaGLOaGaayzkaaaaaa@3CF4@ , ( α=θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq ySdeMaeyypa0JaeqiUdehacaGLOaGaayzkaaaaaa@3CF2@ respectively.

Various characteristics of a distribution are based on their moments and it not easy to derive the moments of NTPSBPLD directly. Therefore, to derive the moments of NTPSBPLD, the pmf of NTPSBPLD can also be obtained as follows:

Let the random variable follows the size-biased Poisson distribution (SBPD) with parameter and pmf

g( x|λ )= e λ λ x1 ( x1 )! ;x=1,2,3,...,;λ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEgadaqada qaaiaadIhacaGG8bGaeq4UdWgacaGLOaGaayzkaaGaeyypa0ZaaSaa aeaacaWGLbWaaWbaaSqabeaacqGHsislcqaH7oaBaaGccqaH7oaBda ahaaWcbeqaaiaadIhacqGHsislcaaIXaaaaaGcbaWaaeWaaeaacaWG 4bGaeyOeI0IaaGymaaGaayjkaiaawMcaaiaacgcaaaGaaGPaVlaayk W7caaMc8Uaai4oaiaadIhacqGH9aqpcaaIXaGaaiilaiaaikdacaGG SaGaaG4maiaacYcacaGGUaGaaiOlaiaac6cacaGGSaGaai4oaiabeU 7aSjabg6da+iaaicdaaaa@5E11@     (2.2)

Suppose the parameterof SBPD follows the size-biased three-parameter Lindley distribution with pdf

h( λ;θ )= θ 3 θα+2β λ( α+λβ ) e θλ ;λ>0,( θ,α,β )>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIgadaqada qaaiabeU7aSjaacUdacqaH4oqCaiaawIcacaGLPaaacqGH9aqpdaWc aaqaaiabeI7aXnaaCaaaleqabaGaaG4maaaaaOqaaiabeI7aXjabeg 7aHjabgUcaRiaaikdacqaHYoGyaaGaeq4UdW2aaeWaaeaacqaHXoqy cqGHRaWkcqaH7oaBcqaHYoGyaiaawIcacaGLPaaacaWGLbWaaWbaaS qabeaacqGHsislcqaH4oqCcaaMc8Uaeq4UdWgaaOGaaGPaVlaaykW7 caaMc8Uaai4oaiabeU7aSjabg6da+iaaicdacaGGSaGaaGPaVlaayk W7daqadaqaaiabeI7aXjaacYcacqaHXoqycaGGSaGaeqOSdigacaGL OaGaayzkaaGaeyOpa4JaaGimaaaa@6E54@     (2.3)

Thus the pmf of NTPSBPLD can be obtained as

P( X=x )= 0 g( x|λ ) h( λ;θ )dλ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfadaqada qaaiaadIfacqGH9aqpcaWG4baacaGLOaGaayzkaaGaeyypa0Zaa8qC aeaacaWGNbWaaeWaaeaacaWG4bGaaiiFaiabeU7aSbGaayjkaiaawM caaaWcbaGaaGimaaqaaiabg6HiLcqdcqGHRiI8aOGaeyyXICTaamiA amaabmaabaGaeq4UdWMaai4oaiabeI7aXbGaayjkaiaawMcaaiaads gacqaH7oaBaaa@539C@

= 0 e λ λ x1 ( x1 )! θ 3 θα+2β λ( α+λβ ) e θλ dλ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabg2da9maape habaWaaSaaaeaacaWGLbWaaWbaaSqabeaacqGHsislcqaH7oaBaaGc cqaH7oaBdaahaaWcbeqaaiaadIhacqGHsislcaaIXaaaaaGcbaWaae WaaeaacaWG4bGaeyOeI0IaaGymaaGaayjkaiaawMcaaiaacgcaaaaa leaacaaIWaaabaGaeyOhIukaniabgUIiYdGcdaWcaaqaaiabeI7aXn aaCaaaleqabaGaaG4maaaaaOqaaiabeI7aXjabeg7aHjabgUcaRiaa ikdacqaHYoGyaaGaeq4UdW2aaeWaaeaacqaHXoqycqGHRaWkcqaH7o aBcqaHYoGyaiaawIcacaGLPaaacaWGLbWaaWbaaSqabeaacqGHsisl cqaH4oqCcaaMc8Uaeq4UdWgaaOGaamizaiabeU7aSbaa@65E8@     (2.4)


= θ 3 ( θα+2β )( x1 )! 0 e ( θ+1 )λ λ x ( α+λβ )dλ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabg2da9maala aabaGaeqiUde3aaWbaaSqabeaacaaIZaaaaaGcbaWaaeWaaeaacqaH 4oqCcqaHXoqycqGHRaWkcaaIYaGaeqOSdigacaGLOaGaayzkaaWaae WaaeaacaWG4bGaeyOeI0IaaGymaaGaayjkaiaawMcaaiaacgcaaaWa a8qCaeaacaWGLbWaaWbaaSqabeaacqGHsisldaqadaqaaiabeI7aXj abgUcaRiaaigdaaiaawIcacaGLPaaacqaH7oaBaaaabaGaaGimaaqa aiabg6HiLcqdcqGHRiI8aOGaeq4UdW2aaWbaaSqabeaacaWG4baaaO WaaeWaaeaacqaHXoqycqGHRaWkcqaH7oaBcqaHYoGyaiaawIcacaGL PaaacaWGKbGaeq4UdWgaaa@61C9@

= θ 3 ( θα+2β )( x1 )! [ αΓ( x+1 ) ( θ+1 ) x+1 + βΓ( x+2 ) ( θ+1 ) x+2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabg2da9maala aabaGaeqiUde3aaWbaaSqabeaacaaIZaaaaaGcbaWaaeWaaeaacqaH 4oqCcqaHXoqycqGHRaWkcaaIYaGaeqOSdigacaGLOaGaayzkaaWaae WaaeaacaWG4bGaeyOeI0IaaGymaaGaayjkaiaawMcaaiaacgcaaaWa amWaaeaadaWcaaqaaiabeg7aHjaaykW7cqqHtoWrdaqadaqaaiaadI hacqGHRaWkcaaIXaaacaGLOaGaayzkaaaabaWaaeWaaeaacqaH4oqC cqGHRaWkcaaIXaaacaGLOaGaayzkaaWaaWbaaSqabeaacaWG4bGaey 4kaSIaaGymaaaaaaGccqGHRaWkdaWcaaqaaiabek7aIjaaykW7cqqH toWrdaqadaqaaiaadIhacqGHRaWkcaaIYaaacaGLOaGaayzkaaaaba WaaeWaaeaacqaH4oqCcqGHRaWkcaaIXaaacaGLOaGaayzkaaWaaWba aSqabeaacaWG4bGaey4kaSIaaGOmaaaaaaaakiaawUfacaGLDbaaaa a@6B7A@

= θ 3 θα+2β β x 2 +( θα+α+β )x ( θ+1 ) x+2 ;x=1,2,3,..,( θ,α,β )>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabg2da9maala aabaGaeqiUde3aaWbaaSqabeaacaaIZaaaaaGcbaGaeqiUdeNaeqyS deMaey4kaSIaaGOmaiabek7aIbaadaWcaaqaaiabek7aIjaadIhada ahaaWcbeqaaiaaikdaaaGccqGHRaWkdaqadaqaaiabeI7aXjabeg7a HjabgUcaRiabeg7aHjabgUcaRiabek7aIbGaayjkaiaawMcaaiaadI haaeaadaqadaqaaiabeI7aXjabgUcaRiaaigdaaiaawIcacaGLPaaa daahaaWcbeqaaiaadIhacqGHRaWkcaaIYaaaaaaakiaaykW7caaMc8 UaaGPaVlaaykW7caGG7aGaamiEaiabg2da9iaaigdacaGGSaGaaGOm aiaacYcacaaIZaGaaiilaiaac6cacaGGUaGaaiilamaabmaabaGaeq iUdeNaaiilaiabeg7aHjaacYcacqaHYoGyaiaawIcacaGLPaaacqGH +aGpcaaIWaaaaa@7159@

which is the pmf of NTPSBPLD obtained in (2.1).

The behavior of the pmf of NTPSBPLD for varying values of parameters ( θ,α,β ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq iUdeNaaiilaiabeg7aHjaacYcacqaHYoGyaiaawIcacaGLPaaaaaa@3EED@ has been shown in Figure 1.

Figure 1 Behavior of NTPSBPLD for ( θ,α,β ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeGaeqiUdeNaaiilaiabeg7aHjaacYcacqaHYoGyaOGaayjk aiaawMcaaaaa@3F06@ .

