Submit manuscript...
eISSN: 2576-4500

Aeronautics and Aerospace Open Access Journal

Research Article Volume 9 Issue 2

Calculation of structural scheme nano piezoengine with lumped parameters at voltage and current control for aerospace

SM Afonin

National Research University of Electronic Technology, MIET, Moscow, Russia

Correspondence: SM Afonin, National Research University of Electronic Technology, MIET, 124498, Moscow, Russia

Received: May 12, 2025 | Published: May 28, 2025

Citation: Afonin SM. Calculation of structural scheme nano piezoengine with lumped parameters at voltage and current control for aerospace. Aeron Aero Open Access J. 2025;9(2):113-116. DOI: 10.15406/aaoaj.2025.09.00227

Download PDF

Abstract

In the work the structural scheme of nano piezoengine with lumped parameters is determined for aerospace. The PZT nano engines have small dimensions, high accuracy, simple design. Calculation of structural scheme nano piezoengine with lumped parameters was made at voltage and current control for aerospace. Method mathematical physics is used for calculation of structural scheme nano piezoengine. Schemes nano piezoengines with lumped parameters at voltage and current control for aerospace are determined.

Keywords nano piezoengine, structural scheme, aerospace

Introduction

The nano piezoengine is used for aerospace.1–20 This nano piezoengine is used in control system aerospace for satellite and compound telescope, laser interferometer, deformable mirror, damping vibration, scanning microscopy.14–64 The schemes of nano piezoengines are constructed at voltage and current control.

Scheme piezoengine at voltage control

The scheme of the piezoengine with lumped parameters has big interes in calculation nano mechatronics systems for aerospace. The scheme of the piezoengine is determined from the equation of the reverse piezoeffect and the equations forces of engine in dynamics by using method mathematical physics.11–64

The equation reverse piezoeffect has the form1–64

S i = d mi E m + s ij E T j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4uaO WaaSbaaSqaaKqzadGaamyAaaWcbeaajugibiabg2da9iaadsgakmaa BaaaleaajugWaiaad2gacaWGPbaaleqaaKqzGeGaamyraOWaaSbaaS qaaKqzadGaamyBaaWcbeaajugibiabgUcaRiaadohakmaaDaaaleaa jugWaiaadMgacaWGQbaaleaajugWaiaadweaaaqcLbsacaWGubGcda WgaaWcbaqcLbmacaWGQbaaleqaaaaa@4FCD@ (1)

Here the indexes i, j, m and S i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4uaO WaaSbaaSqaaKqzadGaamyAaaWcbeaaaaa@3AD2@ , E m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyraO WaaSbaaSqaaKqzadGaamyBaaWcbeaaaaa@3AC8@ , T j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamivaO WaaSbaaSqaaKqzadGaamOAaaWcbeaaaaa@3AD4@ , d mi MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamizaO WaaSbaaSqaaKqzadGaamyBaiaadMgaaSqabaaaaa@3BD5@ , s ij E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4CaO Waa0baaSqaaKqzadGaamyAaiaadQgaaSqaaKqzadGaamyraaaaaaa@3DDA@ are the relative displacement, the strength electric field, the strength mechanical field, the piezo module, and the elastic compliance at E=const MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyrai abg2da9iaabogacaqGVbGaaeOBaiaabohacaqG0baaaa@3E23@ .

 

Therefore, we have the Laplace transform general force46–62 at voltage control F( s ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOraO WaaeWaaeaajugibiaadohaaOGaayjkaiaawMcaaaaa@3B8C@ of the nano piezoengine in the form

F( s )= d mi S 0 E m ( s )/ s ij E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOraO WaaeWaaeaajugibiaadohaaOGaayjkaiaawMcaaKqzGeGaeyypa0Jc daWcgaqaaKqzGeGaamizaOWaaSbaaSqaaKqzadGaamyBaiaadMgaaO qabaqcLbsacaWGtbGcdaWgaaWcbaqcLbmacaaIWaaaleqaaKqzGeGa amyraOWaaSbaaSqaaKqzadGaamyBaaWcbeaakmaabmaabaqcLbsaca WGZbaakiaawIcacaGLPaaaaeaajugibiaadohakmaaDaaaleaajugW aiaadMgacaWGQbaaleaajugWaiaadweaaaaaaaaa@5341@ (2)

 

Also we receive the Laplace transform general force at voltage control from the voltage U C ( s )= U( s )/ ( R C 0 s+1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyvaO WaaSbaaSqaaKqzadGaam4qaaWcbeaakmaabmaabaqcLbsacaWGZbaa kiaawIcacaGLPaaajugibiabg2da9OWaaSGbaeaajugibiaadwfakm aabmaabaqcLbsacaWGZbaakiaawIcacaGLPaaaaeaadaqadaWcbaqc LbsacaWGsbGaam4qaOWaaSbaaSqaaKqzadGaaGimaaWcbeaajugibi aadohacqGHRaWkcaaIXaaaliaawIcacaGLPaaaaaaaaa@4D2E@ on its piezo capacitor

F( s )= d mi S 0 U C ( s ) δ s ij E = d mi S 0 U( s ) δ s ij E ( R C 0 s+1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOraO WaaeWaaeaajugibiaadohaaOGaayjkaiaawMcaaKqzGeGaeyypa0Jc daWcaaqaaKqzGeGaamizaOWaaSbaaSqaaKqzadGaamyBaiaadMgaaO qabaqcLbsacaWGtbGcdaWgaaWcbaqcLbmacaaIWaaaleqaaKqzGeGa amyvaOWaaSbaaSqaaKqzadGaam4qaaWcbeaakmaabmaabaqcLbsaca WGZbaakiaawIcacaGLPaaaaeaajugibiabes7aKjaadohakmaaDaaa leaajugWaiaadMgacaWGQbaaleaajugWaiaadweaaaaaaKqzGeGaey ypa0JcdaWcaaqaaKqzGeGaamizaOWaaSbaaSqaaKqzadGaamyBaiaa dMgaaOqabaqcLbsacaWGtbGcdaWgaaWcbaqcLbmacaaIWaaaleqaaK qzGeGaamyvaOWaaeWaaeaajugibiaadohaaOGaayjkaiaawMcaaaqa aKqzGeGaeqiTdqMaam4CaOWaa0baaSqaaKqzadGaamyAaiaadQgaaS qaaKqzadGaamyraaaakmaabmaaleaajugibiaadkfacaWGdbGcdaWg aaWcbaqcLbmacaaIWaaaleqaaKqzGeGaam4CaiabgUcaRiaaigdaaS GaayjkaiaawMcaaaaaaaa@74ED@ (3)

 

