Submit manuscript...
eISSN: 2378-315X

Biometrics & Biostatistics International Journal

Research Article Volume 10 Issue 4

A control chart for time truncated life tests using type-ii generalized log logistic distribution

K. Rosaiah,1 G. Srinivasa Rao,2 S.V.S.V.S.V. Prasad1

1Department of Statistics, Acharya Nagarjuna University, India
2Department of Mathematics and Statistics, The University of Dodoma, Dodoma, Tanzania

Correspondence: G. Srinivasa Rao, Department of Mathematics and Statistics, The University of Dodoma, Dodoma, PO. Box: 259, Tanzania

Received: September 14, 2021 | Published: November 2, 2021

Citation: Rosaiah K, Rao GS, Prasad SVSVSV. A control chart for time truncated life tests using type-ii generalized log logistic distribution. Biom Biostat Int J. 2021;10(4):138-143. DOI: 10.15406/bbij.2021.10.00340

Download PDF

Abstract

In this paper, an attribute control chart is aimed when the lifetime of the item follows Type-II generalized log-logistic distribution (TGLLD) under a time truncated life test assuming that the common scale parameter is known. Average run length (ARL) is used to assess the performance of the aimed control chart. Simulation technique is developed to present the performance of the control charts at a specified average run length (ARL), shift constant and for different parametric values of shape and scale parameters, sample size. The results are illustrated with live data example.

Keywords: Type-II generalized log-logistic distribution, attribute control chart, life test, average run length

Introduction

Control charts are popularly known to be tools for assessing the quality of the item. In general, the aim of the manufacturer is to produce the items to meet the specified quality standards. Today’s competitive world has emphasized manufacturers to improve and sustain with the quality standards that are essential to stable their position in the business. This will necessitate to have quality checks at regular intervals. This can be achieved by placing the technique of control charts as a process monitoring system. With the diverged growth in industrial sector, control charts find its applicability largely in the manufacturing and as well in other industries due to ease in implementation and to arrive a quick conclusion on the process status whether it is within the control limits. In general, the two control limits of the control chart known as upper control limit (UCL) and lower control limit (LCL) are treated as the boundaries for the quality specifications of the item. If the statistic under consideration falls within the control limits, then the process is said to be a controlled one, otherwise the process is treated as out of control. Items for which the quality specification i.e., statistic under consideration falls beyond the control limits are called as non-conforming. Control chart technique is useful to meliorate the lineament of the item to reduce non-conforming items which in turn give benefit to the manufacturer in terms of production cost and reputation of the item produced.

There are two types of control charts viz. variable control charts and attribute control charts. If the data on quality measurement is readily available, then variable control charts will provide well predicted results on the item quality, on the other hand attribute control charts are to be considered for isolating non-conforming items from conforming items. Different authors have paid their attention to develop the control chart techniques for various distributions, for use of reference few of such plans are Amin et al.,1 Bai and Choi,2 Al-Orani and Rahim,3 Wu et. Al.,4 Wu and Wang,5 Lin and Chou,6 Zandi et. Al.,7 McCracken and Chakraborti,8 Joekes and Barbosa,9 Azam et al.10 and Aslam et. al.,11 Rao GS,12 Rao et al.,13 Adeoti and Ogundipe.14

The motive behind this study is to formulate an attribute control charts for process monitoring when the lifespan of an item produced follows Type-II generalized log-logistic distribution (TGLLD). As we know, the ARL is the average number of points that must be plotted before a point indicates as disorderly condition. If the process observations are uncorrelated, then for any Shewart control chart, the ARL can be computed as

ARL= 1 p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadgeacaWGsb Gaamitaiabg2da9maalaaabaGaaGymaaqaaiaadchaaaaaaa@3D5E@ ,

where p is the probability that any point outdoes the control limits. This equation can be used to assess the functioning process of the control chart. Wu and Jiao,15 Wu et. Al.16 and Ho and Costa17,18 have contributed in some developments of this area. The leftover portion of the article is prepared in the succeeding direction. Introduction of TGLLD is given in Section 2. In section 3, the plan of aimed control charts under a time truncated life test are given for this distribution. In Section 4, simulation study with illustrative examples is demonstrated. Finally, inferences made under this plan are given in Section 5.

Type-II generalized log logistic distribution

The ease in adaptability and broad applicability made Log-logistic distribution (LLD) to find its own importance in quality control. Different types of acceptance sampling plans are developed for LLD. The cumulative distribution function (cdf) of the log-logistic distribution (LLD) is

F( t;σ,θ )= ( t σ ) λ [ 1+ ( t σ ) λ ] ;t>0,σ>0,λ>1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaqada qaaiaadshacaGG7aGaeq4WdmNaaiilaiabeI7aXbGaayjkaiaawMca aiabg2da9maalaaabaWaaubiaeqabeqaaiabeU7aSbqaamaabmaaba WaaSaaaeaacaWG0baabaGaeq4WdmhaaaGaayjkaiaawMcaaaaaaeaa daWadaqaaiaaigdacqGHRaWkdaqfGaqabeqabaGaeq4UdWgabaWaae WaaeaadaWcaaqaaiaadshaaeaacqaHdpWCaaaacaGLOaGaayzkaaaa aaGaay5waiaaw2faaaaacaGG7aGaamiDaiabg6da+iaaicdacaGGSa Gaeq4WdmNaeyOpa4JaaGimaiaacYcacqaH7oaBcqGH+aGpcaaIXaaa aa@5D68@ (1)

As described above, the practical adaptiveness of generalized log-logistic distribution (GLLD) in diverse sectors, various authors have paid their attention in developing different types of acceptance sampling plans when the lifetime variate follows GLLD. An extended version to this distribution named as Type-II generalized log-logistic distribution (TGLLD) introduced by Rosaiah et al.,19 its cumulative distribution function (cdf) is