Moments

Using (2.4), the th factorial moment about origin μ ( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaadaqadaqaaiaadkhaaiaawIcacaGLPaaaaeqaaOWaaWbaaSqa beaakiadacUHYaIOaaaaaa@3E99@ of the NTPSBPLD (2.1) can be obtained as

μ ( r ) =E[ E( X ( r ) |λ ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaadaqadaqaaiaadkhaaiaawIcacaGLPaaaaeqaaOWaaWbaaSqa beaakiadacUHYaIOaaGaeyypa0JaamyramaadmaabaGaamyramaabm aabaGaamiwamaaCaaaleqabaWaaeWaaeaacaWGYbaacaGLOaGaayzk aaaaaOGaaiiFaiabeU7aSbGaayjkaiaawMcaaaGaay5waiaaw2faaa aa@4AF6@ , where X ( r ) =X( X1 )( X2 )...( Xr+1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfadaahaa WcbeqaamaabmaabaGaamOCaaGaayjkaiaawMcaaaaakiabg2da9iaa dIfadaqadaqaaiaadIfacqGHsislcaaIXaaacaGLOaGaayzkaaWaae WaaeaacaWGybGaeyOeI0IaaGOmaaGaayjkaiaawMcaaiaac6cacaGG UaGaaiOlamaabmaabaGaamiwaiabgkHiTiaadkhacqGHRaWkcaaIXa aacaGLOaGaayzkaaaaaa@4C9F@


= 0 [ x=1 x ( r ) e λ λ x1 ( x1 )! ] θ 3 θα+2β λ( α+λβ ) e θλ dλ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabg2da9maape habaWaamWaaeaadaaeWbqaaiaadIhadaahaaWcbeqaamaabmaabaGa amOCaaGaayjkaiaawMcaaaaakmaalaaabaGaamyzamaaCaaaleqaba GaeyOeI0Iaeq4UdWgaaOGaeq4UdW2aaWbaaSqabeaacaWG4bGaeyOe I0IaaGymaaaaaOqaamaabmaabaGaamiEaiabgkHiTiaaigdaaiaawI cacaGLPaaacaGGHaaaaaWcbaGaamiEaiabg2da9iaaigdaaeaacqGH EisPa0GaeyyeIuoaaOGaay5waiaaw2faaaWcbaGaaGimaaqaaiabg6 HiLcqdcqGHRiI8aOGaeyyXIC9aaSaaaeaacqaH4oqCdaahaaWcbeqa aiaaiodaaaaakeaacqaH4oqCcqaHXoqycqGHRaWkcaaIYaGaeqOSdi gaaiabeU7aSnaabmaabaGaeqySdeMaey4kaSIaeq4UdWMaeqOSdiga caGLOaGaayzkaaGaamyzamaaCaaaleqabaGaeyOeI0IaeqiUdeNaaG PaVlabeU7aSbaakiaadsgacqaH7oaBaaa@7453@

= 0 [ λ r1 { x=r x e λ λ xr ( xr )! } ] θ 3 θα+2β λ( α+λβ ) e θλ dλ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabg2da9maape habaWaamWaaeaacqaH7oaBdaahaaWcbeqaaiaadkhacqGHsislcaaI XaaaaOWaaiWaaeaadaaeWbqaaiaadIhadaWcaaqaaiaadwgadaahaa WcbeqaaiabgkHiTiabeU7aSbaakiabeU7aSnaaCaaaleqabaGaamiE aiabgkHiTiaadkhaaaaakeaadaqadaqaaiaadIhacqGHsislcaWGYb aacaGLOaGaayzkaaGaaiyiaaaaaSqaaiaadIhacqGH9aqpcaWGYbaa baGaeyOhIukaniabggHiLdaakiaawUhacaGL9baaaiaawUfacaGLDb aaaSqaaiaaicdaaeaacqGHEisPa0Gaey4kIipakiabgwSixpaalaaa baGaeqiUde3aaWbaaSqabeaacaaIZaaaaaGcbaGaeqiUdeNaeqySde Maey4kaSIaaGOmaiabek7aIbaacqaH7oaBdaqadaqaaiabeg7aHjab gUcaRiabeU7aSjabek7aIbGaayjkaiaawMcaaiaadwgadaahaaWcbe qaaiabgkHiTiabeI7aXjaaykW7cqaH7oaBaaGccaWGKbGaeq4UdWga aa@790B@

Taking y=xr MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMhacqGH9a qpcaWG4bGaeyOeI0IaamOCaaaa@3BF3@ , we get

μ ( r ) = 0 [ λ r1 { y=0 ( y+r ) e λ λ y y! } ] θ 3 θα+2β λ( α+λβ ) e θλ dλ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaadaqadaqaaiaadkhaaiaawIcacaGLPaaaaeqaaOWaaWbaaSqa beaakiadacUHYaIOaaGaeyypa0Zaa8qCaeaadaWadaqaaiabeU7aSn aaCaaaleqabaGaamOCaiabgkHiTiaaigdaaaGcdaGadaqaamaaqaha baWaaeWaaeaacaWG5bGaey4kaSIaamOCaaGaayjkaiaawMcaamaala aabaGaamyzamaaCaaaleqabaGaeyOeI0Iaeq4UdWgaaOGaeq4UdW2a aWbaaSqabeaacaWG5baaaaGcbaGaamyEaiaacgcaaaaaleaacaWG5b Gaeyypa0JaaGimaaqaaiabg6HiLcqdcqGHris5aaGccaGL7bGaayzF aaaacaGLBbGaayzxaaaaleaacaaIWaaabaGaeyOhIukaniabgUIiYd GccqGHflY1daWcaaqaaiabeI7aXnaaCaaaleqabaGaaG4maaaaaOqa aiabeI7aXjabeg7aHjabgUcaRiaaikdacqaHYoGyaaGaeq4UdW2aae WaaeaacqaHXoqycqGHRaWkcqaH7oaBcqaHYoGyaiaawIcacaGLPaaa caWGLbWaaWbaaSqabeaacqGHsislcqaH4oqCcaaMc8Uaeq4UdWgaaO GaamizaiabeU7aSbaa@7E6E@

= θ 3 θα+2β 0 λ r ( λ+r )( α+λβ ) e θλ dλ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabg2da9maala aabaGaeqiUde3aaWbaaSqabeaacaaIZaaaaaGcbaGaeqiUdeNaeqyS deMaey4kaSIaaGOmaiabek7aIbaadaWdXbqaaiabeU7aSnaaCaaale qabaGaamOCaaaakmaabmaabaGaeq4UdWMaey4kaSIaamOCaaGaayjk aiaawMcaamaabmaabaGaeqySdeMaey4kaSIaeq4UdWMaeqOSdigaca GLOaGaayzkaaGaamyzamaaCaaaleqabaGaeyOeI0IaeqiUdeNaaGPa VlabeU7aSbaakiaadsgacqaH7oaBaSqaaiaaicdaaeaacqGHEisPa0 Gaey4kIipaaaa@5EED@

= θ 3 θα+2β 0 { β λ r+2 +( α+βr ) λ r+1 +rα λ r } e θλ dλ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabg2da9maala aabaGaeqiUde3aaWbaaSqabeaacaaIZaaaaaGcbaGaeqiUdeNaeqyS deMaey4kaSIaaGOmaiabek7aIbaadaWdXbqaamaacmaabaGaeqOSdi Maeq4UdW2aaWbaaSqabeaacaWGYbGaey4kaSIaaGOmaaaakiabgUca RmaabmaabaGaeqySdeMaey4kaSIaeqOSdiMaamOCaaGaayjkaiaawM caaiabeU7aSnaaCaaaleqabaGaamOCaiabgUcaRiaaigdaaaGccqGH RaWkcaWGYbGaeqySdeMaeq4UdW2aaWbaaSqabeaacaWGYbaaaaGcca GL7bGaayzFaaGaamyzamaaCaaaleqabaGaeyOeI0IaeqiUdeNaaGPa VlabeU7aSbaakiaadsgacqaH7oaBaSqaaiaaicdaaeaacqGHEisPa0 Gaey4kIipaaaa@6A45@

After a little tedious algebraic simplification, the th factorial moment about origin of NTPSBPLD (2.1) can be expressed as

μ ( r ) = r!{ rα θ 2 +( r+1 )( α+rβ )θ+( r+1 )( r+2 )β } θ r ( θα+2β ) ;r=1,2,3,... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaadaqadaqaaiaadkhaaiaawIcacaGLPaaaaeqaaOWaaWbaaSqa beaakiadacUHYaIOaaGaeyypa0ZaaSaaaeaacaWGYbGaaiyiamaacm aabaGaamOCaiaaykW7cqaHXoqycaaMc8UaeqiUde3aaWbaaSqabeaa caaIYaaaaOGaey4kaSYaaeWaaeaacaWGYbGaey4kaSIaaGymaaGaay jkaiaawMcaamaabmaabaGaeqySdeMaey4kaSIaamOCaiabek7aIbGa ayjkaiaawMcaaiabeI7aXjabgUcaRmaabmaabaGaamOCaiabgUcaRi aaigdaaiaawIcacaGLPaaadaqadaqaaiaadkhacqGHRaWkcaaIYaaa caGLOaGaayzkaaGaeqOSdigacaGL7bGaayzFaaaabaGaeqiUde3aaW baaSqabeaacaWGYbaaaOWaaeWaaeaacqaH4oqCcqaHXoqycqGHRaWk caaIYaGaeqOSdigacaGLOaGaayzkaaaaaiaacUdacaWGYbGaeyypa0 JaaGymaiaacYcacaaIYaGaaiilaiaaiodacaGGSaGaaiOlaiaac6ca caGGUaaaaa@77FD@     (3.1)

The first four factorial moments about origin can be obtained by taking r=1,2,3,and4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhacqGH9a qpcaaIXaGaaiilaiaaikdacaGGSaGaaG4maiaacYcacaaMc8UaaGPa VlaabggacaqGUbGaaeizaiaaykW7caaMc8UaaGinaaaa@46F5@ in (3.1). The first four moments about origin of the NTPSBPLD, using the relationship between moments about origin and factorial moments about origin, are obtained as  


μ 1 = α θ 2 +2( α+β )θ+6β θ( θα+2β ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaIXaaabeaakmaaCaaaleqabaGccWaGGBOmGikaaiabg2da 9maalaaabaGaeqySdeMaeqiUde3aaWbaaSqabeaacaaIYaaaaOGaey 4kaSIaaGOmamaabmaabaGaeqySdeMaey4kaSIaeqOSdigacaGLOaGa ayzkaaGaeqiUdeNaey4kaSIaaGOnaiabek7aIbqaaiabeI7aXnaabm aabaGaeqiUdeNaeqySdeMaey4kaSIaaGOmaiabek7aIbGaayjkaiaa wMcaaaaaaaa@5847@