Than this Laplace transform general force of the piezoengine is obtained

F( s )= k r U C ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOraO WaaeWaaeaajugibiaadohaaOGaayjkaiaawMcaaKqzGeGaeyypa0Ja am4AaOWaaSbaaSqaaKqzadGaamOCaaWcbeaajugibiaadwfakmaaBa aaleaajugWaiaadoeaaSqabaGcdaqadaqaaKqzGeGaam4CaaGccaGL OaGaayzkaaaaaa@473B@ (4)

Here k r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4AaO WaaSbaaSqaaKqzadGaamOCaaWcbeaaaaa@3AF3@ is the reverse coefficient in the form

k r = d mi S 0 δ s ij E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4AaO WaaSbaaSqaaKqzadGaamOCaaWcbeaajugibiabg2da9OWaaSaaaeaa jugibiaadsgakmaaBaaaleaajugWaiaad2gacaWGPbaakeqaaKqzGe Gaam4uaOWaaSbaaSqaaKqzadGaaGimaaWcbeaaaOqaaKqzGeGaeqiT dqMaam4CaOWaa0baaSqaaKqzadGaamyAaiaadQgaaSqaaKqzadGaam yraaaaaaaaaa@4D73@ (5)

 

The equation direct piezo effect 1-64 has the form

D m = d mi T i + ε mk E E k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamiraO WaaSbaaSqaaKqzadGaamyBaaWcbeaajugibiabg2da9iaadsgakmaa BaaaleaajugWaiaad2gacaWGPbaaleqaaKqzGeGaamivaOWaaSbaaS qaaKqzadGaamyAaaWcbeaajugibiabgUcaRiabew7aLPWaa0baaSqa aKqzadGaamyBaiaadUgaaSqaaKqzadGaamyraaaajugibiaadweakm aaBaaaleaajugWaiaadUgaaSqabaaaaa@5073@ (6)

Here ε mk E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqyTdu McdaqhaaWcbaqcLbmacaWGTbGaam4AaaWcbaqcLbmacaWGfbaaaaaa @3E8E@ , k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4Aaa aa@388D@ are the permittivity, index

 

Than the direct coefficient k d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4AaO WaaSbaaSqaaKqzadGaamizaaWcbeaaaaa@3AE5@ at voltage control is founded in the form

k d = k r = d mi S 0 δ s ij E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4AaO WaaSbaaSqaaKqzadGaamizaaWcbeaajugibiabg2da9iaadUgakmaa BaaaleaajugWaiaadkhaaSqabaqcLbsacqGH9aqpkmaalaaabaqcLb sacaWGKbGcdaWgaaWcbaqcLbmacaWGTbGaamyAaaGcbeaajugibiaa dofakmaaBaaaleaajugWaiaaicdaaSqabaaakeaajugibiabes7aKj aadohakmaaDaaaleaajugWaiaadMgacaWGQbaaleaajugWaiaadwea aaaaaaaa@5250@ (7)

 

Therefore, we have the Laplace transform voltage U d ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyvaO WaaSbaaSqaaKqzadGaamizaaWcbeaakmaabmaabaqcLbsacaWGZbaa kiaawIcacaGLPaaaaaa@3DF3@ for the feedback on the velocity of the second end at voltage control on Figure 1 in the form

U d ( s )= d mi S 0 δ s ij E Ξ ˙ 2 ( s )R= k d Ξ ˙ 2 ( s )R= k d Rs Ξ 2 ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyvaO WaaSbaaSqaaKqzadGaamizaaWcbeaakmaabmaabaqcLbsacaWGZbaa kiaawIcacaGLPaaajugibiabg2da9OWaaSaaaeaajugibiaadsgakm aaBaaaleaajugWaiaad2gacaWGPbaaleqaaKqzGeGaam4uaOWaaSba aSqaaKqzadGaaGimaaWcbeaaaOqaaKqzGeGaeqiTdqMaam4CaOWaa0 baaSqaaKqzadGaamyAaiaadQgaaSqaaKqzadGaamyraaaaaaqcLbsa cuqHEoawgaGaaOWaaSbaaSqaaKqzadGaaGOmaaWcbeaakmaabmaaba qcLbsacaWGZbaakiaawIcacaGLPaaajugibiaadkfacqGH9aqpcaWG RbGcdaWgaaWcbaqcLbmacaWGKbaaleqaaKqzGeGafuONdGLbaiaakm aaBaaaleaajugWaiaaikdaaSqabaGcdaqadaqaaKqzGeGaam4CaaGc caGLOaGaayzkaaqcLbsacaWGsbGaeyypa0Jaam4AaOWaaSbaaSqaaK qzadGaamizaaWcbeaajugibiaadkfacaWGZbGaeuONdGLcdaWgaaWc baqcLbmacaaIYaaaleqaaOWaaeWaaeaajugibiaadohaaOGaayjkai aawMcaaaaa@73E3@ (8)

Here Ξ ˙ 2 ( s )=s Ξ 2 ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGafuONdG LbaiaakmaaBaaaleaajugWaiaaikdaaSqabaGcdaqadaqaaKqzGeGa am4CaaGccaGLOaGaayzkaaqcLbsacqGH9aqpcaWGZbGaeuONdGLcda WgaaWcbaqcLbmacaaIYaaaleqaaOWaaeWaaeaajugibiaadohaaOGa ayjkaiaawMcaaaaa@47D9@ is the Laplace transform velocity the second end of the nano piezoengine.

 

The Laplace transform force at the second end F 2 ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOraO WaaSbaaSqaaKqzadGaaGOmaaWcbeaakmaabmaabaqcLbsacaWGZbaa kiaawIcacaGLPaaaaaa@3DB7@ of the nano piezoengine and the load force  are used (Figure 1). The transform force for the feedback on the load force at voltage control is obtained in the form

F l ( s )=( C e + C ij E + k ν s ) Ξ 2 ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOraO WaaSbaaSqaaKqzadGaamiBaaWcbeaakmaabmaabaqcLbsacaWGZbaa kiaawIcacaGLPaaajugibiabg2da9OWaaeWaaeaajugibiaadoeakm aaBaaaleaajugWaiaadwgaaSqabaqcLbsacqGHRaWkcaWGdbGcdaqh aaWcbaqcLbmacaWGPbGaamOAaaWcbaqcLbmacaWGfbaaaKqzGeGaey 4kaSIaam4AaOWaaSbaaSqaaKqzadGaeqyVd4galeqaaKqzGeGaam4C aaGccaGLOaGaayzkaaqcLbsacaaMe8UaeuONdGLcdaWgaaWcbaqcLb macaaIYaaaleqaaOWaaeWaaeaajugibiaadohaaOGaayjkaiaawMca aaaa@5C4A@ (9)

Here C e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4qaO WaaSbaaSqaaKqzadGaamyzaaWcbeaaaaa@3ABE@ , C ij E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4qaO Waa0baaSqaaKqzadGaamyAaiaadQgaaSqaaKqzadGaamyraaaaaaa@3DAA@ , k ν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4AaO WaaSbaaSqaaKqzadGaeqyVd4galeqaaaaa@3BB4@ are the elastic load stiffness, the stiffness piezoengine at E=const MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyrai abg2da9iaabogacaqGVbGaaeOBaiaabohacaqG0baaaa@3E23@ , the coefficient of viscous friction.