F(t;σ,θ,λ)=1 [ 1+ ( t σ ) λ ] θ ;t>0,σ,θ>0,λ>1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeacaGGOa GaamiDaiaacUdacqaHdpWCcaGGSaGaeqiUdeNaaiilaiabeU7aSjaa cMcacqGH9aqpcaaIXaGaeyOeI0YaaubiaeqabeqaaiabgkHiTiabeI 7aXbqaamaadmaabaGaaGymaiabgUcaRmaavacabeqabeaacqaH7oaB aeaadaqadaqaamaalaaabaGaamiDaaqaaiabeo8aZbaaaiaawIcaca GLPaaaaaaacaGLBbGaayzxaaaaaiaacUdacaaMe8UaaGjbVlaaysW7 caWG0bGaeyOpa4JaaGimaiaacYcacqaHdpWCcaGGSaGaeqiUdeNaey Opa4JaaGimaiaacYcacqaH7oaBcqGH+aGpcaaIXaaaaa@64DB@ (2) 

We state that the distribution given in (2) is defined through the reliability-oriented generalization of log-logistic distribution. In simple words, this can be called as the Type-II generalized log-logistic distribution [Type-I generalized (exponentiated) log-logistic distribution is dealt with by Rosaiah et al. (2006)]. The associated probability density function (pdf) is given by

  f(t;σ,θ,λ)= λθ σ ( t σ ) λ1 [ 1+ ( t σ ) λ ] θ+1 ;t>0,σ,θ>0,λ>1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgacaGGOa GaamiDaiaacUdacqaHdpWCcaGGSaGaeqiUdeNaaiilaiabeU7aSjaa cMcacqGH9aqpdaWcaaqaaiabeU7aSjabeI7aXbqaaiabeo8aZbaada WcaaqaamaavacabeqabeaacqaH7oaBcqGHsislcaaIXaaabaWaaeWa aeaadaWcaaqaaiaadshaaeaacqaHdpWCaaaacaGLOaGaayzkaaaaaa qaamaavacabeqabeaacqaH4oqCcqGHRaWkcaaIXaaabaWaamWaaeaa caaIXaGaey4kaSYaaubiaeqabeqaaiabeU7aSbqaamaabmaabaWaaS aaaeaacaWG0baabaGaeq4WdmhaaaGaayjkaiaawMcaaaaaaiaawUfa caGLDbaaaaaaaiaacUdacaaMe8UaamiDaiabg6da+iaaicdacaGGSa Gaeq4WdmNaaiilaiabeI7aXjabg6da+iaaicdacaGGSaGaeq4UdWMa eyOpa4JaaGymaaaa@6E25@ (3)         

where σ is the scale parameter, λ and θ are shape parameters. The average life of the TGLLD is μ=ση MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTjabg2 da9iabeo8aZjabeE7aObaa@3E55@

, where η= [ ( 0.5 ) 1/θ 1 ] 1/λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aOjabg2 da9maadmaabaWaaeWaaeaacaaIWaGaaiOlaiaaiwdaaiaawIcacaGL PaaadaahaaWcbeqaaiabgkHiTiaaigdacaGGVaGaeqiUdehaaOGaey OeI0IaaGymaaGaay5waiaaw2faamaaCaaaleqabaGaaGymaiaac+ca cqaH7oaBaaaaaa@49C1@ .                                                                                                   (4)

Design of the aimed control chart

The following procedure is adopted for constructing a control chart based on the number of non-conforming (also called np control chart) under time truncated life test. We prefer to use average as the quality parameter, and it is denoted by η= [ ( 0.5 ) 1/θ 1 ] 1/λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aOjabg2 da9maadmaabaWaaeWaaeaacaaIWaGaaiOlaiaaiwdaaiaawIcacaGL PaaadaahaaWcbeqaaiabgkHiTiaaigdacaGGVaGaeqiUdehaaOGaey OeI0IaaGymaaGaay5waiaaw2faamaaCaaaleqabaGaaGymaiaac+ca cqaH7oaBaaaaaa@49C1@ .

Step1: Consider a sample of n items at random from each output lot and run a time truncated life test process on each item. Let D be the items conked-out within the test termination time t0 expressed as t 0 =a μ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadshadaWgaa WcbaGaaGimaaqabaGccqGH9aqpcaWGHbGaeqiVd02aaSbaaSqaaiaa icdaaeqaaaaa@3E9B@ , where a is constant associated with targeted average life μ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaIWaaabeaaaaa@3AC6@ when the process is assumed to be under control..

Step 2: Treat the process is under control if D lies between LCL and UCL; otherwise the process is to be treated as out of control.

Obviously, D is a binomial variate with parameters n and p, hence the control limits of the aimed production process is given by

 

UCL=n p 0 +k n p 0 ( 1 p 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadwfacaWGdb Gaamitaiabg2da9iaad6gacaWGWbWaaSbaaSqaaiaaicdaaeqaaOGa ey4kaSIaam4AamaakaaabaGaamOBaiaadchadaWgaaWcbaGaaGimaa qabaGcdaqadaqaaiaaigdacqGHsislcaWGWbWaaSbaaSqaaiaaicda aeqaaaGccaGLOaGaayzkaaaaleqaaaaa@4856@ (5a)      