μ 2 = α θ 3 +( 6α+2β ) θ 2 +( 6α+18β )θ+24β θ 2 ( θα+2β ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaIYaaabeaakmaaCaaaleqabaGccWaGGBOmGikaaiabg2da 9maalaaabaGaeqySdeMaeqiUde3aaWbaaSqabeaacaaIZaaaaOGaey 4kaSYaaeWaaeaacaaI2aGaeqySdeMaey4kaSIaaGOmaiabek7aIbGa ayjkaiaawMcaaiabeI7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRm aabmaabaGaaGOnaiabeg7aHjabgUcaRiaaigdacaaI4aGaeqOSdiga caGLOaGaayzkaaGaeqiUdeNaey4kaSIaaGOmaiaaisdacqaHYoGyae aacqaH4oqCdaahaaWcbeqaaiaaikdaaaGcdaqadaqaaiabeI7aXjab eg7aHjabgUcaRiaaikdacqaHYoGyaiaawIcacaGLPaaaaaaaaa@6629@

μ 3 = α θ 4 +( 14α+2β ) θ 3 +( 36α+42β ) θ 2 +( 24α+144β )θ+120β θ 3 ( θα+2β ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaIZaaabeaakmaaCaaaleqabaGccWaGGBOmGikaaiabg2da 9maalaaabaGaeqySdeMaeqiUde3aaWbaaSqabeaacaaI0aaaaOGaey 4kaSYaaeWaaeaacaaIXaGaaGinaiabeg7aHjabgUcaRiaaikdacqaH YoGyaiaawIcacaGLPaaacqaH4oqCdaahaaWcbeqaaiaaiodaaaGccq GHRaWkdaqadaqaaiaaiodacaaI2aGaeqySdeMaey4kaSIaaGinaiaa ikdacqaHYoGyaiaawIcacaGLPaaacqaH4oqCdaahaaWcbeqaaiaaik daaaGccqGHRaWkdaqadaqaaiaaikdacaaI0aGaeqySdeMaey4kaSIa aGymaiaaisdacaaI0aGaeqOSdigacaGLOaGaayzkaaGaeqiUdeNaey 4kaSIaaGymaiaaikdacaaIWaGaeqOSdigabaGaeqiUde3aaWbaaSqa beaacaaIZaaaaOWaaeWaaeaacqaH4oqCcqaHXoqycqGHRaWkcaaIYa GaeqOSdigacaGLOaGaayzkaaaaaaaa@753E@

μ 4 = α θ 5 +( 30α+2β ) θ 4 +( 150α+90β ) θ 3 +( 240α+600β ) θ 2 +( 120α+1200β )+720β θ 4 ( θα+2β ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaI0aaabeaakmaaCaaaleqabaGccWaGGBOmGikaaiabg2da 9maalaaabaGaeqySdeMaeqiUde3aaWbaaSqabeaacaaI1aaaaOGaey 4kaSYaaeWaaeaacaaIZaGaaGimaiabeg7aHjabgUcaRiaaikdacqaH YoGyaiaawIcacaGLPaaacqaH4oqCdaahaaWcbeqaaiaaisdaaaGccq GHRaWkdaqadaqaaiaaigdacaaI1aGaaGimaiabeg7aHjabgUcaRiaa iMdacaaIWaGaeqOSdigacaGLOaGaayzkaaGaeqiUde3aaWbaaSqabe aacaaIZaaaaOGaey4kaSYaaeWaaeaacaaIYaGaaGinaiaaicdacqaH XoqycqGHRaWkcaaI2aGaaGimaiaaicdacqaHYoGyaiaawIcacaGLPa aacqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkdaqadaqaaiaa igdacaaIYaGaaGimaiabeg7aHjabgUcaRiaaigdacaaIYaGaaGimai aaicdacqaHYoGyaiaawIcacaGLPaaacqGHRaWkcaaI3aGaaGOmaiaa icdacqaHYoGyaeaacqaH4oqCdaahaaWcbeqaaiaaisdaaaGcdaqada qaaiabeI7aXjabeg7aHjabgUcaRiaaikdacqaHYoGyaiaawIcacaGL Paaaaaaaaa@8354@

Now, using the relationship between moments about mean and the moments about origin, the moments about mean of the NTPSBPLD (2.1) can be obtained as


μ 2 = 2{ α 2 θ 3 +( α 2 +5αβ ) θ 2 +( 6 β 2 +6αβ )θ+6 β 2 } θ 2 ( θα+2β ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaIYaaabeaakiabg2da9maalaaabaGaaGOmamaacmaabaGa eqySde2aaWbaaSqabeaacaaIYaaaaOGaeqiUde3aaWbaaSqabeaaca aIZaaaaOGaey4kaSYaaeWaaeaacqaHXoqydaahaaWcbeqaaiaaikda aaGccqGHRaWkcaaI1aGaeqySdeMaeqOSdigacaGLOaGaayzkaaGaeq iUde3aaWbaaSqabeaacaaIYaaaaOGaey4kaSYaaeWaaeaacaaI2aGa eqOSdi2aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGOnaiabeg7aHj abek7aIbGaayjkaiaawMcaaiabeI7aXjabgUcaRiaaiAdacqaHYoGy daahaaWcbeqaaiaaikdaaaaakiaawUhacaGL9baaaeaacqaH4oqCda ahaaWcbeqaaiaaikdaaaGcdaqadaqaaiabeI7aXjabeg7aHjabgUca RiaaikdacqaHYoGyaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaa aaaaaa@6BB8@

μ 3 = 2{ α 3 θ 5 +( 7 α 2 β+3 α 3 ) θ 4 +( 16α β 2 +24 α 2 β+2 α 3 ) θ 3 +( 54α β 2 +12 β 3 +18 α 2 β ) θ 2 +( 36α β 2 +36 β 3 )θ+24 β 3 } θ 3 ( θα+2β ) 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaIZaaabeaakiabg2da9maalaaabaGaaGOmamaacmaaeaqa beaacqaHXoqydaahaaWcbeqaaiaaiodaaaGccqaH4oqCdaahaaWcbe qaaiaaiwdaaaGccqGHRaWkdaqadaqaaiaaiEdacqaHXoqydaahaaWc beqaaiaaikdaaaGccqaHYoGycqGHRaWkcaaIZaGaeqySde2aaWbaaS qabeaacaaIZaaaaaGccaGLOaGaayzkaaGaeqiUde3aaWbaaSqabeaa caaI0aaaaOGaey4kaSYaaeWaaeaacaaIXaGaaGOnaiabeg7aHjabek 7aInaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaikdacaaI0aGaeqyS de2aaWbaaSqabeaacaaIYaaaaOGaeqOSdiMaey4kaSIaaGOmaiabeg 7aHnaaCaaaleqabaGaaG4maaaaaOGaayjkaiaawMcaaiabeI7aXnaa CaaaleqabaGaaG4maaaaaOqaaiabgUcaRmaabmaabaGaaGynaiaais dacqaHXoqycqaHYoGydaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaI XaGaaGOmaiabek7aInaaCaaaleqabaGaaG4maaaakiabgUcaRiaaig dacaaI4aGaeqySde2aaWbaaSqabeaacaaIYaaaaOGaeqOSdigacaGL OaGaayzkaaGaeqiUde3aaWbaaSqabeaacaaIYaaaaOGaey4kaSYaae WaaeaacaaIZaGaaGOnaiabeg7aHjabek7aInaaCaaaleqabaGaaGOm aaaakiabgUcaRiaaiodacaaI2aGaeqOSdi2aaWbaaSqabeaacaaIZa aaaaGccaGLOaGaayzkaaGaeqiUdeNaey4kaSIaaGOmaiaaisdacqaH YoGydaahaaWcbeqaaiaaiodaaaaaaOGaay5Eaiaaw2haaaqaaiabeI 7aXnaaCaaaleqabaGaaG4maaaakmaabmaabaGaeqiUdeNaeqySdeMa ey4kaSIaaGOmaiabek7aIbGaayjkaiaawMcaamaaCaaaleqabaGaaG 4maaaaaaaaaa@9C6A@