This Laplace transform the load force is founded in the form the sum of the elastic force and the viscous friction force.

The scheme for lumped parameters of the nano piezoengine (Figure 1) at voltage control is constructed for the first fixed end, the elastic inertial load with the mass load M 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamytaO WaaSbaaSqaaKqzadGaaGOmaaWcbeaaaaa@3A9A@ . The inertia force F i ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOraO WaaSbaaSqaaKqzadGaamyAaaWcbeaakmaabmaabaqcLbsacaWGZbaa kiaawIcacaGLPaaaaaa@3DE9@ has form

F i ( s )= M 2 s 2 Ξ 2 ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOraO WaaSbaaSqaaKqzadGaamyAaaWcbeaakmaabmaabaqcLbsacaWGZbaa kiaawIcacaGLPaaajugibiabg2da9iaad2eakmaaBaaaleaajugWai aaikdaaSqabaqcLbsacaWGZbGcdaahaaWcbeqaaKqzadGaaGOmaaaa jugibiabf65ayPWaaSbaaSqaaKqzadGaaGOmaaWcbeaakmaabmaaba qcLbsacaWGZbaakiaawIcacaGLPaaaaaa@4D85@ (10)

Here Ξ 2 ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeuONdG LcdaWgaaWcbaqcLbmacaaIYaaaleqaaOWaaeWaaeaajugibiaadoha aOGaayjkaiaawMcaaaaa@3E70@ is the Laplace transform displacement the second end of the nano piezoengine.

Let us consider transformation transfer function for scheme (Figure 1) at R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOuaa aa@3874@ about several Om. Than for no the feedback on the velocity the Laplace transform equation for forces on the second end of the piezoengine has the form

d mi S 0 U( s ) δ s ij E ( R C 0 s+1 ) = M 2 s 2 Ξ 2 ( s )+( C e + C ij E + k ν s ) Ξ 2 ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaqcLb sacaWGKbGcdaWgaaWcbaqcLbmacaWGTbGaamyAaaGcbeaajugibiaa dofakmaaBaaaleaajugWaiaaicdaaSqabaqcLbsacaWGvbGcdaqada qaaKqzGeGaam4CaaGccaGLOaGaayzkaaaabaqcLbsacqaH0oazcaWG ZbGcdaqhaaWcbaqcLbmacaWGPbGaamOAaaWcbaqcLbmacaWGfbaaaO WaaeWaaSqaaKqzGeGaamOuaiaadoeakmaaBaaaleaajugWaiaaicda aSqabaqcLbsacaWGZbGaey4kaSIaaGymaaWccaGLOaGaayzkaaaaaK qzGeGaeyypa0JaamytaOWaaSbaaSqaaKqzadGaaGOmaaWcbeaajugi biaadohakmaaCaaaleqabaqcLbmacaaIYaaaaKqzGeGaeuONdGLcda WgaaWcbaqcLbmacaaIYaaaleqaaOWaaeWaaeaajugibiaadohaaOGa ayjkaiaawMcaaKqzGeGaey4kaSIcdaqadaqaaKqzGeGaam4qaOWaaS baaSqaaKqzadGaamyzaaWcbeaajugibiabgUcaRiaadoeakmaaDaaa leaajugWaiaadMgacaWGQbaaleaajugWaiaadweaaaqcLbsacqGHRa WkcaWGRbGcdaWgaaWcbaqcLbmacqaH9oGBaSqabaqcLbsacaWGZbaa kiaawIcacaGLPaaajugibiaaysW7cqqHEoawkmaaBaaaleaajugWai aaikdaaSqabaGcdaqadaqaaKqzGeGaam4CaaGccaGLOaGaayzkaaaa aa@836C@ (11)

The transfer function of the nano piezoengine has the form

W 1 ( s )= Ξ 2 ( s ) U( s ) = d mi S 0 δ s ij E ( R C 0 s+1 )( M 2 s 2 + k ν s+ C e + C ij E ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4vaO WaaSbaaSqaaKqzadGaaGymaaWcbeaakmaabmaabaqcLbsacaWGZbaa kiaawIcacaGLPaaajugibiabg2da9OWaaSaaaeaajugibiabf65ayP WaaSbaaSqaaKqzadGaaGOmaaWcbeaakmaabmaabaqcLbsacaWGZbaa kiaawIcacaGLPaaaaeaajugibiaadwfakmaabmaabaqcLbsacaWGZb aakiaawIcacaGLPaaaaaqcLbsacqGH9aqpkmaalaaabaqcLbsacaWG KbGcdaWgaaWcbaqcLbmacaWGTbGaamyAaaGcbeaajugibiaadofakm aaBaaaleaajugWaiaaicdaaSqabaaakeaajugibiabes7aKjaadoha kmaaDaaaleaajugWaiaadMgacaWGQbaaleaajugWaiaadweaaaGcda qadaWcbaqcLbsacaWGsbGaam4qaOWaaSbaaSqaaKqzadGaaGimaaWc beaajugibiaadohacqGHRaWkcaaIXaaaliaawIcacaGLPaaajugibi aaysW7kmaabmaabaqcLbsacaWGnbGcdaWgaaWcbaqcLbmacaaIYaaa leqaaKqzGeGaam4CaOWaaWbaaSqabeaajugWaiaaikdaaaqcLbsacq GHRaWkcaWGRbGcdaWgaaWcbaqcLbmacqaH9oGBaSqabaqcLbsacaWG ZbGaey4kaSIaam4qaOWaaSbaaSqaaKqzadGaamyzaaWcbeaajugibi abgUcaRiaadoeakmaaDaaaleaajugWaiaadMgacaWGQbaaleaajugW aiaadweaaaaaliaawIcacaGLPaaaaaaaaa@8487@ (12)