LCL=max[ 0,n p 0 k n p 0 ( 1 p 0 ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeacaWGdb Gaamitaiabg2da9iGac2gacaGGHbGaaiiEamaadmaabaGaaGimaiaa cYcacaWGUbGaamiCamaaBaaaleaacaaIWaaabeaakiabgkHiTiaadU gadaGcaaqaaiaad6gacaWGWbWaaSbaaSqaaiaaicdaaeqaaOWaaeWa aeaacaaIXaGaeyOeI0IaamiCamaaBaaaleaacaaIWaaabeaaaOGaay jkaiaawMcaaaWcbeaaaOGaay5waiaaw2faaaaa@4E92@ (5b)

where p 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadchadaWgaa WcbaGaaGimaaqabaaaaa@3A05@ is the probability that an item is conked-out ahead of the test termination time t0 and it is obtained from (2) as p 0 =F( t 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadchadaWgaa WcbaGaaGimaaqabaGccqGH9aqpcaWGgbGaaiikamaavababeWcbaGa aGimaaGcbeqaaiaadshaaaGaaiykaaaa@3F2F@ and k is the constant to be derived. We prefer to use average as the quality parameter and μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTbaa@39E0@ it is denoted by and a better practice is to set the termination time as multiple of the targeted average lifetime, aη MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadggacqaH3o aAaaa@3ABC@ then p 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadchadaWgaa WcbaGaaGimaaqabaaaaa@3A05@ can be rewritten as

p 0 =1 [ 1+ ( a η 0 ) λ 0 ] θ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadchadaWgaa WcbaGaaGimaaqabaGccqGH9aqpcaaIXaGaeyOeI0YaaubiaeqabeWc baGaeyOeI0IaeqiUde3aaSbaaWqaaiaaicdaaeqaaaGcbaWaamWaae aacaaIXaGaey4kaSYaaubiaeqabeWcbaGaeq4UdW2aaSbaaWqaaiaa icdaaeqaaaGcbaWaaeWaaeaacaWGHbGaeq4TdG2aaSbaaSqaaiaaic daaeqaaaGccaGLOaGaayzkaaaaaaGaay5waiaaw2faaaaaaaa@4C22@ where η 0 = [ ( 0.5 ) 1/θ 1 ] 1/λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aOnaaBa aaleaacaaIWaaabeaakiabg2da9maadmaabaWaaeWaaeaacaaIWaGa aiOlaiaaiwdaaiaawIcacaGLPaaadaahaaWcbeqaaiabgkHiTiaaig dacaGGVaGaeqiUdehaaOGaeyOeI0IaaGymaaGaay5waiaaw2faamaa CaaaleqabaGaaGymaiaac+cacqaH7oaBaaaaaa@4AB1@

In an actual scenario, probability p 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadchadaWgaa WcbaGaaGimaaqabaaaaa@3A05@ is unknown; thus, for the pragmatic execution, the control limits are set as

UCL= D ¯ +k D ¯ ( 1 D ¯ /n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadwfacaWGdb Gaamitaiabg2da9iqadseagaqeaiabgUcaRiaadUgadaGcaaqaaiqa dseagaqeamaabmaabaGaaGymaiabgkHiTiqadseagaqeaiaac+caca WGUbaacaGLOaGaayzkaaaaleqaaaaa@450A@ (7a)

LCL=max[ 0, D ¯ k D ¯ ( 1 D ¯ /n ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeacaWGdb Gaamitaiabg2da9iGac2gacaGGHbGaaiiEamaadmaabaGaaGimaiaa cYcaceWGebGbaebacqGHsislcaWGRbWaaOaaaeaaceWGebGbaebada qadaqaaiaaigdacqGHsislceWGebGbaebacaGGVaGaamOBaaGaayjk aiaawMcaaaWcbeaaaOGaay5waiaaw2faaaaa@4B46@ (7b)

where D ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaanaaabaGaam iraaaaaaa@3904@ is the average number of conked-out items over the subpopulations.

The values of the parameters LCL, UCL and n are to be determined in such a way that out-of-control average run length (called ARL1) is minimized, subject to a fixed under-control average run length (called ARL0). The probability that the directed process to be declared as under control is

p [ in ] 0 =P{LCLDUCL|p}= d=[LCL]+1 [UCL] ( n d ) ( 1 [ 1+ ( a η 0 ) λ 0 ] θ 0 ) d ( [ 1+ ( a η 0 ) λ 0 ] θ 0 ) nd MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaavadabeWcba WaamWaaeaacaWGPbGaamOBaaGaay5waiaaw2faaaqaaiaaicdaaOqa aiaadchaaaGaeyypa0JaamiuaiaacUhacaWGmbGaam4qaiaadYeacq GHKjYOcaWGebGaeyizImQaamyvaiaadoeacaWGmbGaaiiFaiaadcha caGG9bGaeyypa0ZaaabCaeaadaqadaqaauaabeqaceaaaeaacaWGUb aabaGaamizaaaaaiaawIcacaGLPaaaaSqaaiaadsgacqGH9aqpcaGG BbGaamitaiaadoeacaWGmbGaaiyxaiabgUcaRiaaigdaaeaacaGGBb GaamyvaiaadoeacaWGmbGaaiyxaaqdcqGHris5aOWaaeWaaeaacaaI XaGaeyOeI0YaaubiaeqabeWcbaGaeyOeI0IaeqiUde3aaSbaaWqaai aaicdaaeqaaaGcbaWaamWaaeaacaaIXaGaey4kaSYaaubiaeqabeWc baGaeq4UdW2aaSbaaWqaaiaaicdaaeqaaaGcbaWaaeWaaeaacaWGHb Gaeq4TdG2aaSbaaSqaaiaaicdaaeqaaaGccaGLOaGaayzkaaaaaaGa ay5waiaaw2faaaaaaiaawIcacaGLPaaadaahaaWcbeqaaiaadsgaaa GcdaqadaqaamaavacabeqabSqaaiabgkHiTiabeI7aXnaaBaaameaa caaIWaaabeaaaOqaamaadmaabaGaaGymaiabgUcaRmaavacabeqabS qaaiabeU7aSnaaBaaameaacaaIWaaabeaaaOqaamaabmaabaGaamyy aiabeE7aOnaaBaaaleaacaaIWaaabeaaaOGaayjkaiaawMcaaaaaai aawUfacaGLDbaaaaaacaGLOaGaayzkaaWaaWbaaSqabeaacaWGUbGa eyOeI0Iaamizaaaaaaa@8735@ (8)