μ 4 = 2{ α 4 θ 7 +( 13 α 4 +9 α 3 β ) θ 6 +( 30 α 2 β 2 +130 α 3 β+24 α 2 ) θ 5 +( 460 α 2 β 2 +44α β 3 +264 α 3 β+12 α 4 ) θ 4 +( 936 α 2 β 2 +24 β 4 +144 α 3 β+696α β 3 ) θ 3 +( 384 β 4 +1368α β 3 +504 α 2 β 2 ) θ 2 +( 720 β 4 +720α β 3 )θ+360 β 4 } θ 4 ( θα+2β ) 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaI0aaabeaakiabg2da9maalaaabaGaaGOmamaacmaaeaqa beaacqaHXoqydaahaaWcbeqaaiaaisdaaaGccqaH4oqCdaahaaWcbe qaaiaaiEdaaaGccqGHRaWkdaqadaqaaiaaigdacaaIZaGaeqySde2a aWbaaSqabeaacaaI0aaaaOGaey4kaSIaaGyoaiabeg7aHnaaCaaale qabaGaaG4maaaakiabek7aIbGaayjkaiaawMcaaiabeI7aXnaaCaaa leqabaGaaGOnaaaakiabgUcaRmaabmaabaGaaG4maiaaicdacqaHXo qydaahaaWcbeqaaiaaikdaaaGccqaHYoGydaahaaWcbeqaaiaaikda aaGccqGHRaWkcaaIXaGaaG4maiaaicdacqaHXoqydaahaaWcbeqaai aaiodaaaGccqaHYoGycqGHRaWkcaaIYaGaaGinaiabeg7aHnaaCaaa leqabaGaaGOmaaaaaOGaayjkaiaawMcaaiabeI7aXnaaCaaaleqaba GaaGynaaaaaOqaaiabgUcaRmaabmaabaGaaGinaiaaiAdacaaIWaGa eqySde2aaWbaaSqabeaacaaIYaaaaOGaeqOSdi2aaWbaaSqabeaaca aIYaaaaOGaey4kaSIaaGinaiaaisdacqaHXoqycqaHYoGydaahaaWc beqaaiaaiodaaaGccqGHRaWkcaaIYaGaaGOnaiaaisdacqaHXoqyda ahaaWcbeqaaiaaiodaaaGccqaHYoGycqGHRaWkcaaIXaGaaGOmaiab eg7aHnaaCaaaleqabaGaaGinaaaaaOGaayjkaiaawMcaaiabeI7aXn aaCaaaleqabaGaaGinaaaakiabgUcaRmaabmaabaGaaGyoaiaaioda caaI2aGaeqySde2aaWbaaSqabeaacaaIYaaaaOGaeqOSdi2aaWbaaS qabeaacaaIYaaaaOGaey4kaSIaaGOmaiaaisdacqaHYoGydaahaaWc beqaaiaaisdaaaGccqGHRaWkcaaIXaGaaGinaiaaisdacqaHXoqyda ahaaWcbeqaaiaaiodaaaGccqaHYoGycqGHRaWkcaaI2aGaaGyoaiaa iAdacqaHXoqycqaHYoGydaahaaWcbeqaaiaaiodaaaaakiaawIcaca GLPaaacqaH4oqCdaahaaWcbeqaaiaaiodaaaaakeaacqGHRaWkdaqa daqaaiaaiodacaaI4aGaaGinaiabek7aInaaCaaaleqabaGaaGinaa aakiabgUcaRiaaigdacaaIZaGaaGOnaiaaiIdacqaHXoqycqaHYoGy daahaaWcbeqaaiaaiodaaaGccqGHRaWkcaaI1aGaaGimaiaaisdacq aHXoqydaahaaWcbeqaaiaaikdaaaGccqaHYoGydaahaaWcbeqaaiaa ikdaaaaakiaawIcacaGLPaaacqaH4oqCdaahaaWcbeqaaiaaikdaaa GccqGHRaWkdaqadaqaaiaaiEdacaaIYaGaaGimaiabek7aInaaCaaa leqabaGaaGinaaaakiabgUcaRiaaiEdacaaIYaGaaGimaiabeg7aHj abek7aInaaCaaaleqabaGaaG4maaaaaOGaayjkaiaawMcaaiabeI7a XjabgUcaRiaaiodacaaI2aGaaGimaiabek7aInaaCaaaleqabaGaaG inaaaaaaGccaGL7bGaayzFaaaabaGaeqiUde3aaWbaaSqabeaacaaI 0aaaaOWaaeWaaeaacqaH4oqCcqaHXoqycqGHRaWkcaaIYaGaeqOSdi gacaGLOaGaayzkaaWaaWbaaSqabeaacaaI0aaaaaaaaaa@E515@

The coefficient of variation ( C.V ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaam 4qaiaac6cacaWGwbaacaGLOaGaayzkaaaaaa@3AEC@ , coefficient of Skewness ( β 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaWaaO aaaeaacqaHYoGydaWgaaWcbaGaaGymaaqabaaabeaaaOGaayjkaiaa wMcaaaaa@3B39@ , coefficient of Kurtosis ( β 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq OSdi2aaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaaaaa@3B2A@ and index of dispersion ( γ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq 4SdCgacaGLOaGaayzkaaaaaa@3A3E@ of the NTPSBPLD (2.1)) are thus obtained as 

C.V= σ μ 1 = 2{ α 2 θ 3 +( α 2 +5αβ ) θ 2 +( 6 β 2 +6αβ )θ+6 β 2 } { α θ 2 +2( α+β )θ+6β } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadoeacaGGUa GaamOvaiabg2da9maalaaabaGaeq4WdmhabaGafqiVd0MbauaadaWg aaWcbaGaaGymaaqabaaaaOGaeyypa0ZaaSaaaeaadaGcaaqaaiaaik dadaGadaqaaiabeg7aHnaaCaaaleqabaGaaGOmaaaakiabeI7aXnaa CaaaleqabaGaaG4maaaakiabgUcaRmaabmaabaGaeqySde2aaWbaaS qabeaacaaIYaaaaOGaey4kaSIaaGynaiabeg7aHjabek7aIbGaayjk aiaawMcaaiabeI7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRmaabm aabaGaaGOnaiabek7aInaaCaaaleqabaGaaGOmaaaakiabgUcaRiaa iAdacqaHXoqycqaHYoGyaiaawIcacaGLPaaacqaH4oqCcqGHRaWkca aI2aGaeqOSdi2aaWbaaSqabeaacaaIYaaaaaGccaGL7bGaayzFaaaa leqaaaGcbaWaaiWaaeaacqaHXoqycqaH4oqCdaahaaWcbeqaaiaaik daaaGccqGHRaWkcaaIYaWaaeWaaeaacqaHXoqycqGHRaWkcqaHYoGy aiaawIcacaGLPaaacqaH4oqCcqGHRaWkcaaI2aGaeqOSdigacaGL7b GaayzFaaaaaaaa@7822@

β 1 = μ 3 μ 2 3/2 = { α 3 θ 5 +( 7 α 2 β+3 α 3 ) θ 4 +( 16α β 2 +24 α 2 β+2 α 3 ) θ 3 +( 54α β 2 +12 β 3 +18 α 2 β ) θ 2 +( 36α β 2 +36 β 3 )θ+24 β 3 } 2 { α 2 θ 3 +( α 2 +5αβ ) θ 2 +( 6 β 2 +6αβ )θ+6 β 2 } 3/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaakaaabaGaeq OSdi2aaSbaaSqaaiaaigdaaeqaaaqabaGccqGH9aqpdaWcaaqaaiab eY7aTnaaBaaaleaacaaIZaaabeaaaOqaaiabeY7aTnaaBaaaleaaca aIYaaabeaakmaaCaaaleqabaWaaSGbaeaacaaIZaaabaGaaGOmaaaa aaaaaOGaeyypa0ZaaSaaaeaadaGadaabaeqabaGaeqySde2aaWbaaS qabeaacaaIZaaaaOGaeqiUde3aaWbaaSqabeaacaaI1aaaaOGaey4k aSYaaeWaaeaacaaI3aGaeqySde2aaWbaaSqabeaacaaIYaaaaOGaeq OSdiMaey4kaSIaaG4maiabeg7aHnaaCaaaleqabaGaaG4maaaaaOGa ayjkaiaawMcaaiabeI7aXnaaCaaaleqabaGaaGinaaaakiabgUcaRm aabmaabaGaaGymaiaaiAdacqaHXoqycqaHYoGydaahaaWcbeqaaiaa ikdaaaGccqGHRaWkcaaIYaGaaGinaiabeg7aHnaaCaaaleqabaGaaG Omaaaakiabek7aIjabgUcaRiaaikdacqaHXoqydaahaaWcbeqaaiaa iodaaaaakiaawIcacaGLPaaacqaH4oqCdaahaaWcbeqaaiaaiodaaa aakeaacqGHRaWkdaqadaqaaiaaiwdacaaI0aGaeqySdeMaeqOSdi2a aWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGymaiaaikdacqaHYoGyda ahaaWcbeqaaiaaiodaaaGccqGHRaWkcaaIXaGaaGioaiabeg7aHnaa CaaaleqabaGaaGOmaaaakiabek7aIbGaayjkaiaawMcaaiabeI7aXn aaCaaaleqabaGaaGOmaaaakiabgUcaRmaabmaabaGaaG4maiaaiAda cqaHXoqycqaHYoGydaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIZa GaaGOnaiabek7aInaaCaaaleqabaGaaG4maaaaaOGaayjkaiaawMca aiabeI7aXjabgUcaRiaaikdacaaI0aGaeqOSdi2aaWbaaSqabeaaca aIZaaaaaaakiaawUhacaGL9baaaeaadaGcaaqaaiaaikdaaSqabaGc daGadaqaaiabeg7aHnaaCaaaleqabaGaaGOmaaaakiabeI7aXnaaCa aaleqabaGaaG4maaaakiabgUcaRmaabmaabaGaeqySde2aaWbaaSqa beaacaaIYaaaaOGaey4kaSIaaGynaiabeg7aHjabek7aIbGaayjkai aawMcaaiabeI7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRmaabmaa baGaaGOnaiabek7aInaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaiA dacqaHXoqycqaHYoGyaiaawIcacaGLPaaacqaH4oqCcqGHRaWkcaaI 2aGaeqOSdi2aaWbaaSqabeaacaaIYaaaaaGccaGL7bGaayzFaaWaaW baaSqabeaadaWcgaqaaiaaiodaaeaacaaIYaaaaaaaaaaaaa@BF41@