And

W 1 ( s )= Ξ 2 ( s ) U( s ) = k r ( R C 0 s+1 )( M 2 s 2 + k ν s+ C e + C ij E ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4vaO WaaSbaaSqaaKqzadGaaGymaaWcbeaakmaabmaabaqcLbsacaWGZbaa kiaawIcacaGLPaaajugibiabg2da9OWaaSaaaeaajugibiabf65ayP WaaSbaaSqaaKqzadGaaGOmaaWcbeaakmaabmaabaqcLbsacaWGZbaa kiaawIcacaGLPaaaaeaajugibiaadwfakmaabmaabaqcLbsacaWGZb aakiaawIcacaGLPaaaaaqcLbsacqGH9aqpkmaalaaabaqcLbsacaWG RbGcdaWgaaWcbaqcLbmacaWGYbaakeqaaaqaamaabmaaleaajugibi aadkfacaWGdbGcdaWgaaWcbaqcLbmacaaIWaaaleqaaKqzGeGaam4C aiabgUcaRiaaigdaaSGaayjkaiaawMcaaKqzGeGaaGjbVRWaaeWaae aajugibiaad2eakmaaBaaaleaajugWaiaaikdaaSqabaqcLbsacaWG ZbGcdaahaaWcbeqaaKqzadGaaGOmaaaajugibiabgUcaRiaadUgakm aaBaaaleaajugWaiabe27aUbWcbeaajugibiaadohacqGHRaWkcaWG dbGcdaWgaaWcbaqcLbmacaWGLbaaleqaaKqzGeGaey4kaSIaam4qaO Waa0baaSqaaKqzadGaamyAaiaadQgaaSqaaKqzadGaamyraaaaaSGa ayjkaiaawMcaaaaaaaa@7790@ (13)

By using the feedback on the velocity U d ( s )= k d Rs Ξ 2 ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyvaO WaaSbaaSqaaKqzadGaamizaaWcbeaakmaabmaabaqcLbsacaWGZbaa kiaawIcacaGLPaaajugibiabg2da9iaadUgakmaaBaaaleaajugWai aadsgaaSqabaqcLbsacaWGsbGaam4Caiabf65ayPWaaSbaaSqaaKqz adGaaGOmaaWcbeaakmaabmaabaqcLbsacaWGZbaakiaawIcacaGLPa aaaaa@4C01@ after conversion transfer function of the nano piezoengine) at  more 100 Om we have the transfer function in general for lumped parameters of the nano piezoengine for voltage control (Figure 1) in the form

W( s )= Ξ 2 ( s )/ U( s ) = k r / ( a 3 s 3 + a 2 s 2 + a 1 s+ a 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4vaO WaaeWaaeaajugibiaadohaaOGaayjkaiaawMcaaKqzGeGaeyypa0Jc daWcgaqaaKqzGeGaeuONdGLcdaWgaaWcbaqcLbmacaaIYaaaleqaaO WaaeWaaeaajugibiaadohaaOGaayjkaiaawMcaaaqaaKqzGeGaamyv aOWaaeWaaeaajugibiaadohaaOGaayjkaiaawMcaaaaajugibiabg2 da9OWaaSGbaeaajugibiaadUgakmaaBaaaleaajugWaiaadkhaaSqa baaakeaadaqadaqaaKqzGeGaamyyaOWaaSbaaSqaaKqzadGaaG4maa WcbeaajugibiaadohakmaaCaaaleqabaqcLbmacaaIZaaaaKqzGeGa ey4kaSIaamyyaOWaaSbaaSqaaKqzadGaaGOmaaWcbeaajugibiaado hakmaaCaaaleqabaqcLbmacaaIYaaaaKqzGeGaey4kaSIaamyyaOWa aSbaaSqaaKqzadGaaGymaaWcbeaajugibiaadohacqGHRaWkcaWGHb GcdaWgaaWcbaqcLbmacaaIWaaaleqaaaGccaGLOaGaayzkaaaaaaaa @69E5@ (14)

a 3 =R C 0 M 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyyaO WaaSbaaSqaaKqzadGaaG4maaWcbeaajugibiabg2da9iaadkfacaWG dbGcdaWgaaWcbaqcLbmacaaIWaaaleqaaKqzGeGaamytaOWaaSbaaS qaaKqzadGaaGOmaaWcbeaaaaa@4398@ , a 2 = M 2 +R C 0 k v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyyaO WaaSbaaSqaaKqzadGaaGOmaaWcbeaajugibiabg2da9iaad2eakmaa BaaaleaajugWaiaaikdaaSqabaqcLbsacqGHRaWkcaWGsbGaam4qaO WaaSbaaSqaaKqzadGaaGimaaWcbeaajugibiaadUgakmaaBaaaleaa jugWaiaadAhaaSqabaaaaa@4862@ (15)

a 1 = k v +R C 0 C ij E +R C 0 C + e k r k d R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyyaO WaaSbaaSqaaKqzadGaaGymaaWcbeaajugibiabg2da9iaadUgakmaa BaaaleaajugWaiaadAhaaSqabaqcLbsacqGHRaWkcaWGsbGaam4qaO WaaSbaaSqaaKqzadGaaGimaaWcbeaajugibiaadoeakmaaDaaaleaa jugWaiaadMgacaWGQbaaleaajugWaiaadweaaaqcLbsacqGHRaWkca WGsbGaam4qaOWaaSbaaSqaaKqzadGaaGimaaWcbeaajugibiaadoea kmaaBeaaleaajugWaiaadwgaaSqabaqcLbsacqGHRaWkcaWGRbGcda WgaaWcbaqcLbmacaWGYbaaleqaaKqzGeGaam4AaOWaaSbaaSqaaKqz adGaamizaaWcbeaajugibiaadkfaaaa@5E5F@ , a 0 =C + e C ij E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyyaO WaaSbaaSqaaKqzadGaaGimaaWcbeaajugibiabg2da9iaadoeakmaa BeaaleaajugWaiaadwgaaSqabaqcLbsacqGHRaWkcaWGdbGcdaqhaa WcbaqcLbmacaWGPbGaamOAaaWcbaqcLbmacaWGfbaaaaaa@46E1@ (16)

Figure 1 Scheme piezoengine for lumped parameters at voltage control.

Than the transfer function of the nano piezoengine at voltage control for R=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOuai abg2da9iaaicdaaaa@3A34@ is founded in the form

W( s )= Ξ 2 ( s )/ U( s ) = k 31 U / ( T t 2 s 2 +2 T t ξ t s+1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4vaO WaaeWaaeaajugibiaadohaaOGaayjkaiaawMcaaKqzGeGaeyypa0Jc daWcgaqaaKqzGeGaeuONdGLcdaWgaaWcbaqcLbmacaaIYaaaleqaaO WaaeWaaeaajugibiaadohaaOGaayjkaiaawMcaaaqaaKqzGeGaamyv aOWaaeWaaeaajugibiaadohaaOGaayjkaiaawMcaaaaajugibiabg2 da9OWaaSGbaeaajugibiaadUgakmaaDaaaleaajugWaiaaiodacaaI XaaaleaajugWaiaadwfaaaaakeaadaqadaqaaKqzGeGaamivaOWaa0 baaSqaaKqzadGaamiDaaWcbaqcLbmacaaIYaaaaKqzGeGaam4CaOWa aWbaaSqabeaajugWaiaaikdaaaqcLbsacqGHRaWkcaaIYaGaamivaO WaaSbaaSqaaKqzadGaamiDaaWcbeaajugibiabe67a4PWaaSbaaSqa aKqzadGaamiDaaWcbeaajugibiaadohacqGHRaWkcaaIXaaakiaawI cacaGLPaaaaaaaaa@69B1@ (17)