The ARL for controlled process is given as

AR L 0 = 1 1 d=[LCL]+1 [UCL] ( n d ) ( 1 [ 1+ ( a η 0 ) λ 0 ] θ 0 ) d ( [ 1+ ( a η 0 ) λ 0 ] θ 0 ) nd MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadgeacaWGsb GaamitamaaBaaaleaacaaIWaaabeaakiabg2da9maalaaabaGaaGym aaqaaiaaigdacqGHsisldaaeWbqaamaabmaabaqbaeqabiqaaaqaai aad6gaaeaacaWGKbaaaaGaayjkaiaawMcaaaWcbaGaamizaiabg2da 9iaacUfacaWGmbGaam4qaiaadYeacaGGDbGaey4kaSIaaGymaaqaai aacUfacaWGvbGaam4qaiaadYeacaGGDbaaniabggHiLdGcdaqadaqa aiaaigdacqGHsisldaqfGaqabeqaleaacqGHsislcqaH4oqCdaWgaa adbaGaaGimaaqabaaakeaadaWadaqaaiaaigdacqGHRaWkdaqfGaqa beqaleaacqaH7oaBdaWgaaadbaGaaGimaaqabaaakeaadaqadaqaai aadggacqaH3oaAdaWgaaWcbaGaaGimaaqabaaakiaawIcacaGLPaaa aaaacaGLBbGaayzxaaaaaaGaayjkaiaawMcaamaaCaaaleqabaGaam izaaaakmaabmaabaWaaubiaeqabeWcbaGaeyOeI0IaeqiUde3aaSba aWqaaiaaicdaaeqaaaGcbaWaamWaaeaacaaIXaGaey4kaSYaaubiae qabeWcbaGaeq4UdW2aaSbaaWqaaiaaicdaaeqaaaGcbaWaaeWaaeaa caWGHbGaeq4TdG2aaSbaaSqaaiaaicdaaeqaaaGccaGLOaGaayzkaa aaaaGaay5waiaaw2faaaaaaiaawIcacaGLPaaadaahaaWcbeqaaiaa d6gacqGHsislcaWGKbaaaaaaaaa@7842@ (9)

 ARL when Scale parameter is shifted

There is no change in shape and scale parameters i.e., no change in the average when the process is under control. Our interest is to determine the behavior of the production process when there are unilateral shifts in the scale parameter σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo8aZbaa@39ED@ . The process is treated as out-of-control, if there is a shift in the scale parameter i.e. σ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaavababeWcba GaaGimaaqabOqaaiabeo8aZbaaaaa@3AEA@ , is replaced by σ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaavababeWcba GaaGymaaqabOqaaiabeo8aZbaaaaa@3AEB@ where σ 1 =c σ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaavababeWcba GaaGymaaqabOqaaiabeo8aZbaacqGH9aqpcaWGJbWaaubeaeqaleaa caaIWaaabeGcbaGaeq4Wdmhaaaaa@3F99@ , where c can be known as shift constant.

Let p 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaavababeWcba GaaGymaaqabOqaaiaadchaaaaaaa@3A1D@ be the probability that an item is conked-out ahead of the test termination time t0, then from (2)

. p 1 =F( t 0 ; σ 1 , θ 0 , λ 0 )=1 [ 1+ ( a η 0 /c ) λ 0 ] θ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaavababeWcba GaaGymaaqabOqaaiaadchaaaGaeyypa0JaamOraiaacIcadaqfqaqa bSqaaiaaicdaaOqabeaacaWG0baaaiaacUdadaqfqaqabSqaaiaaig daaOqabeaacqaHdpWCaaGaaiilaiabeI7aXnaaBaaaleaacaaIWaaa beaakiaacYcacqaH7oaBdaWgaaWcbaGaaGimaaqabaGccaGGPaGaey ypa0JaaGymaiabgkHiTmaavacabeqabSqaaiabgkHiTiabeI7aXnaa BaaameaacaaIWaaabeaaaOqaamaadmaabaGaaGymaiabgUcaRmaava cabeqabSqaaiabeU7aSnaaBaaameaacaaIWaaabeaaaOqaamaabmaa baGaamyyaiabeE7aOnaaBaaaleaacaaIWaaabeaakiaac+cacaWGJb aacaGLOaGaayzkaaaaaaGaay5waiaaw2faaaaaaaa@5D15@ (10)