β 2 = μ 4 μ 2 2 = { α 4 θ 7 +( 13 α 4 +9 α 3 β ) θ 6 +( 30 α 2 β 2 +130 α 3 β+24 α 2 ) θ 5 +( 460 α 2 β 2 +44α β 3 +264 α 3 β+12 α 4 ) θ 4 +( 936 α 2 β 2 +24 β 4 +144 α 3 β+696α β 3 ) θ 3 +( 384 β 4 +1368α β 3 +504 α 2 β 2 ) θ 2 +( 720 β 4 +720α β 3 )θ+360 β 4 } 2 { α 2 θ 3 +( α 2 +5αβ ) θ 2 +( 6 β 2 +6αβ )θ+6 β 2 } 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek7aInaaBa aaleaacaaIYaaabeaakiabg2da9maalaaabaGaeqiVd02aaSbaaSqa aiaaisdaaeqaaaGcbaGaeqiVd02aaSbaaSqaaiaaikdaaeqaaOWaaW baaSqabeaacaaIYaaaaaaakiabg2da9maalaaabaWaaiWaaqaabeqa aiabeg7aHnaaCaaaleqabaGaaGinaaaakiabeI7aXnaaCaaaleqaba GaaG4naaaakiabgUcaRmaabmaabaGaaGymaiaaiodacqaHXoqydaah aaWcbeqaaiaaisdaaaGccqGHRaWkcaaI5aGaeqySde2aaWbaaSqabe aacaaIZaaaaOGaeqOSdigacaGLOaGaayzkaaGaeqiUde3aaWbaaSqa beaacaaI2aaaaOGaey4kaSYaaeWaaeaacaaIZaGaaGimaiabeg7aHn aaCaaaleqabaGaaGOmaaaakiabek7aInaaCaaaleqabaGaaGOmaaaa kiabgUcaRiaaigdacaaIZaGaaGimaiabeg7aHnaaCaaaleqabaGaaG 4maaaakiabek7aIjabgUcaRiaaikdacaaI0aGaeqySde2aaWbaaSqa beaacaaIYaaaaaGccaGLOaGaayzkaaGaeqiUde3aaWbaaSqabeaaca aI1aaaaaGcbaGaey4kaSYaaeWaaeaacaaI0aGaaGOnaiaaicdacqaH XoqydaahaaWcbeqaaiaaikdaaaGccqaHYoGydaahaaWcbeqaaiaaik daaaGccqGHRaWkcaaI0aGaaGinaiabeg7aHjabek7aInaaCaaaleqa baGaaG4maaaakiabgUcaRiaaikdacaaI2aGaaGinaiabeg7aHnaaCa aaleqabaGaaG4maaaakiabek7aIjabgUcaRiaaigdacaaIYaGaeqyS de2aaWbaaSqabeaacaaI0aaaaaGccaGLOaGaayzkaaGaeqiUde3aaW baaSqabeaacaaI0aaaaOGaey4kaSYaaeWaaeaacaaI5aGaaG4maiaa iAdacqaHXoqydaahaaWcbeqaaiaaikdaaaGccqaHYoGydaahaaWcbe qaaiaaikdaaaGccqGHRaWkcaaIYaGaaGinaiabek7aInaaCaaaleqa baGaaGinaaaakiabgUcaRiaaigdacaaI0aGaaGinaiabeg7aHnaaCa aaleqabaGaaG4maaaakiabek7aIjabgUcaRiaaiAdacaaI5aGaaGOn aiabeg7aHjabek7aInaaCaaaleqabaGaaG4maaaaaOGaayjkaiaawM caaiabeI7aXnaaCaaaleqabaGaaG4maaaaaOqaaiabgUcaRmaabmaa baGaaG4maiaaiIdacaaI0aGaeqOSdi2aaWbaaSqabeaacaaI0aaaaO Gaey4kaSIaaGymaiaaiodacaaI2aGaaGioaiabeg7aHjabek7aInaa CaaaleqabaGaaG4maaaakiabgUcaRiaaiwdacaaIWaGaaGinaiabeg 7aHnaaCaaaleqabaGaaGOmaaaakiabek7aInaaCaaaleqabaGaaGOm aaaaaOGaayjkaiaawMcaaiabeI7aXnaaCaaaleqabaGaaGOmaaaaki abgUcaRmaabmaabaGaaG4naiaaikdacaaIWaGaeqOSdi2aaWbaaSqa beaacaaI0aaaaOGaey4kaSIaaG4naiaaikdacaaIWaGaeqySdeMaeq OSdi2aaWbaaSqabeaacaaIZaaaaaGccaGLOaGaayzkaaGaeqiUdeNa ey4kaSIaaG4maiaaiAdacaaIWaGaeqOSdi2aaWbaaSqabeaacaaI0a aaaaaakiaawUhacaGL9baaaeaacaaIYaWaaiWaaeaacqaHXoqydaah aaWcbeqaaiaaikdaaaGccqaH4oqCdaahaaWcbeqaaiaaiodaaaGccq GHRaWkdaqadaqaaiabeg7aHnaaCaaaleqabaGaaGOmaaaakiabgUca RiaaiwdacqaHXoqycqaHYoGyaiaawIcacaGLPaaacqaH4oqCdaahaa WcbeqaaiaaikdaaaGccqGHRaWkdaqadaqaaiaaiAdacqaHYoGydaah aaWcbeqaaiaaikdaaaGccqGHRaWkcaaI2aGaeqySdeMaeqOSdigaca GLOaGaayzkaaGaeqiUdeNaey4kaSIaaGOnaiabek7aInaaCaaaleqa baGaaGOmaaaaaOGaay5Eaiaaw2haamaaCaaaleqabaGaaGOmaaaaaa aaaa@0610@

γ= σ 2 μ 1 = 2{ α 2 θ 3 +( α 2 +5αβ ) θ 2 +( 6 β 2 +6αβ )θ+6 β 2 } θ( θα+2β ){ ( α θ 2 +2( α+β )θ+6β ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo7aNjabg2 da9maalaaabaGaeq4Wdm3aaWbaaSqabeaacaaIYaaaaaGcbaGaeqiV d02aaSbaaSqaaiaaigdaaeqaaOWaaWbaaSqabeaakiadacUHYaIOaa aaaiabg2da9maalaaabaGaaGOmamaacmaabaGaeqySde2aaWbaaSqa beaacaaIYaaaaOGaeqiUde3aaWbaaSqabeaacaaIZaaaaOGaey4kaS YaaeWaaeaacqaHXoqydaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaI 1aGaeqySdeMaeqOSdigacaGLOaGaayzkaaGaeqiUde3aaWbaaSqabe aacaaIYaaaaOGaey4kaSYaaeWaaeaacaaI2aGaeqOSdi2aaWbaaSqa beaacaaIYaaaaOGaey4kaSIaaGOnaiabeg7aHjabek7aIbGaayjkai aawMcaaiabeI7aXjabgUcaRiaaiAdacqaHYoGydaahaaWcbeqaaiaa ikdaaaaakiaawUhacaGL9baaaeaacqaH4oqCdaqadaqaaiabeI7aXj abeg7aHjabgUcaRiaaikdacqaHYoGyaiaawIcacaGLPaaadaGadaqa amaabmaabaGaeqySdeMaeqiUde3aaWbaaSqabeaacaaIYaaaaOGaey 4kaSIaaGOmamaabmaabaGaeqySdeMaey4kaSIaeqOSdigacaGLOaGa ayzkaaGaeqiUdeNaey4kaSIaaGOnaiabek7aIbGaayjkaiaawMcaaa Gaay5Eaiaaw2haaaaaaaa@86B1@

The graphs of coefficient of variation ( C.V ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaam 4qaiaac6cacaWGwbaacaGLOaGaayzkaaaaaa@3AEC@ , coefficient of Skewness ( β 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaWaaO aaaeaacqaHYoGydaWgaaWcbaGaaGymaaqabaaabeaaaOGaayjkaiaa wMcaaaaa@3B39@ , coefficient of Kurtosis ( β 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq OSdi2aaSbaaSqaaiaaikd aaeqaaaGccaGLOaGaayzkaaaaaa@3B2A@ and index of dispersion ( γ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq 4SdCgacaGLOaGaayzkaaaaaa@3A3E@ of the NTPSBPLD are shown in figures 2,3,4 and 5 respectively.

Figure 2 Graphs of coefficient of Variation of the NTPSBPLD for varying values of the parameters ( θ,α,β ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeGaeqiUdeNaaiilaiabeg7aHjaacYcacqaHYoGyaOGaayjk aiaawMcaaaaa@3F06@ .

Figure 3 Graphs of coefficient of Skewness of the NTPSBPLD for varying values of the parameters ( θ,α,β ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeGaeqiUdeNaaiilaiabeg7aHjaacYcacqaHYoGyaOGaayjk aiaawMcaaaaa@3F06@ .

Figure 4 Graphs of Coefficient of Kurtosis of the NTPSBPLD for varying values of the parameter ( θ,α,β ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeGaeqiUdeNaaiilaiabeg7aHjaacYcacqaHYoGyaOGaayjk aiaawMcaaaaa@3F06@ .

Figure 5 Index of dispersion of the NTPSBPLD for varying values of the parameter ( θ,α,β ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeGaeqiUdeNaaiilaiabeg7aHjaacYcacqaHYoGyaOGaayjk aiaawMcaaaaa@3F06@ .