k 31 U = d 31 ( h/δ )/ ( 1+ C e / C 11 E ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4AaO Waa0baaSqaaKqzadGaaG4maiaaigdaaSqaaKqzadGaamyvaaaajugi biabg2da9OWaaSGbaeaajugibiaadsgakmaaBaaaleaajugWaiaaio dacaaIXaaaleqaaOWaaeWaaeaadaWcgaqaaKqzGeGaamiAaaGcbaqc LbsacqaH0oazaaaakiaawIcacaGLPaaaaeaadaqadaqaaKqzGeGaaG ymaiabgUcaROWaaSGbaeaajugibiaadoeakmaaBaaaleaajugWaiaa dwgaaSqabaaakeaajugibiaadoeakmaaDaaaleaajugWaiaaigdaca aIXaaaleaajugWaiaadweaaaaaaaGccaGLOaGaayzkaaaaaaaa@56CC@ (18)

T t = M/ ( C e + C 11 E ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamivaO WaaSbaaSqaaKqzadGaamiDaaWcbeaajugibiabg2da9OWaaOaaaeaa daWcgaqaaKqzGeGaamytaaGcbaWaaeWaaeaajugibiaadoeakmaaBa aaleaajugWaiaadwgaaSqabaqcLbsacqGHRaWkcaWGdbGcdaqhaaWc baqcLbmacaaIXaGaaGymaaWcbaqcLbmacaWGfbaaaaGccaGLOaGaay zkaaaaaaWcbeaaaaa@4A73@ , ω t =1/ T t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqyYdC NcdaWgaaWcbaqcLbmacaWG0baaleqaaKqzGeGaeyypa0JcdaWcgaqa aKqzGeGaaGymaaGcbaqcLbsacaWGubGcdaWgaaWcbaqcLbmacaWG0b aaleqaaaaaaaa@42AB@ (19)

For PZT engine d 31 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamizaO WaaSbaaSqaaKqzadGaaG4maiaaigdaaSqabaaaaa@3B6D@ = 0.2∙nm/V, h/δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalyaabaqcLb sacaWGObaakeaajugibiabes7aKbaaaaa@3ADE@ = 20, C e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4qaO WaaSbaaSqaaKqzadGaamyzaaWcbeaaaaa@3ABE@ = 0.5×107 N/m, C 11 E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4qaO Waa0baaSqaaKqzadGaaGymaiaaigdaaSqaaKqzadGaamyraaaaaaa@3D43@ = 1.1×107 N/m its transfer coefficient at voltage control is determined k 31 U MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4AaO Waa0baaSqaaKqzadGaaG4maiaaigdaaSqaaKqzadGaamyvaaaaaaa@3D7D@ = 2.75 nm/V with error of 10%. For PZT engine M 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamytaO WaaSbaaSqaaKqzadGaaGOmaaWcbeaaaaa@3A9A@ = 1 kg, C e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4qaO WaaSbaaSqaaKqzadGaamyzaaWcbeaaaaa@3ABE@ = 0.5×107 N/m, C 11 E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4qaO Waa0baaSqaaKqzadGaaGymaiaaigdaaSqaaKqzadGaamyraaaaaaa@3D43@ = 1.1×107 N/m its time const at voltage control is obtained T t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamivaO WaaSbaaSqaaKqzadGaamiDaaWcbeaaaaa@3ADE@ = 0.25×10-3 s with error of 10%.

Scheme piezoengine at current control

For direct feed of the nano piezoengine at current control we have the transform general force by using the voltage U C ( s )= I( s )/ ( C 0 s ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyvaO WaaSbaaSqaaKqzadGaam4qaaWcbeaakmaabmaabaqcLbsacaWGZbaa kiaawIcacaGLPaaajugibiabg2da9OWaaSGbaeaajugibiaadMeakm aabmaabaqcLbsacaWGZbaakiaawIcacaGLPaaaaeaadaqadaWcbaqc LbsacaWGdbGcdaWgaaWcbaqcLbmacaaIWaaaleqaaKqzGeGaam4Caa WccaGLOaGaayzkaaaaaaaa@4AAE@ on the piezo capacitor in the form

F( s )= d mi S 0 I( s ) δ s ij D C 0 s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOraO WaaeWaaeaajugibiaadohaaOGaayjkaiaawMcaaKqzGeGaeyypa0Jc daWcaaqaaKqzGeGaamizaOWaaSbaaSqaaKqzadGaamyBaiaadMgaaO qabaqcLbsacaWGtbGcdaWgaaWcbaqcLbmacaaIWaaaleqaaKqzGeGa amysaOWaaeWaaeaajugibiaadohaaOGaayjkaiaawMcaaaqaaKqzGe GaeqiTdqMaam4CaOWaa0baaSqaaKqzadGaamyAaiaadQgaaSqaaKqz adGaamiraaaajugibiaadoeakmaaBaaaleaajugWaiaaicdaaSqaba qcLbsacaWGZbaaaaaa@5789@ (20)

Here I( p ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamysaO WaaeWaaeaajugibiaadchaaOGaayjkaiaawMcaaaaa@3B8C@ , s ij D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4CaO Waa0baaSqaaKqzadGaamyAaiaadQgaaSqaaKqzadGaamiraaaaaaa@3DD9@ re the current, the the elastic compliance at D=const MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamirai abg2da9iaabogacaqGVbGaaeOBaiaabohacaqG0baaaa@3E22@

 

The Laplace transform current I d ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamysaO WaaSbaaSqaaKqzadGaamizaaWcbeaakmaabmaabaqcLbsacaWGZbaa kiaawIcacaGLPaaaaaa@3DE7@ for the feedback on the velocity the second end of the piezoengine is founded at current control on Figure 2 in the form

I d ( s )= d mi S 0 δ s ij D Ξ ˙ 2 ( s )= k d Ξ ˙ 2 ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamysaO WaaSbaaSqaaKqzadGaamizaaWcbeaakmaabmaabaqcLbsacaWGZbaa kiaawIcacaGLPaaajugibiabg2da9OWaaSaaaeaajugibiaadsgakm aaBaaaleaajugWaiaad2gacaWGPbaaleqaaKqzGeGaam4uaOWaaSba aSqaaKqzadGaaGimaaWcbeaaaOqaaKqzGeGaeqiTdqMaam4CaOWaa0 baaSqaaKqzadGaamyAaiaadQgaaSqaaKqzadGaamiraaaaaaqcLbsa cuqHEoawgaGaaOWaaSbaaSqaaKqzadGaaGOmaaWcbeaakmaabmaaba qcLbsacaWGZbaakiaawIcacaGLPaaajugibiabg2da9iaadUgakmaa BaaaleaajugWaiaadsgaaSqabaqcLbsacuqHEoawgaGaaOWaaSbaaS qaaKqzadGaaGOmaaWcbeaakmaabmaabaqcLbsacaWGZbaakiaawIca caGLPaaaaaa@641A@ (21)