The probability of an under-control of the shifted process is given as

p [ in ] 1 =P{ LCLDUCL/ p 1 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaavadabeWcba WaamWaaeaacaWGPbGaamOBaaGaay5waiaaw2faaaqaaiaaigdaaOqa aiaadchaaaGaeyypa0JaamiuamaacmaabaGaamitaiaadoeacaWGmb GaeyizImQaamiraiabgsMiJkaadwfacaWGdbGaamitaiaac+cadaqf qaqabSqaaiaaigdaaOqabeaacaWGWbaaaaGaay5Eaiaaw2haaaaa@4DD1@ = d=[LCL]+1 [UCL] ( n d ) ( 1 [ 1+ ( a η 0 ) λ 0 ] θ 0 ) d ( [ 1+ ( a η 0 ) λ 0 ] θ 0 ) nd MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabg2da9maaqa habaWaaeWaaeaafaqabeGabaaabaGaamOBaaqaaiaadsgaaaaacaGL OaGaayzkaaaaleaacaWGKbGaeyypa0Jaai4waiaadYeacaWGdbGaam itaiaac2facqGHRaWkcaaIXaaabaGaai4waiaadwfacaWGdbGaamit aiaac2faa0GaeyyeIuoakmaabmaabaGaaGymaiabgkHiTmaavacabe qabSqaaiabgkHiTiabeI7aXnaaBaaameaacaaIWaaabeaaaOqaamaa dmaabaGaaGymaiabgUcaRmaavacabeqabSqaaiabeU7aSnaaBaaame aacaaIWaaabeaaaOqaamaabmaabaGaamyyaiabeE7aOnaaBaaaleaa caaIWaaabeaaaOGaayjkaiaawMcaaaaaaiaawUfacaGLDbaaaaaaca GLOaGaayzkaaWaaWbaaSqabeaacaWGKbaaaOWaaeWaaeaadaqfGaqa beqaleaacqGHsislcqaH4oqCdaWgaaadbaGaaGimaaqabaaakeaada WadaqaaiaaigdacqGHRaWkdaqfGaqabeqaleaacqaH7oaBdaWgaaad baGaaGimaaqabaaakeaadaqadaqaaiaadggacqaH3oaAdaWgaaWcba GaaGimaaqabaaakiaawIcacaGLPaaaaaaacaGLBbGaayzxaaaaaaGa ayjkaiaawMcaamaaCaaaleqabaGaamOBaiabgkHiTiaadsgaaaaaaa@7271@ . (11)

The ARL for the shifted process is given as follows.

ARL 1 = 1 1[ d=[LCL]+1 [UCL] ( n d ) ( 1 [ 1+ ( a η 0 ) λ 0 ] θ 0 ) d ( [ 1+ ( a η 0 ) λ 0 ] θ 0 ) nd ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaavababeWcba GaaGymaaqabOqaaiaadgeacaWGsbGaamitaaaacqGH9aqpdaWcaaqa aiaaigdaaeaacaaIXaGaeyOeI0YaamWaaeaadaaeWbqaamaabmaaba qbaeqabiqaaaqaaiaad6gaaeaacaWGKbaaaaGaayjkaiaawMcaaaWc baGaamizaiabg2da9iaacUfacaWGmbGaam4qaiaadYeacaGGDbGaey 4kaSIaaGymaaqaaiaacUfacaWGvbGaam4qaiaadYeacaGGDbaaniab ggHiLdGcdaqadaqaaiaaigdacqGHsisldaqfGaqabeqaleaacqGHsi slcqaH4oqCdaWgaaadbaGaaGimaaqabaaakeaadaWadaqaaiaaigda cqGHRaWkdaqfGaqabeqaleaacqaH7oaBdaWgaaadbaGaaGimaaqaba aakeaadaqadaqaaiaadggacqaH3oaAdaWgaaWcbaGaaGimaaqabaaa kiaawIcacaGLPaaaaaaacaGLBbGaayzxaaaaaaGaayjkaiaawMcaam aaCaaaleqabaGaamizaaaakmaabmaabaWaaubiaeqabeWcbaGaeyOe I0IaeqiUde3aaSbaaWqaaiaaicdaaeqaaaGcbaWaamWaaeaacaaIXa Gaey4kaSYaaubiaeqabeWcbaGaeq4UdW2aaSbaaWqaaiaaicdaaeqa aaGcbaWaaeWaaeaacaWGHbGaeq4TdG2aaSbaaSqaaiaaicdaaeqaaa GccaGLOaGaayzkaaaaaaGaay5waiaaw2faaaaaaiaawIcacaGLPaaa daahaaWcbeqaaiaad6gacqGHsislcaWGKbaaaaGccaGLBbGaayzxaa aaaaaa@7A4C@ . (12)

Placed below is the procedure followed to construct the tables for the aimed control chart.

(1) Define the values of ARL named as r 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhadaWgaa WcbaGaaGimaaqabaaaaa@3A07@ , shape parameters λ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSnaaBa aaleaacaaIWaaabeaaaaa@3AC4@ , θ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXnaaBa aaleaacaaIWaaabeaaaaa@3AC6@ and the constant a.

(2) Control chart parameter values and the size n is to be determined in such a way that given in equation (9) draw near to the specified ARL .

(3) With the help of equation (12) and according to shift constant a, determine by taking parameters of control chart derived in step 2.

We found the control chart parameters and for different valuates of λ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSnaaBa aaleaacaaIWaaabeaaaaa@3AC4@ , θ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXnaaBa aaleaacaaIWaaabeaaaaa@3AC6@ and n and presented in Tables 1–6. Having observed the pattern of the tables, placed below are the points recorded.

LCL

2

1

2

2

UCL

14

13

15

15

a

0.8198

0.7207

0.9347

0.9058

k

2.885

2.885

2.370

2.968

c

ARL0 = 200

ARL0 = 250

ARL0 = 300

ARL0 = 370

1.00

200.13

250.10

300.31

370.30

0.95

162.68

182.24

191.14

254.75

0.90

108.50

115.23

113.53

153.82

0.85

65.80

68.56

66.18

88.74

0.80

38.76

40.12

38.66

50.82

0.75

22.85

23.55

22.85

29.33

0.70

13.66

14.01

13.75

17.20

0.65

8.36

8.52

8.48

10.32

0.60

5.27

5.33

5.39

6.38

0.55

3.46

3.47

3.56

4.10

0.50

2.39

2.38

2.47

2.76

0.40

1.37

1.36

1.42

1.50

0.30

1.05

1.05

1.07

1.09

0.20

1.00

1.00

1.00

1.00

0.10

1.00

1.00

1.00

1.00

Table 1 ARLs of the aimed chart for n=20,λ=1.5,θ=1.5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBaiabg2da9iaaikdacaaIWaGaaiilaiabeU7aSjabg2da9iaa igdacaGGUaGaaGynaiaacYcacqaH4oqCcqGH9aqpcaaIXaGaaiOlai aaiwdaaaa@46E7@