Maximum likelihood estimation

Let us consider ( x 1 , x 2 , x 3 ,..., x n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaam iEamaaBaaaleaacaaIXaaabeaakiaacYcacaWG4bWaaSbaaSqaaiaa ikdaaeqaaOGaaiilaiaadIhadaWgaaWcbaGaaG4maaqabaGccaGGSa GaaiOlaiaac6cacaGGUaGaaiilaiaadIhadaWgaaWcbaGaamOBaaqa baaakiaawIcacaGLPaaaaaa@4560@ as random sample from NTPSBPLD ( θ,α,β ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq iUdeNaaiilaiabeg7aHjaacYcacqaHYoGyaiaawIcacaGLPaaaaaa@3EED@ . Suppose f x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaWgaa WcbaGaamiEaaqabaaaaa@3922@ be the observed frequency in the sample corresponding to X=x(x=1,2,3,...,k) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfacqGH9a qpcaWG4bGaaGPaVlaaykW7caGGOaGaamiEaiabg2da9iaaigdacaGG SaGaaGOmaiaacYcacaaIZaGaaiilaiaac6cacaGGUaGaaiOlaiaacY cacaWGRbGaaiykaaaa@485A@ such that x=1 k f x =n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaqahabaGaam OzamaaBaaaleaacaWG4baabeaaaeaacaWG4bGaeyypa0JaaGymaaqa aiaadUgaa0GaeyyeIuoakiabg2da9iaad6gaaaa@410A@ , where k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUgaaaa@37FE@ is the largest observed value having non-zero frequency. The likelihood function L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeaaaa@37DF@ of NTPSBPLD ( θ,α,β ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq iUdeNaaiilaiabeg7aHjaacYcacqaHYoGyaiaawIcacaGLPaaaaaa@3EED@ can be expressed as

L= ( θ 3 θα+2β ) n 1 ( θ+1 ) x=1 k f x ( x+2 ) Π x=1 k [ β x 2 +( θα+α+β )x ] f x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeacqGH9a qpdaqadaqaamaalaaabaGaeqiUde3aaWbaaSqabeaacaaIZaaaaaGc baGaeqiUdeNaeqySdeMaey4kaSIaaGOmaiabek7aIbaaaiaawIcaca GLPaaadaahaaWcbeqaaiaad6gaaaGcdaWcaaqaaiaaigdaaeaadaqa daqaaiabeI7aXjabgUcaRiaaigdaaiaawIcacaGLPaaadaahaaWcbe qaamaaqahabaGaamOzamaaBaaameaacaWG4baabeaaaeaacaWG4bGa eyypa0JaaGymaaqaaiaadUgaa4GaeyyeIuoalmaabmaabaGaamiEai abgUcaRiaaikdaaiaawIcacaGLPaaaaaaaaOWaaCbmaeaacqqHGoau aSqaaiaadIhacqGH9aqpcaaIXaaabaGaam4AaaaakmaadmaabaGaeq OSdiMaamiEamaaCaaaleqabaGaaGOmaaaakiabgUcaRmaabmaabaGa eqiUdeNaeqySdeMaey4kaSIaeqySdeMaey4kaSIaeqOSdigacaGLOa GaayzkaaGaamiEaaGaay5waiaaw2faamaaCaaaleqabaGaamOzamaa BaaameaacaWG4baabeaaaaaaaa@7002@ .

The log likelihood function of NTPSBPLD ( θ,α,β ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq iUdeNaaiilaiabeg7aHjaacYcacqaHYoGyaiaawIcacaGLPaaaaaa@3EED@ is

    logL=n{ 3logθlog( θα+2β ) } x=1 k f x ( x+2 )log( θ+1 )+ x=1 k f x log{ β x 2 +( θα+α+β )x } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiGacYgacaGGVb Gaai4zaiaadYeacqGH9aqpcaWGUbWaaiWaaeaacaaIZaGaciiBaiaa c+gacaGGNbGaeqiUdeNaeyOeI0IaciiBaiaac+gacaGGNbWaaeWaae aacqaH4oqCcqaHXoqycqGHRaWkcaaIYaGaeqOSdigacaGLOaGaayzk aaaacaGL7bGaayzFaaGaeyOeI0YaaabCaeaacaWGMbWaaSbaaSqaai aadIhaaeqaaaqaaiaadIhacqGH9aqpcaaIXaaabaGaam4AaaqdcqGH ris5aOWaaeWaaeaacaWG4bGaey4kaSIaaGOmaaGaayjkaiaawMcaai GacYgacaGGVbGaai4zamaabmaabaGaeqiUdeNaey4kaSIaaGymaaGa ayjkaiaawMcaaiabgUcaRmaaqahabaGaamOzamaaBaaaleaacaWG4b aabeaaaeaacaWG4bGaeyypa0JaaGymaaqaaiaadUgaa0GaeyyeIuoa kiGacYgacaGGVbGaai4zamaacmaabaGaeqOSdiMaamiEamaaCaaale qabaGaaGOmaaaakiabgUcaRmaabmaabaGaeqiUdeNaeqySdeMaey4k aSIaeqySdeMaey4kaSIaeqOSdigacaGLOaGaayzkaaGaamiEaaGaay 5Eaiaaw2haaaaa@81EE@    

The maximum likelihood estimates, MLE’s ( θ ^ , α ^ , β ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGafq iUdeNbaKaacaGGSaGafqySdeMbaKaacaGGSaGafqOSdiMbaKaaaiaa wIcacaGLPaaaaaa@3F1D@ , of parameters ( θ,α,β ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq iUdeNaaiilaiabeg7aHjaacYcacqaHYoGyaiaawIcacaGLPaaaaaa@3EED@ of NTPSBPLD ( θ,α,β ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq iUdeNaaiilaiabeg7aHjaacYcacqaHYoGyaiaawIcacaGLPaaaaaa@3EED@ is the solutions of the following log likelihood equations

     logL θ = 3n θ 3nα θα+2β n( x ¯ +2 ) θ+1 + x=1 k αx f x β x 2 +( θα+α+β )x =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaey OaIyRaciiBaiaac+gacaGGNbGaamitaaqaaiabgkGi2kabeI7aXbaa cqGH9aqpdaWcaaqaaiaaiodacaWGUbaabaGaeqiUdehaaiabgkHiTm aalaaabaGaaG4maiaad6gacaaMc8UaeqySdegabaGaeqiUdeNaaGPa Vlabeg7aHjabgUcaRiaaikdacqaHYoGyaaGaeyOeI0YaaSaaaeaaca WGUbGaaGPaVpaabmaabaGabmiEayaaraGaey4kaSIaaGOmaaGaayjk aiaawMcaaaqaaiabeI7aXjabgUcaRiaaigdaaaGaey4kaSYaaabCae aadaWcaaqaaiabeg7aHjaaykW7caWG4bGaaGPaVlaadAgadaWgaaWc baGaamiEaaqabaaakeaacqaHYoGycaaMc8UaamiEamaaCaaaleqaba GaaGOmaaaakiabgUcaRmaabmaabaGaeqiUdeNaaGPaVlabeg7aHjab gUcaRiabeg7aHjabgUcaRiabek7aIbGaayjkaiaawMcaaiaadIhaaa aaleaacaWG4bGaeyypa0JaaGymaaqaaiaadUgaa0GaeyyeIuoakiab g2da9iaaicdaaaa@7FA1@      logL α = nθ θα+2β + x=1 k ( θ+1 )x f x β x 2 +( θα+α+β )x =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaey OaIyRaciiBaiaac+gacaGGNbGaamitaaqaaiabgkGi2kabeg7aHbaa cqGH9aqpcqGHsisldaWcaaqaaiaad6gacaaMc8UaeqiUdehabaGaeq iUdeNaaGPaVlabeg7aHjabgUcaRiaaikdacqaHYoGyaaGaey4kaSYa aabCaeaadaWcaaqaamaabmaabaGaeqiUdeNaey4kaSIaaGymaaGaay jkaiaawMcaaiaadIhacaaMc8UaamOzamaaBaaaleaacaWG4baabeaa aOqaaiabek7aIjaaykW7caWG4bWaaWbaaSqabeaacaaIYaaaaOGaey 4kaSYaaeWaaeaacqaH4oqCcaaMc8UaeqySdeMaey4kaSIaeqySdeMa ey4kaSIaeqOSdigacaGLOaGaayzkaaGaamiEaaaaaSqaaiaadIhacq GH9aqpcaaIXaaabaGaam4AaaqdcqGHris5aOGaeyypa0JaaGimaaaa @7216@      logL β = 2n θα+2β + x=1 k ( x 2 +x ) f x β x 2 +( θα+α+β )x =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaey OaIyRaciiBaiaac+gacaGGNbGaamitaaqaaiabgkGi2kabek7aIbaa cqGH9aqpcqGHsisldaWcaaqaaiaaikdacaWGUbaabaGaeqiUdeNaaG PaVlabeg7aHjabgUcaRiaaikdacqaHYoGyaaGaey4kaSYaaabCaeaa daWcaaqaamaabmaabaGaamiEamaaCaaaleqabaGaaGOmaaaakiabgU caRiaadIhaaiaawIcacaGLPaaacaWGMbWaaSbaaSqaaiaadIhaaeqa aaGcbaGaeqOSdiMaaGPaVlaadIhadaahaaWcbeqaaiaaikdaaaGccq GHRaWkdaqadaqaaiabeI7aXjaaykW7cqaHXoqycqGHRaWkcqaHXoqy cqGHRaWkcqaHYoGyaiaawIcacaGLPaaacaWG4baaaaWcbaGaamiEai abg2da9iaaigdaaeaacaWGRbaaniabggHiLdGccqGH9aqpcaaIWaaa aa@6D87@ ,     

where x ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadIhagaqeaa aa@3823@ is the sample mean.

Since these log likelihood equations cannot be expressed in closed forms and hence do not seem to be solved directly, the (MLE’s) ( θ ^ , α ^ , β ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGafq iUdeNbaKaacaGGSaGafqySdeMbaKaacaGGSaGafqOSdiMbaKaaaiaa wIcacaGLPaaaaaa@3F1D@ of parameters ( θ,α,β ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq iUdeNaaiilaiabeg7aHjaacYcacqaHYoGyaiaawIcacaGLPaaaaaa@3EED@ can be computed directly by solving the log likelihood equation using R-software till sufficiently close estimates of ( θ ^ , α ^ , β ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGafq iUdeNbaKaacaGGSaGafqySdeMbaKaacaGGSaGafqOSdiMbaKaaaiaa wIcacaGLPaaaaaa@3F1D@ are attained.