The direct coefficient at current control k d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4AaO WaaSbaaSqaaKqzadGaamizaaWcbeaaaaa@3AE5@ is founded

k d = k r = d mi S 0 δ s ij D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4AaO WaaSbaaSqaaKqzadGaamizaaWcbeaajugibiabg2da9iaadUgakmaa BaaaleaajugWaiaadkhaaSqabaqcLbsacqGH9aqpkmaalaaabaqcLb sacaWGKbGcdaWgaaWcbaqcLbmacaWGTbGaamyAaaGcbeaajugibiaa dofakmaaBaaaleaajugWaiaaicdaaSqabaaakeaajugibiabes7aKj aadohakmaaDaaaleaajugWaiaadMgacaWGQbaaleaajugWaiaadsea aaaaaaaa@524F@ (22)

The Laplace transform load force F l ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOraO WaaSbaaSqaaKqzadGaamiBaaWcbeaakmaabmaabaqcLbsacaWGZbaa kiaawIcacaGLPaaaaaa@3DEC@ for the feedback at current control has the form

F l ( s )=( C e + C ij D + k ν s ) Ξ 2 ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOraO WaaSbaaSqaaKqzadGaamiBaaWcbeaakmaabmaabaqcLbsacaWGZbaa kiaawIcacaGLPaaajugibiabg2da9OWaaeWaaeaajugibiaadoeakm aaBaaaleaajugWaiaadwgaaSqabaqcLbsacqGHRaWkcaWGdbGcdaqh aaWcbaqcLbmacaWGPbGaamOAaaWcbaqcLbmacaWGebaaaKqzGeGaey 4kaSIaam4AaOWaaSbaaSqaaKqzadGaeqyVd4galeqaaKqzGeGaam4C aaGccaGLOaGaayzkaaqcLbsacaaMe8UaeuONdGLcdaWgaaWcbaqcLb macaaIYaaaleqaaOWaaeWaaeaajugibiaadohaaOGaayjkaiaawMca aaaa@5C49@ (23)

The scheme for lumped parameters of the piezoengine at the current control is constructed (Figure 2) at the first fixed end, the elastic inertial load.

Figure 2 Scheme piezoengine for lumped parameters at current control.

The schemes of the piezoengine for lumped parameters at the voltage or current control are used in calculation nano mechatronics systems for aerospace. Let us consider parameters of the piezoengine for lumped parameters at the current control in static regime.

F jmax =U 1 δ d mi S 0 s ij E + F jmax 1 S 0 d mi n S p 1 ε mk T n S p /δ 1 δ d mi S 0 s ij E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOraO WaaSbaaSqaaKqzadGaamOAaiaab2gacaqGHbGaaeiEaaWcbeaajugi biabg2da9iaadwfakmaalaaabaqcLbsacaaIXaaakeaajugibiabes 7aKbaacaWGKbGcdaWgaaWcbaqcLbmacaWGTbGaamyAaaWcbeaakmaa laaabaqcLbsacaWGtbGcdaWgaaWcbaqcLbmacaaIWaaaleqaaaGcba qcLbsacaWGZbGcdaqhaaWcbaqcLbmacaWGPbGaamOAaaWcbaqcLbma caWGfbaaaaaajugibiabgUcaRiaadAeakmaaBaaaleaajugWaiaadQ gacaqGTbGaaeyyaiaabIhaaSqabaGcdaWcaaqaaKqzGeGaaGymaaGc baqcLbsacaWGtbGcdaWgaaWcbaqcLbmacaaIWaaaleqaaaaajugibi aadsgakmaaBaaaleaajugWaiaad2gacaWGPbaaleqaaKqzGeGaamOB aiaadofakmaaBaaaleaajugWaiaadchaaSqabaGcdaWcaaqaaKqzGe GaaGymaaGcbaWaaSGbaeaajugibiabew7aLPWaa0baaSqaaKqzadGa amyBaiaadUgaaSqaaKqzadGaamivaaaajugibiaad6gacaWGtbGcda WgaaWcbaqcLbmacaWGWbaakeqaaaqaaKqzGeGaeqiTdqgaaaaakmaa laaabaqcLbsacaaIXaaakeaajugibiabes7aKbaacaWGKbGcdaWgaa WcbaqcLbmacaWGTbGaamyAaaWcbeaakmaalaaabaqcLbsacaWGtbGc daWgaaWcbaqcLbmacaaIWaaaleqaaaGcbaqcLbsacaWGZbGcdaqhaa WcbaqcLbmacaWGPbGaamOAaaWcbaqcLbmacaWGfbaaaaaaaaa@8AA8@ (24)

 

After conversion we have equation in the form

F jmax S 0 s ij E ( 1 d mi 2 ε mk T s ij E )= F jmax S 0 s ij E ( 1 k mi 2 )= F jmax S 0 s ij D = E m d mi MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaqcLb sacaWGgbGcdaWgaaWcbaqcLbmacaWGQbGaaeyBaiaabggacaqG4baa leqaaaGcbaqcLbsacaWGtbGcdaWgaaWcbaqcLbmacaaIWaaaleqaaa aajugibiaadohakmaaDaaaleaajugWaiaadMgacaWGQbaaleaajugW aiaadweaaaGcdaqadaqaaKqzGeGaaGymaiabgkHiTOWaaSaaaeaaju gibiaadsgakmaaDaaaleaajugWaiaad2gacaWGPbaaleaajugWaiaa ikdaaaaakeaajugibiabew7aLPWaa0baaSqaaKqzadGaamyBaiaadU gaaSqaaKqzadGaamivaaaajugibiaadohakmaaDaaaleaajugWaiaa dMgacaWGQbaaleaajugWaiaadweaaaaaaaGccaGLOaGaayzkaaqcLb sacqGH9aqpkmaalaaabaqcLbsacaWGgbGcdaWgaaWcbaqcLbmacaWG QbGaaeyBaiaabggacaqG4baaleqaaaGcbaqcLbsacaWGtbGcdaWgaa WcbaqcLbmacaaIWaaaleqaaaaajugibiaadohakmaaDaaaleaajugW aiaadMgacaWGQbaaleaajugWaiaadweaaaGcdaqadaqaaKqzGeGaaG ymaiabgkHiTiaadUgakmaaDaaaleaajugWaiaad2gacaWGPbaaleaa jugWaiaaikdaaaaakiaawIcacaGLPaaajugibiabg2da9OWaaSaaae aajugibiaadAeakmaaBaaaleaajugWaiaadQgacaqGTbGaaeyyaiaa bIhaaSqabaaakeaajugibiaadofakmaaBaaaleaajugWaiaaicdaaS qabaaaaKqzGeGaam4CaOWaa0baaSqaaKqzadGaamyAaiaadQgaaSqa aKqzadGaamiraaaajugibiabg2da9iaadweakmaaBaaaleaajugWai aad2gaaOqabaqcLbsacaWGKbGcdaWgaaWcbaqcLbmacaWGTbGaamyA aaWcbeaaaaa@99CB@ (25)