LCL

2

1

2

2

UCL

14

13

15

15

a

0.8618

0.7822

0.9506

0.9285

k

2.891

2.956

2.969

3.059

c

ARL0 = 200

ARL0 = 250

ARL0 = 300

ARL0 = 370

1.00

200.01

250.09

300.35

370.25

0.95

144.74

158.93

162.33

218.45

0.90

79.73

83.76

81.25

109.52

0.85

40.83

42.41

40.86

53.82

0.80

21.10

21.79

21.18

27.08

0.75

11.32

11.61

11.45

14.19

0.70

6.39

6.50

6.52

7.82

0.65

3.84

3.87

3.95

4.58

0.60

2.49

2.48

2.58

2.89

0.55

1.75

1.74

1.82

1.98

0.50

1.36

1.34

1.40

1.48

0.40

1.05

1.04

1.06

1.08

0.30

1.00

1.00

1.00

1.00

0.20

1.00

1.00

1.00

1.00

0.10

1.00

1.00

1.00

1.00

Table 2 ARLs of the aimed chart for n=20,λ=1.5,θ=2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBaiabg2da9iaaikdacaaIWaGaaiilaiabeU7aSjabg2da9iaa igdacaGGUaGaaGynaiaacYcacqaH4oqCcqGH9aqpcaaIYaaaaa@4577@

LCL

2

1

1

2

UCL

14

13

14

15

a

0.8951

0.8329

0.8996

0.9468

k

2.887

2.957

2.969

3.058

c

ARL0 = 200

ARL0 = 250

ARL0 = 300

ARL0 = 370

1.00

200.40

250.09

300.47

370.23

0.95

122.09

130.95

122.07

173.59

0.90

52.18

54.73

48.62

67.67

0.85

21.90

23.00

20.41

27.21

0.80

9.84

10.32

9.27

11.82

0.75

4.88

5.08

4.65

5.67

0.70

2.72

2.80

2.63

3.07

0.65

1.74

1.77

1.70

1.91

0.60

1.29

1.30

1.27

1.37

0.55

1.09

1.09

1.08

1.13

0.50

1.02

1.02

1.02

1.03

0.40

1.00

1.00

1.00

1.00

0.30

1.00

1.00

1.00

1.00

0.20

1.00

1.00

1.00

1.00

0.10

1.00

1.00

1.00

1.00

Table 3 ARLs of the aimed chart for n=20,λ=2.5,θ=2.5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBaiabg2da9iaaikdacaaIWaGaaiilaiabeU7aSjabg2da9iaa ikdacaGGUaGaaGynaiaacYcacqaH4oqCcqGH9aqpcaaIYaGaaiOlai aaiwdaaaa@46E9@

LCL

5

3

5

5

UCL

20

18

21

21

a

0.8584

0.7225

0.9204

0.8898

k

2.925

2.987

3.097

3.097

c

ARL0 = 200

ARL0 = 250

ARL0 = 300

ARL0 = 370

1.00

200.06

250.10

300.11

370.05

0.95

137.20

156.08

176.23

255.02

0.90

77.66

85.72

93.42

139.08

0.85

41.80

45.75

48.91

71.33

0.80

22.65

24.65

26.06

36.74

0.75

12.61

13.62

14.31

19.41

0.70

7.30

7.80

8.17

10.64

0.65

4.44

4.68

4.90

6.12

0.60

2.87

2.98

3.12

3.73

0.55

1.99

2.03

2.13

2.44

0.50

1.49

1.50

1.57

1.73

0.40

1.08

1.08

1.10

1.13

0.30

1.00

1.00

1.00

1.00

0.20

1.00

1.00

1.00

1.00

0.10

1.00

1.00

1.00

1.00

Table 4 ARLs of the aimed chart for n=30,λ=1.5,θ=1.5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBaiabg2da9iaaiodacaaIWaGaaiilaiabeU7aSjabg2da9iaa igdacaGGUaGaaGynaiaacYcacqaH4oqCcqGH9aqpcaaIXaGaaiOlai aaiwdaaaa@46E8@

LCL

5

3

2

5

UCL

20

18

17

21

a

0.8916

0.7836

0.7315

0.8907

k

2.902

2.987

2.949

2.981

c

ARL0 = 200

ARL0 = 250

ARL0 = 300

ARL0 = 370

1.00

200.31

250.28

300.00

370.49

0.95

115.96

129.79

146.50

307.66

0.90

53.08

58.11

64.79

143.16

0.85

24.18

26.28

29.13

59.14

0.80

11.64

12.53

13.77

25.31

0.75

6.04

6.42

6.97

11.62

0.70

3.44

3.59

3.84

5.83

0.65

2.17

2.23

2.34

3.24

0.60

1.54

1.55

1.60

2.03

0.55

1.22

1.22

1.24

1.45

0.50

1.07

1.07

1.08

1.17

0.40

1.00

1.00

1.00

1.01

0.30

1.00

1.00

1.00

1.00

0.20

1.00

1.00

1.00

1.00

0.10

1.00

1.00

1.00

1.00

Table 5 ARLs of the aimed chart for n=30,λ=1.5,θ=2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBaiabg2da9iaaiodacaaIWaGaaiilaiabeU7aSjabg2da9iaa igdacaGGUaGaaGynaiaacYcacqaH4oqCcqGH9aqpcaaIYaaaaa@4578@