Goodness of fit

The goodness of fit of NTPSBPLD has been discussed with several count data from various fields of knowledge. The expected frequencies according to the SBPLD, SBQPLD and SBNQPLD using maximum likelihood estimates of parameters have also been given in these tables for ready comparison with those obtained by the NTPSBPLD. Clearly the goodness of fit of NTPSBPLD provides better fit over SBPLD and competing well with SBQPLD and SBNQPLD in majority of datasets. In some of the tables the degree of freedom is zero, and hence p-values have not been given and thus in such tables comparisons can be done on the basis of values of and AIC (Akaike information criterion). The datasets considered for testing the goodness of fit of SBPLD, SBQPLD, SBNQPLD and NTPSBPLD as follows: (Tables i-x)

Group Size

Observed frequency

Expected frequency

SBPLD

SBQPLD

SBNQPLD

NTPSBPLD

1
2
3
4
5
6

1486
694
195
37
10
1

1532.5
630.6
191.9
51.3
12.8
3.9

1485.4
697.2
189.7
41.1
7.8
1.8

1505.5
656.8
202.5
49.2
9.0
0.0

1485.4
697.2
189.7
41.1
7.8

Total

2423

2423.0

2423

 

 

ML Estimate

 

θ ^ =4.5082 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja Gaeyypa0JaaGinaiaac6cacaaI1aGaaGimaiaaiIdacaaIYaaaaa@3E41@

θ ^ = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja Gaeyypa0daaa@39DA@ 7.14063
α ^ = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeg7aHzaaja Gaeyypa0daaa@39C3@ -0.79104

θ ^ = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja Gaeyypa0daaa@39DA@ 2.69606
α ^ = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeg7aHzaaja Gaeyypa0daaa@39C3@ -1.39128

θ ^ = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja Gaeyypa0daaa@39DA@ 7.1386
α ^ = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeg7aHzaaja Gaeyypa0daaa@39C3@ -0.9318
β ^ =8.4164 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbek7aIzaaja Gaeyypa0JaaGioaiaac6cacaaI0aGaaGymaiaaiAdacaaI0aaaaa@3E30@

χ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE8aJnaaCa aaleqabaGaaGOmaaaaaaa@39AE@

 

13.760

0.776

6.1

0.77

d.f.

 

3

2

2

1

p-value

 

0.003

0.6804

0.04735

0.3802

2 log L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgkHiTiaaik daciGGSbGaai4BaiaacEgacaWGmbaaaa@3C58@

 

4622.36

4607.8

4610.0

4607.8

AIC

 

4624.36

4611.8

4614.0

4613.8

Table i Pedestrians-Eugene, Spring, Morning, available in Coleman and James21

Group Size

Observed frequency

Expected frequency

SBPLD

SBQPLD

SBNQPLD

NTPSBPLD

1
2
3
4
5

316
141
44
5
4

322.9
132.5
40.2
10.7
3.7

315.7
142.7
40.1
9.1
2.4

313.5
141.4
44.1
10.4
0.6

315.7
142.7
40.1
9.1
2.4

Total

510

510.0

510.0

 

 

ML Estimate

 

θ ^ = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja Gaeyypa0daaa@39DA@ 4.5211

θ ^ = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja Gaeyypa0daaa@39DA@ 6.5501
α ^ = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeg7aHzaaja Gaeyypa0daaa@39C3@ -0.5069

θ ^ = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja Gaeyypa0daaa@39DA@ 2.4693
α ^ = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeg7aHzaaja Gaeyypa0daaa@39C3@ -1.2977

θ ^ = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja Gaeyypa0daaa@39DA@ 6.5560
α ^ = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeg7aHzaaja Gaeyypa0daaa@39C3@ -0.6029
β ^ =7.7499 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbek7aIzaaja Gaeyypa0JaaG4naiaac6cacaaI3aGaaGinaiaaiMdacaaI5aaaaa@3E3D@

χ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE8aJnaaCa aaleqabaGaaGOmaaaaaaa@39AE@

 

3.07

0.94

0.38

0.94

d.f.

 

2

1

1

0

p-value

 

0.2154

0.3322

0.5376

 

2logL MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgkHiTiaaik daciGGSbGaai4BaiaacEgacaWGmbaaaa@3C58@

 

972.78

971.07

970.24

971.07

AIC

 

974.78

975.07

974.24

977.07

Table ii Play Groups-Eugene, spring, Public Playground A, available in Coleman and James21

Group Size

Observed frequency

Expected frequency

SBPLD

SBQPLD

SBNQPLD

NTPSBPLD

1
2
3
4
5

306
132
47
10
2

309.4
131.2
41.1
11.3
4.0

304.4
137.9
41.3
10.3
3.1

306.4
134.4
41.6
11.0
3.6

304.4
137.9
41.3
10.3
3.1

Total

497

497.0

 

 

 

ML Estimate

 

θ ^ =4.3548 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja Gaeyypa0JaaGinaiaac6cacaaIZaGaaGynaiaaisdacaaI4aaaaa@3E46@

θ ^ = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja Gaeyypa0daaa@39DA@ 5.71547
α ^ = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeg7aHzaaja Gaeyypa0daaa@39C3@ -0.06947

θ ^ = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja Gaeyypa0daaa@39DA@ 4.9998
α ^ = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeg7aHzaaja Gaeyypa0daaa@39C3@ 25.6948

θ ^ = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja Gaeyypa0daaa@39DA@ 5.7156
α ^ = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeg7aHzaaja Gaeyypa0daaa@39C3@ -0.0708
β ^ =5.8180 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbek7aIzaaja Gaeyypa0JaaGynaiaac6cacaaI4aGaaGymaiaaiIdacaaIWaaaaa@3E2F@

χ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE8aJnaaCa aaleqabaGaaGOmaaaaaaa@39AE@

 

0.932

1.19

1.2

1.19

d.f.

 

2

1

1

0

p-value

 

0.6281

0.2753

0.2733

 

2logL MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgkHiTiaaik daciGGSbGaai4BaiaacEgacaWGmbaaaa@3C58@

 

971.86

970.96

971.25

970.9

AIC

 

973.86

974.96

975.25

976.9

Table iii Play Groups-Eugene, spring, Public Playground A, available in Coleman and James21

Group Size

Observed frequency

Expected frequency

SBPLD

SBQPLD

SBNQPLD

NTPSBPLD

1
2
3
4
5
6

305
144
50
5
2
1

314.4
134.4
42.5
11.8
3.1
0.8

304.3
148.2
42.3
9.6
1.9
0.7

310.1
138.8
43.1
11.3
2.7
1.0

304.3
148.2
42.3
9.6
1.9
0.7

Total

507

507.0

507.0

507.0

 

ML Estimate

θ^=4.3179

θ^= 6.70804
α^= -0.74907

θ ^ = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja Gaeyypa0daaa@39DA@ 6.70804
α ^ = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeg7aHzaaja Gaeyypa0daaa@39C3@ -0.74907

θ ^ = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja Gaeyypa0daaa@39DA@ 5.1516
α ^ = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeg7aHzaaja Gaeyypa0daaa@39C3@ 48.6067

θ ^ = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja Gaeyypa0daaa@39DA@ 6.7082
α ^ = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeg7aHzaaja Gaeyypa0daaa@39C3@ -0.8290
β ^ =7.4234 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbek7aIzaaja Gaeyypa0JaaG4naiaac6cacaaI0aGaaGOmaiaaiodacaaI0aaaaa@3E2D@

χ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE8aJnaaCa aaleqabaGaaGOmaaaaaaa@39AE@

 

6.415

2.96

4.64

2.96

d.f.

 

2

1

1

0

p-value

 

0.040

0.0853

0.0312

 

2logL

 

993.10

990.02

991.51

990.02

AIC

 

995.1

994.02

995.51

996.02

Table iv Play Groups-Eugene, Spring, Public Playground D, available in Coleman and James21

Group Size

Observed frequency

Expected frequency

SBPLD

SBQPLD

SBNQPLD

NTPSBPLD

1
2
3
4
5

276
229
61
12
3

319.6
166.5
63.8
21.4
9.7

276.0
228.3
61.9
12.2
2.6

313.7
173.1
65.2
20.7
8.3

276.0
228.3
61.9
12.2
2.6

Total

581

581.0

581.0

581.0

581.0

ML Estimate

θ^=4.3179

θ^= 3.4359
α^= -0.74907

θ^=

8.6724
α^ = -1.4944

θ^= 4.1645
α^= 61.0287
β^=7.4234

θ^= 8.6726
α^= -2.5854
β^=15.0041

χ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE8aJnaaCa aaleqabaGaaGOmaaaaaaa@39AE@

 

37.86

0.017

29.6

0.017

d.f.

 

2

1

1

0

p-value

 

0.00

0.8962

0.000

0.0000

2logL

 

1277.42

1238.11

1268.77

1238.11

AIC

 

1279.42

1242.11

1272.77

1244.11

Table v Play Groups-Eugene, Spring, Public Playground D, available in Coleman and James21

No. of sites with particles

Observed Frequency

Expected Frequency

SBPLD

SBQPLD

SBNQPLD

NTPSBPLD

1
2
3
4
5

122
50
18
4
4

119.0
53.8
18.0
5.31.9}

119.2
53.5
17.9
5.3
2.1

119.3
53.3
17.8
5.3
2.3

119.3
53.3
17.8
5.3
2.3

Total

198

198.0

198.0

198.0

198.0

ML estimate

 

θ^=4.050987

θ^= 3.7564
α^= 10.1281

θ^= 3.4795
α^= 0.0216

θ^= 3.4737
α^= 1.3965
β^=0.0001

χ2

 

0.43

0.34

0.28

0.28

d.f.