k mi 2 = d mi 2 ε mk T s ij E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4AaO Waa0baaSqaaKqzadGaamyBaiaadMgaaSqaaKqzadGaaGOmaaaajugi biabg2da9OWaaSaaaeaajugibiaadsgakmaaDaaaleaajugWaiaad2 gacaWGPbaaleaajugWaiaaikdaaaaakeaajugibiabew7aLPWaa0ba aSqaaKqzadGaamyBaiaadUgaaSqaaKqzadGaamivaaaajugibiaado hakmaaDaaaleaajugWaiaadMgacaWGQbaaleaajugWaiaadweaaaaa aaaa@548D@ , s ij D =( 1 k mi 2 ) s ij E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4CaO Waa0baaSqaaKqzadGaamyAaiaadQgaaSqaaKqzadGaamiraaaajugi biabg2da9OWaaeWaaeaajugibiaaigdacqGHsislcaWGRbGcdaqhaa WcbaqcLbmacaWGTbGaamyAaaWcbaqcLbmacaaIYaaaaaGccaGLOaGa ayzkaaqcLbsacaWGZbGcdaqhaaWcbaqcLbmacaWGPbGaamOAaaWcba qcLbmacaWGfbaaaaaa@5038@ (26)

Here k mi MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4AaO WaaSbaaSqaaKqzadGaamyBaiaadMgaaSqabaaaaa@3BDC@ is the electromechanical coupling coefficient. The elastic compliance of PZT engines was measured using the UMM-5 press s ij E / s ij D 1,2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalyaabaqcLb sacaWGZbGcdaqhaaWcbaqcLbmacaWGPbGaamOAaaWcbaqcLbmacaWG fbaaaaGcbaqcLbsacaWGZbGcdaqhaaWcbaqcLbmacaWGPbGaamOAaa WcbaqcLbmacaWGebaaaaaajugibiabgsMiJkaaigdacaGGSaGaaGOm aaaa@4930@ with error of 10%.

Discussion

The structural scheme of nano piezoengine with lumped parameters is determined for aerospace. The PZT nano engines is used for aerospace. Method mathematical physics is used for calculation scheme nano piezoengine.

Conclusion

The schemes nano piezoengines with lumped parameters at voltage and current control for aerospace are determined. The transfer function and its lumped parameters of the nano piezoengine are obtained. The parameters PZT nano engines are found.

Acknowledgments

None.

Conflicts of interest

The author declares that there are no conflicts of interest.

Funding

None.