LCL

5

3

1

5

UCL

20

18

15

21

a

0.9189

0.834

0.7146

0.9179

k

2.988

2.988

3.055

2.98

c

ARL0 = 200

ARL0 = 250

ARL0 = 300

ARL0 = 370

1.00

200.02

250.37

300.23

370.14

0.95

89.51

100.90

126.59

246.93

0.90

31.27

35.22

46.10

79.91

0.85

11.82

13.28

17.61

25.94

0.80

5.13

5.68

7.42

9.57

0.75

2.63

2.84

3.56

4.17

0.70

1.62

1.71

2.01

2.20

0.65

1.21

1.24

1.36

1.42

0.60

1.05

1.06

1.10

1.12

0.55

1.00

1.00

1.01

1.02

0.50

1.00

1.00

1.00

1.00

0.40

1.00

1.00

1.00

1.00

0.30

1.00

1.00

1.00

1.00

0.20

1.00

1.00

1.00

1.00

0.10

1.00

1.00

1.00

1.00

Table 6 ARLs of the aimed chart for n=30,λ=2.5,θ=2.5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBaiabg2da9iaaiodacaaIWaGaaiilaiabeU7aSjabg2da9iaa ikdacaGGUaGaaGynaiaacYcacqaH4oqCcqGH9aqpcaaIYaGaaiOlai aaiwdaaaa@46EA@

  1. Keeping the other parameters are fixed, when n gains the ARL numbers depicted a downward path.
  2. Keeping the other parameters are fixed, when the shape parameter raises the ARL numbers flowed into downward route.
  3. At fixed numbers of other parameters, The ARL figures are moves down as shift c decreases when other parameters are fixed.

 Application of aimed chart

The general motive of the manufacturer is to meliorate the quality of the manufactured items when their lifespan follows the TGLLD distribution with shape parameters λ 0 =1.5, θ 0 =1.5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSnaaBa aaleaacaaIWaaabeaakiabg2da9iaaigdacaGGUaGaaGynaiaacYca caaMe8UaeqiUde3aaSbaaSqaaiaaicdaaeqaaOGaeyypa0JaaGymai aac6cacaaI1aaaaa@4615@ . Assume that the intended average life of item is 1000 hours and sample size of n=20 will be taken for each subpopulation in truncated life test experimentation. If r 0 =300 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhadaWgaa WcbaGaaGimaaqabaGccqGH9aqpcaaIZaGaaGimaiaaicdaaaa@3D48@ is the set value of regimented ARL for the aimed control chart then from Table 1, we get a= 0.9347, k=2.370. From Eq. (6), the probability is derived as p 0 =0.4721 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadchadaWgaa WcbaGaaGimaaqabaGcqaaaaaaaaaWdbiabg2da9iaaicdacaGGUaGa aGinaiaaiEdacaaIYaGaaGymaaaa@3F97@ . Using Eq. (5) the UCL and LCL numbers are found as LCL = 4.14 and UCL = 14.73. Then, the aimed control chart can be executed as given below:

Step 1: Consider 20 sample items from each subsection and set them to test their lifespan for period of 635.3 hours. Mark the conked-out items (D) during the trial process.

Step 2: The process is adjudged in-control, if 4.14 ≤ D ≤ 14.73, otherwise process is out-of- control.

Simulation study and data analysis

The methodological analysis adopted for the aimed control chart can be exemplified with simulated data. The paces followed are placed below for yielding data points from TGLLD and building the control chart:

Step 1: Select a subpopulation of size n.

Step 2: Take a random variable X follows TGLLD of size n with scale parameter σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo8aZbaa@39ED@ =1 and shape parameters λ=1.5andθ=1.5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSjabg2 da9iaaigdacaGGUaGaaGynaiaaykW7caqGHbGaaeOBaiaabsgacaaM c8UaeqiUdeNaeyypa0JaaGymaiaac6cacaaI1aaaaa@47CA@ .

Step 3: Determine the statistic which describes the failures count say D of each subpopulation.

Step 4: Steps 1 to 3 will be executed till the intended count of sample sets (m= 29) are achieved.

Step 5: Build the control limits LCL and UCL for the aimed chart.

Step 6: Mark all statistics D against their sample sets.

In this plan, a sample subgroup of size 29 are brought forth from TGLLD with regimented parameters σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo8aZbaa@39ED@ =1, λ=1.5andθ=1.5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSjabg2 da9iaaigdacaGGUaGaaGynaiaaykW7caqGHbGaaeOBaiaabsgacaaM c8UaeqiUdeNaeyypa0JaaGymaiaac6cacaaI1aaaaa@47CA@ and another sample subgroup of 29 samples of size 20 are from TGLLD with parameters σ 1 =0.75 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo8aZnaaBa aaleaacaaIXaaabeaakiabg2da9iaaicdacaGGUaGaaG4naiaaiwda aaa@3ED0@ , λ=1.5andθ=1.5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSjabg2 da9iaaigdacaGGUaGaaGynaiaaykW7caqGHbGaaeOBaiaabsgacaaM c8UaeqiUdeNaeyypa0JaaGymaiaac6cacaaI1aaaaa@47CA@ (i.e. out-of-control process with a shift of c=0.75). It is observed from Table 1, when ARL is 370 and under control parameters, we found control chart coefficient k is 2.968 for the aimed chart at n=20 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6gacqGH9a qpcaaIYaGaaGimaaaa@3B99@ .