 

2

1

1

0

p-value

 

0.8065

0.5598

0.5967

 

2logL

 

409.28

409.17

409.13

409.13

AIC

 

411.28

413.17

413.13

415.13

Table vi Distribution of number of counts of sites with particles from Immunogold data, available in Mathews and Appleton22

No. times hares caught

Observed Frequency

Expected Frequency

SBPLD

SBQPLD

SBNQPLD

NTPSBPLD

1
2
3
4
5

184
55
14
4
4

177.3
62.5
16.43.81.0}

177.4
62.3
16.3
3.8
1.2

177.5
62.2
16.3
3.8
1.2

177.5
62.2
16.3
3.8
1.2

Total

261

261.0

261

261.0

 

ML estimate

 

θ^=5.351256

θ^= 4.9800
α^= 14.9193

θ^= 4.6959
α^= -0.0302

θ^= 4.6994
α^= 12.0044
β^=0.0390

χ2

 

1.18

3.2

3.19

3.19

d.f.

 

1

1

1

0

p-value

 

0.2773

0.0736

0.07409

 

2logL

 

457.10

456.86

456.80

456.80

AIC

 

459.10

460.86

460.80

462.80

Table vii Distribution of snowshoe hares captured over 7 days, available in Keith and Meslow23

Number of pairs of running shoes

Observed frequency

Expected Frequency

SBPLD

SBQPLD

SBNQPLD

NTPSBPLD

1

18

20.3

17.4

19.5

17.4

2

18

17.4

19.6

18.0

19.6

3

12

10.9

12.3

11.3

12.3

4
5

7
5

5.9
5.5

6.1
4.6

6.0
5.2

6.1
4.6

Total

60

60.0

60.0

60

60

ML Estimate

 

θ^=1.818978

θ^= 2.5858
α^= -0.7318

θ^= 2.08739
α^= 17.3228

θ^= 2.5870
α^= -0.4739
β^=1.6732

χ2

 

0.64

0.31

0.33

0.31

d.f.

 

3

1

2

0

P-value

 

0.8872

0.5777

0.8478

 

2logL

 

187.08

185.55

186.33

185.55

AIC

 

189.08

189.55

190.33

191.55

Table viii Number of counts of pairs of running shoes owned by 60 members of an athletics club, reported by Simonoff24

Number of fly eggs

Observed Frequency

Expected Frequency

SBPLD

SBQPLD

SBNQPLD

NTPSBPLD

1
2
3
4
5
6
7
8
9

22
18
18
11
9
6
3
0
1

20.3
22.0
17.2
11.6
7.2
4.2
2.4
1.3
1.8

19.8
22.1
17.5
11.8
7.3
4.2
2.3
1.3
1.7

19.8
22.1
17.5
11.8
7.3
4.2
2.3
1.3
1.7

19.8
22.1
17.5
11.8
7.3
4.2
2.3
1.3
1.7

Total

88

 

88.0

88.0

88.0

ML estimate

 

θ^= 1.2822

θ^= 1.3483
α^= 0.6925

θ^= 1.3465
α^= 2.5654

θ^= 1.4477
α^= 0.4315
β^=1.3594

χ2

 

1.39

1.49

1.49

1.49

d.f.

 

4

3

3

3

p-value

 

0.8459

0.6845

0.6845

0.6845

2logL

 

329.92

329.86

329.86

329.86

AIC

 

331.92

333.86

333.86

335.86

Table ix The numbers of counts of flower heads as per the number of fly eggs reported by Finney and Varley25

X

Observed frequency

Expected frequency

SBPLD

SBQPLD

SBNQPLD

NTPSBPLD

1

375

262.8

363.3

363.6

363.6

2

143

157.4

156.5

156.3

156.3

3

49

50.4

50.4

50.4

50.4

4
5
6
7
8

17
2
2
1
1

14.2
3.7
0.9
0.2
0.3

14.4
3.9
1.0
0.2
0.4

14.4
3.8
1.0
0.2
0.3

14.4
3.8
1.0
0.2
0.3

Total

590

590.0

590.0

590.0

590.0

ML Estimate

 

θ^= 4.24

θ^= 3.8386
α^= 17.2968

θ^= 3.6534
α^= 0.00067

θ^= 3.6504
α^= 12.9869
β^= 0.0377

χ2

 

2.48

2.11

2.08

2.08

d.f.

 

3

2

2

1

P-value

 

0.4789

0.3481

0.3534

0.1492

2logL

 

1190.4

1189.67

1189.57

1189.57

AIC

 

1192.4

1193.67

1193.57

1193.57

Table x Number of households having at least one migrant according to the number of observed migrants, reported by Singh and Yadav26

Conclusion

A new three-parameter size-biased Poisson-Lindley distribution which includes several size-biased distributions including size-biased geometric distribution (SBGD), size-biased negative binomial distribution (SBNBD), size-biased Poisson-Lindley distribution (SBPLD), size-biased Poisson-Shanker distribution (SBPSD), size-biased two-parameter Poisson-Lindley distribution-1 (SBTPPLD-1), size-biased two-parameter Poisson-Lindley distribution-2 (SBTPPLD-2), size-biased quasi Poisson-Lindley distribution (SBQPLD) and size-biased new quasi Poisson-Lindley distribution (SBNQPLD) for particular values of parameters has been proposed. Its coefficient of variation, skewness, kurtosis and index of dispersion has been studied. Estimation of parameters has been discussed using maximum likelihood. Goodness of fit of the proposed distribution has been discussed with several count datasets.

Acknowledgments

Authors are grateful to the Editor-In-Chief of the Journal and the anonymous reviewer for minor comments for the improvement in the paper.

Conflicts of interest

Authors declare that there is no conflict of interests.

References

  1. Shanker R, Shukla KK, Shanker R, et al. A three–parameter lindley distribution. American Journal of Mathematics and Statistics. 2017;7(1):15–26.
  2. Lindley DV. Fiducial distributions and Bayes’ theorem. Journal of the Royal Statistical Society, Series B. 1958;20:102–107.
  3. Ghitany ME, Atieh B, Nadarajah S. Lindley distribution and its application. Mathematics Computing and Simulation. 2008;78:493–506.
  4. Das KK, Ahmad J, Bhattacharjee S. A new three–parameter poisson–lindley distribution for modeling over dispersed count data, International journal of Applied Engineering Research. 2018;13(25):16468–16477.
  5. Ghitany ME, Al–Mutairi DK. Size–biased poisson–lindley distribution and its applications, Metron. 2008; LXVI(3):299–311.
  6. Shanker R. A Size–biased poisson–shanker distribution and its applications. International Journal of Probability and Statistics, 2017;6(3):33–44.
  7. Shanker R. Size–biased discrete two parameters poisson–lindley distribution and its applications, Global Journal of Pure and Applied Mathematics. 2013;9(4):325–334.
  8. Shanker R, Mishra A. On size–biased two–parameter poisson–lindley distribution and its applications. American Journal of Mathematics and Statistics. 2017;7(3):99–107.
  9. Shanker R, Mishra A. on a size–biased quasi poisson lindley distribution, International Journal of Probability and Statistics. 2013b;2(2):28–34.
  10. Shanker R, Shanker R, Tekie AL, et al. Size–biased new quasi poisson lindley distribution and its applications, International Journal of Statistics and Systems. 2014; 9(2):109–118.
  11. Shanker R. Shanker Distribution and Its Applications. International Journal of Statistics and Applications. 2015;5(6):338–348.
  12. Shanker R, Mishra A. A two–parameter Lindley distribution, Statistics in Transition–new series. 2013a;14(1):45–56.
  13. Shanker R, Sharma S, Shanker R. A two–parameter Lindley distribution for modeling waiting and survival times data. Applied Mathematics. 2013;4(2):363–368.
  14. Shanker R, Mishra A. A quasi lindley distribution. African Journal of Mathematics and Computer Science Research. 6(4):64–71.
  15. Shanker R, Amanuel AG. A new quasi lindley distribution, International Journal of Statistics and Systems. 2013;8(2):143–156.
  16. Greenwood M, Yule Udny G. An Inquiry into the nature of frequency distributions representative of multiple happenings with particular reference to the occurrence of multiple attacks of disease or of repeated accidents. Journal of the Royal Statistical Society. 1920;83(2):255–279.
  17. Sankaran M. The discrete Poisson–Lindley distribution, Biometrics. 1970;26(1):145–149.
  18. Shanker R, Mishra A. A two–parameter poisson–lindley distribution, International Journal of Statistics and Systems. 2014;9(1):79–85.
  19. Shanker R, Mishra A. A quasi Poisson– Lindley distribution. Journal of 2014. Indian Statistical Association. 2016;54(1&2):113–125.
  20. Shanker R, Tekie AL. A new quasi Poisson–Lindley distribution, International Journal of Statistics and Systems. 2014;9(1):79 –85.
  21. Coleman JS, James J. The equilibrium size distribution of freely forming groups. Sociometry, 1961;24:36–45.
  22. Mathews JNS, Appleton DR. An application of the truncated Poisson distribution to Immunogold assay. Biometrics. 1993;49(2):617–621.
  23. Keith LB, Meslow EC. Trap response by snowshoe hares. Journal of Wildlife Management. 1968;32(4):795–801.
  24. Simonoff JS. Analyzing Categorical Data, New York Springer. 2003.
  25. Finney DJ, Varley GC. An example of the truncated Poisson distribution, Biometrics, 1955;11(3):387–394.
  26. Singh SN, Yadav RC. Trends in rural out–migration at household level. Rural Demogr. 1971;8(1):53–61.
Creative Commons Attribution License

©2020 Shanker, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.