References

  1. Uchino K. Piezoelectric actuator and ultrasonic motors. Boston, MA: Kluwer Academic Publisher; 1997.
  2. Afonin SM. Absolute stability conditions for a system controlling the deformation of an electromagnetoelastic transducer. Dokl Math. 2006;74(3):943–944.
  3. Liu Y, Zhang S, Yan P, Li H. Finite element modeling and test of piezo disk with local ring electrodes for micro displacement. Micromachines. 2022;13(6):951.
  4. Afonin SM. Generalized parametric structural model of a compound electromagnetoelastic transducer. Dokl Phys. 2005;50(2):77–82.
  5. Afonin SM. Structural parametric model of a piezoelectric nanodisplacement transducer. Dokl Phys. 2008;53(3):137–143.
  6. Afonin SM. Solution of the wave equation for the control of an electromagnetoelastic transducer. Dokl Math. 2006;73(2):307–313.
  7. Cady WG. Piezoelectricity: An introduction to the theory and applications of electromechanical phenomena in crystals. New York, London: McGraw-Hill Book Company; 1946.
  8. Mason W. Physical acoustics: principles and methods. Vol.1. Part A. methods and devices. New York: Academic Press; 1964.
  9. Yang Y, Tang L. Equivalent circuit modeling of piezoelectric energy harvesters. J Intell Mater Syst Struct. 2009;20(18):2223–2235.
  10. Zwillinger D. Handbook of Differential Equations. Boston: Academic Press; 1989.
  11. Afonin SM. A generalized structural-parametric model of an electromagnetoelastic converter for nano-and micrometric movement control systems: III. Transformation parametric structural circuits. J Comput Syst Sci Int. 2006;45(2):317–325.
  12. Afonin SM. Generalized structural-parametric model of an electromagnetoelastic converter for nano and micrometric movements: IV. Investigation and calculation of characteristics of step-piezodrive. J Comput Syst Sci Int. 2006;45(6):1006–1013.
  13. Afonin SM. Decision wave equation and block diagram of electromagnetoelastic actuator for nano and microdisplacement. Int J Inf Commun Sci. 2016;1(2):22–29.
  14. Afonin SM. Structural-parametric model and transfer functions of electroelastic actuator. International Journal of Theoretical and Applied Mathematics. 2015;2(2):225–242.
  15. Afonin SM. A structural-parametric model of electroelastic actuator for nanodisplacement. In: Bartul Z, Trenor J, editor. Advances in Nanotechnology. Vol 19. New York: Nova Science; 2017:259–284.
  16. Shevtsov SN, Soloviev AN, Parinov IA, et al. Piezoelectric actuators and generators for energy harvesting. 2018.
  17. Adaptive optics. 2024.
  18. Precision machining. 2024.
  19. Baraniuk R, Drossel WG. Simplification of the model of piezoelectric actuator control based on preliminary measurements. Actuators. 2020;9(3):90.
  20. Afonin SM. Electromagnetoelastic nano and microactuators for mechatronic systems. Russ Eng Res. 2018;38(12):938–944.
  21. Afonin SM. Nano- and micro-scale piezomotors. Russ Eng Res. 2012;32(7-8):519–522.
  22. Afonin SM. Elastic compliances and mechanical and adjusting characteristics of composite piezoelectric transducers. Mech Solids. 2007;42(1):43–49.
  23. Afonin SM. Stability of strain control systems of nano-and microdisplacement piezotransducers. Mech Solids. 2014;49(2):196–207.
  24. Afonin SM. Structural-parametric model electromagnetoelastic actuator nanodisplacement for mechatronics. Int J Phys. 2017;5(1):9–15.
  25. Afonin SM. Structural-parametric model multilayer electromagnetoelastic actuator for nanomechatronics. Int J Phys. 2019;7(2):50–57.
  26. Afonin SM. Calculation deformation of an engine for nano biomedical research. Int J Biomed Res. 2021;1(5):1–4.
  27. Afonin SM. Precision engine for nanobiomedical research. Biomed Res Clin Rev. 2021;3(4):1–5.
  28. Afonin SM. Solution wave equation and parametric structural schematic diagrams of electromagnetoelastic actuators nano- and microdisplacement. Int J Math Anal Appl. 2016;3(4):31–38.
  29. Afonin SM. Structural-parametric model of electromagnetoelastic actuator for nanomechanics. Actuators. 2018;7(1):6.
  30. Afonin SM. Structural-parametric model and diagram of a multilayer electromagnetoelastic actuator for nanomechanics. Actuators. 2019;8(3):52.
  31. Afonin SM. Structural-parametric models and transfer functions of electromagnetoelastic actuators nano- and microdisplacement for mechatronic systems. Int J Theor Appl Math. 2016;2(2):52–59.
  32. Afonin SM. Design static and dynamic characteristics of a piezoelectric nanomicrotransducers. Mech Solids. 2010;45(1):123–132.
  33. Afonin SM. Electromagnetoelastic actuator for nanomechanics. Glob J Res Eng A Mech Mech Eng. 2018;18(2):19–23.
  34. Afonin SM. Multilayer electromagnetoelastic actuator for robotics systems of nanotechnology. In: Proc 2018 IEEE Conf EIConRus. 2018:1698–1701.
  35. Afonin SM. A block diagram of electromagnetoelastic actuator nanodisplacement for communications systems. Trans Netw Commun. 2018;6(3):1–9.
  36. Afonin SM. Decision matrix equation and block diagram of multilayer electromagnetoelastic actuator micro and nanodisplacement for communications systems. Trans Netw Commun. 2019;7(3):11–21.
  37. Afonin SM. Condition absolute stability control system of electromagnetoelastic actuator for communication equipment. Trans Netw Commun. 2020;8(1):8–15.
  38. Afonin SM. A Block diagram of electromagnetoelastic actuator for control systems in nanoscience and nanotechnology. Trans Mach Learn Artif Intell. 2020;8(4):23–33.
  39. Afonin SM. Optimal control of a multilayer electroelastic engine with a longitudinal piezoeffect for nanomechatronics systems. Appl Syst Innov. 2020;3(4):53.
  40. Afonin SM. Coded control of a sectional electroelastic engine for nanomechatronics systems. Appl Syst Innov. 2021;4(3):47.
  41. Afonin SM. Structural-parametric model actuator of adaptive optics for composite telescope and astrophysics equipment. Phys Astron Int J. 2020;4(1):18–21.
  42. Afonin SM. An actuator nano and micro displacements for composite telescope in astronomy and physics research. Phys Astron Int J. 2020;4(4):165–167.
  43. Afonin SM. Calculation of the deformation of an electromagnetoelastic actuator for composite telescope and astrophysics equipment. Phys Astron Int J. 2021;5(2):55–58.
  44. Afonin SM. Structural scheme actuator for nano research. COJ Rev Res. 2020;2(5):1–3.
  45. Afonin SM. Structural–parametric model electroelastic actuator nano and microdisplacement of mechatronics systems for nanotechnology and ecology research. MOJ Ecol Environ Sci. 2018;3(5):306–309.
  46. Afonin SM. Electromagnetoelastic actuator for large telescopes. Aeronaut Aerosp Open Access J. 2018;2(5):270–272.
  47. Afonin SM. Structural model and scheme of a piezoengine for aeronautics and aerospace. Aeronaut Aerosp Open Access J. 2024;8(4):212–217.
  48. Afonin SM. Condition absolute stability of control system with electro elastic actuator for nano bioengineering and microsurgery. Surg Case Stud Open Access J. 2019;3(3):307–309.
  49. Afonin SM. Piezo actuators for nanomedicine research. MOJ Appl Bionics Biomech. 2019;3(2):56–57
  50. Afonin SM. Frequency criterion absolute stability of electromagnetoelastic system for nano and micro displacement in biomechanics. MOJ Appl Bionics Biomech. 2019;3(6):137–140.
  51. Afonin SM. A structural-parametric model of a multilayer electroelastic actuator for mechatronics and nanotechnology. Advances in Nanotechnology. 2019;22:169–186.
  52. Afonin SM. Electroelastic digital-to-analog converter actuator nano and microdisplacement for nanotechnology. Advances in Nanotechnology. 2020;24:205–218.
  53. Afonin SM. Characteristics of an electroelastic actuator nano- and microdisplacement for nanotechnology. Advances in Nanotechnology.2021;25:251–266.
  54. Afonin SM. Rigidity of a multilayer piezoelectric actuator for the nano and micro range. Russ Eng Res. 2021;41(4):285–288.
  55. Afonin SM. Structural scheme of electroelastic actuator for nanomechatronics. In: Parinov IA, Chang SH, Long BT, editors. Advanced Materials. Proceedings of the International Conference on Physics and Mechanics of New Materials and Their Applications, PHENMA 2019. Cham, Switzerland: Springer; 2020:487–502.
  56. Afonin SM. Absolute stability of control system for deformation of electromagnetoelastic actuator under random impacts in nanoresearch. In: Parinov IA, Chang SH, Kim YH, Noda NA, editors. Physics and Mechanics of New Materials and Their Applications. PHENMA 2020. Springer Proceedings in Materials. 2021;10:519–531.
  57. Afonin SM. Electroelastic actuator of nanomechatronics systems for nanoscience. Recent Progress in Chemical Science Research. 2023;6:15–27.
  58. Afonin SM. Harmonious linearization of hysteresis characteristic of an electroelastic actuator for nanomechatronics systems. Physics and Mechanics of New Materials and Their Applications. 2023;20:419–428.
  59. Afonin SM. Parameters of a nanopiezoengine for astrophysics research. Aeronaut Aerosp Open Access J. 2024;8(3):175–177.
  60. Afonin SM. Frequency method for determination self-oscillations in control systems with a piezo actuator for astrophysical research. Aeronaut Aerosp Open Access J. 2024;8(2):115–117.
  61. Afonin SM. Condition absolute stability of system with nano piezoactuator for astrophysics research. Aeronaut Aerosp Open Access J. 2023;7(3):99–102.
  62. Afonin SM. Piezoactuator of nanodisplacement for astrophysics. Aeronaut Aerosp Open Access J. 2022;6(4):155–158.
  63. Liu Y, Zhang S, Yan P, Li H. Finite element modeling and test of piezo disk with local ring electrodes for micro displacement. Micromachines. 2022;13(6):951.
  64. Nalwa HS. Encyclopedia of nanoscience and nanotechnology, 30 vol. American Scientific Publishers. 2019.
Creative Commons Attribution License

©2025 Afonin. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.