The resultant time of lifespan test will be t 0 =0.9058X0.70138=0.635315 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadshadaWgaa WcbaGaaGimaaqabaGccqGH9aqpcaaIWaGaaiOlaiaaiMdacaaIWaGa aGynaiaaiIdacaWGybGaaGimaiaac6cacaaI3aGaaGimaiaaigdaca aIZaGaaGioaiabg2da9iaaicdacaGGUaGaaGOnaiaaiodacaaI1aGa aG4maiaaigdacaaI1aaaaa@4C66@ . For each of the subgroup the count of conked-out items D are recorded and presented in Table 7, average number of failures D ¯ =9.2758 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadseagaqeai abg2da9abaaaaaaaaapeGaaGyoaiaac6cacaaIYaGaaG4naiaaiwda caaI4aaaaa@3EA4@ . Hence, the control limits of the aimed control chart are obtained from equation (7) and they are UCL=15.88 and LCL=2.65. Figure 1, represents the plotted points of the aimed control chart. It is observed from diagram 1, that the aimed chart displayed the shift at 32nd observation (3rd observation after the shift) whereas tabled ARL value is 29. Thus the aimed control chart finds more effectively to shift the process.

Subgroup No.

D

Subgroup No.

D

Subgroup No.

D

1

10

21

8

41

10

2

8

22

11

42

12

3

5

23

8

43

9

4

13

24

10

44

7

5

9

25

13

45

10

6

9

26

8

46

9

7

6

27

12

47

16

8

12

28

11

48

12

9

8

29

6

49

13

10

9

30

15

50

11

11

10

31

11

51

11

12

10

32

16

52

14

13

9

33

11

53

12

14

11

34

8

54

11

15

14

35

9

55

16

16

7

36

9

56

12

17

8

37

15

57

14

18

9

38

13

58

18

19

9

39

13

20

6

40

15

Table 7 Simulated data, plotting statistic ‘D’

Figure 1 The graph of aimed control chart from simulated data.

Conclusion

This article presents, a newly attribute control chart is aimed when the lifespan of the item follows Type-II generalized log-logistic distribution (TGLLD). This chart is truly adaptable to ensure the desirable lifespan of quality items. For the actual usage, the invariable of control charts are presented for respective decisiveness parameters. The functioning of aimed chart is described in terms of ARLs according to different shift parameters. For industrial usage, the tables are exhibited and explicated clearly with the support of modelled data. It is noticed that keeping the other parameters are fixed, whenever n moving up, ARL values depicted a downward path , again when shape parameter moves up, the ARL values have flowed into downward way.

Acknowledgments

None.

Conflicts of interest

None.

References

  1. Amin R, Reynolds M R, Jr. and Bakir S.T. Nonparametric quality control charts based on the sign statistics, Commun. Statist theory methods. 1995;24:1597-1623.
  2. Bai D S, Choi IS. X bar and R control charts for skewed populations, J Qual Tech. 1995;27:120‒131.
  3. Al- Oraini H A, Rahim, M A. Economic statistical design of control charts for the Systems with gamma in-control times, J. Appl. Stat. 2003;30:397‒409.
  4. Wu Z, Luo H,Zhang X. Optimal np control chart with curtailment, Eur J Oper Res. 2006;174(3):1723‒1741.
  5. Wu Z,Wang Q. An np control chart using double inspections, J. App Stat. 2007;34(7):843‒855.
  6. Lin YC, Chou CY. Non-normality and the variable parameters x bar control charts, J Oper Res Soc. 2007;176:361‒373.
  7. Zandi F, NiakiSTA,Nayeri, et al. Change-point estimation of the process fraction non-conforming with a linear trend in statistical process control, J Comput Integr Manuf. 2011;24(10):939‒947.
  8. McCracken AK ,Chakraborti S. Control charts for joint monitoring of mean and variance: an overview, Qual Technol Quant Manag. 2013;10(1):17‒36.
  9. Joekes S,Barbosa E.P. An improved attribute control charts for monitoring non-conforming proportion in high quality processes, Control Eng Pract. 2013;21:407‒412.
  10. Azam M, Aslam M,Jun CH. Designing of a hybrid exponentially weighted moving average control charts using repetitive sampling, Int.J.Adv.Manuf Technol. 2015;77:1927‒1933.
  11. Aslam M, Khan N, Jun CH. A control chart for time truncated life tests using Pareto distribution of second kind. Journal of Statistical Computation and Simulation. 2016;86(11).
  12. Rao GS. A control chart for time truncated life tests using exponentiated half logistic distribution. Applied Mathematics and Information Science. 2018;12(1):125–131.
  13. Rao GS, Fulment AK, Josephat PK. Attribute control chart for the Dagum distribution under truncated life tests. Life Cycle Reliability Safety Engineering. 2019;8:329‒335.
  14. Adeoti O A, Ogundipe P. A control chart for the generalized exponential distribution under time truncated life test. Life Cycle Reliability Safety Engineering. 2021;10(1):53‒59.
  15. Wu Z, Jiao J. A control chart for monitoring process mean based on attribute inspection. International journal of Production Research. 2008;46(15):4331‒4337.
  16. Wu Z, Khoo MBC, L Shu, et al. An np control chart for monitoring the mean of a variable based on an attribute inspection. Int. J. of Production Economics. 2009;121(1):141‒147.
  17. Ho LL, Costa A.F.B. Monitoring a wandering mean with an np chart, Producao. 2011;21:254‒258.
  18. Ho LL,Costa A.F.B. An attribute control chart for monitoring the variability of a process, Int. J. production Economics. 2013;145:263‒267.
  19. Rosaiah K, Kantam R.R.L, Santosh Kumar Ch. Reliability test plans for exponentiated log-logistic distribution, Economic Quality Control. 2006;21(2):165‒175.
Creative Commons Attribution License

©2021 Rosaiah, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.